Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-2377-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-2377-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparative geochemical study on Furongian–earliest Ordovician (Toledanian) and Ordovician (Sardic) felsic magmatic events in south-western Europe: underplating of hot mafic magmas linked to the opening of the Rheic Ocean
Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, 28040 Madrid, Spain
Teresa Sánchez-García
Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain
Claudia Puddu
Dpt. Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain
Josep Maria Casas
Dpt. de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain
Alejandro Díez-Montes
Instituto Geológico y Minero de España, Plaza de la Constitución 1, 37001 Salamanca, Spain
Montserrat Liesa
Dpt. de Mineralogia, Petrologia i Geologia aplicada, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain
Giacomo Oggiano
Dipartimento di Scienze della Natura e del Territorio, 07100 Sassari, Italy
Related authors
No articles found.
Emilio González Clavijo, Ícaro Dias da Silva, José R. Martínez Catalán, Juan Gómez Barreiro, Gabriel Gutiérrez-Alonso, Alejandro Díez Montes, Mandy Hofmann, Andreas Gärtner, and Ulf Linnemann
Solid Earth, 12, 835–867, https://doi.org/10.5194/se-12-835-2021, https://doi.org/10.5194/se-12-835-2021, 2021
Short summary
Short summary
In northwest Iberia, a low-grade unit separates the unrooted accretionary prism from the autochthon. It was divided into Upper (preorogenic) and Lower (synorogenic) parautochthons around the Morais Complex. A review of the sedimentary sequence characteristics, supported by U–Pb ages in 17 new samples of synorogenic sediments and volcanic olistoliths, proposes this model to show the Galicia–Trás-os-Montes Zone forming a tectonic carpet exposed in most of the Parautochthon–Autochthon limit.
Stefano Tavani, Pablo Granado, Amerigo Corradetti, Thomas Seers, Josep Maria Casas, and Josep Anton Muñoz
Solid Earth, 11, 1643–1651, https://doi.org/10.5194/se-11-1643-2020, https://doi.org/10.5194/se-11-1643-2020, 2020
Short summary
Short summary
Using orthophotos, we manually digitized 30 000 joints in the eastern Ebro Basin of the Pyrenees. Joints are perpendicular to the belt in the frontal portion of the belt and in the inner and central portion of the foredeep basin. Joint orientations in the external portion of the foredeep become less clustered. Joints in the studied area formed in the foredeep in response to foredeep-parallel stretching, which becomes progressively less intense within the external portion of the foredeep basin.
Josep Maria Casas, Joan Guimerà, Joaquina Alvarez-Marron, and Ícaro Días da Silva
Solid Earth Discuss., https://doi.org/10.5194/se-2020-126, https://doi.org/10.5194/se-2020-126, 2020
Revised manuscript not accepted
Short summary
Short summary
Many orogenic belts exhibit arcuate form in map view. We deal with the different models proposed to explain the formation of the Ibero-Armorican Arc in the western European Variscan Belt. We suggest this arc is primary slightly modified by superposed contraction during late Carboniferous and/or Alpine times. We discuss the role of late-Variscan regional strike-slip faults in the Iberian and in the Armorican massifs that probably acted consecutively before and during the contraction of the arc.
Francisco J. Rubio Pascual, Luis M. Martín Parra, Pablo Valverde-Vaquero, Alejandro Díez Montes, Manuel P. Hacar Rodríguez, Justo Iglesias, Rubén Díez Fernández, Gloria Gallastegui, Nemesio Heredia, and L. Roberto Rodríguez Fernández
Solid Earth Discuss., https://doi.org/10.5194/se-2020-25, https://doi.org/10.5194/se-2020-25, 2020
Preprint withdrawn
G. Mongelli, S. Monni, G. Oggiano, M. Paternoster, and R. Sinisi
Hydrol. Earth Syst. Sci., 17, 2917–2928, https://doi.org/10.5194/hess-17-2917-2013, https://doi.org/10.5194/hess-17-2917-2013, 2013
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochemistry
Magnesium isotope fractionation processes during seafloor serpentinization and implications for serpentinite subduction
Epidote dissolution–precipitation during viscous granular flow: a micro-chemical and isotope study
Whole-rock and zircon evidence for evolution of the Late Jurassic high-Sr ∕ Y Zhoujiapuzi granite, Liaodong Peninsula, North China Craton
Bromine speciation and partitioning in slab-derived aqueous fluids and silicate melts and implications for halogen transfer in subduction zones
Boninite and boninite-series volcanics in northern Zambales ophiolite: doubly vergent subduction initiation along Philippine Sea plate margins
Sune G. Nielsen, Frieder Klein, Horst R. Marschall, Philip A. E. Pogge von Strandmann, and Maureen Auro
Solid Earth, 15, 1143–1154, https://doi.org/10.5194/se-15-1143-2024, https://doi.org/10.5194/se-15-1143-2024, 2024
Short summary
Short summary
Magnesium isotope ratios of arc lavas have been proposed as a proxy for serpentinite subduction, but uncertainties remain regarding their utility. Here we show that bulk serpentinite Mg isotope ratios are identical to the mantle, whereas the serpentinite mineral brucite is enriched in heavy Mg isotopes. Thus, Mg isotope ratios may only be used as serpentinite subduction proxies if brucite is preferentially mobilized from the slab at pressures and temperatures within the arc magma source region.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Pierre Lanari, Igor Maria Villa, and Marco Herwegh
Solid Earth, 13, 1803–1821, https://doi.org/10.5194/se-13-1803-2022, https://doi.org/10.5194/se-13-1803-2022, 2022
Short summary
Short summary
This work studies the interplay of epidote dissolution–precipitation and quartz dynamic recrystallization during viscous granular flow in a deforming epidote–quartz vein. Pb and Sr isotope data indicate that epidote dissolution–precipitation is mediated by internal/recycled fluids with an additional external fluid component. Microstructures and geochemical data show that the epidote material is redistributed and chemically homogenized within the deforming vein via a dynamic granular fluid pump.
Renyu Zeng, Mark B. Allen, Xiancheng Mao, Jianqing Lai, Jie Yan, and Jianjun Wan
Solid Earth, 13, 1259–1280, https://doi.org/10.5194/se-13-1259-2022, https://doi.org/10.5194/se-13-1259-2022, 2022
Short summary
Short summary
In the Liaodong Peninsula, the widely exposed Jurassic high-Sr / Y rocks are generally considered to be derived from the thickened mafic crust. However, research on the Zhoujiapuzi granite in this study shows that there is at least one pluton with a high Sr / Y signature inherited from the source. Zircon growth in Zhoujiapuzi granite can be divided into two stages. The light-CL core was formed in a deeper, hotter magma chamber. The dark-CL rim formed from later, more evolved magma.
Marion Louvel, Carmen Sanchez-Valle, Wim J. Malfait, Gleb S. Pokrovski, Camelia N. Borca, and Daniel Grolimund
Solid Earth, 11, 1145–1161, https://doi.org/10.5194/se-11-1145-2020, https://doi.org/10.5194/se-11-1145-2020, 2020
Short summary
Short summary
Here, we conducted spectroscopic measurements on high-pressure, high-temperature fluids and melts to study how halogens, in particular bromine, can be incorporated in subduction zone fluids and melts. We find that a gradual evolution of bromine speciation with liquid composition enables the incorporation of high amounts of Br in both phases. Thus, bromine and, by extension, chlorine are expected to be efficiently recycled from the slab towards the volcanic arc.
Americus Perez, Susumu Umino, Graciano P. Yumul Jr., and Osamu Ishizuka
Solid Earth, 9, 713–733, https://doi.org/10.5194/se-9-713-2018, https://doi.org/10.5194/se-9-713-2018, 2018
Short summary
Short summary
The occurrence of boninite in the northern Zambales ophiolite is reported. Boninite is a relatively rare high-magnesium andesite that is intimately associated with early arc volcanism and the initiation of subduction zones. Taken as a whole, the geological and geochemical characteristics of Zambales and Izu-Ogasawara–Mariana forearc volcanic sequences enables a refined geodynamic reconstruction of subduction initiation.
Cited articles
Álvaro, J. J. and Vizcaïno, D.: The Furongian break-up
(rift-drift) transition in the Anti-Atlas, Morocco, J. Iberian Geol., 44,
567–587, https://doi.org/10.1007/s41513-018-0066-2, 2018.
Álvaro, J. J., Ferretti, F., González-Gómez, C., Serpagli, E.,
Tortello, M. F., Vecoli, M., and Vizcaïno, D.: A review of the Late
Cambrian (Furongian) palaeogeography in the western Mediterranean region, NW
Gondwana, Earth-Sci. Rev., 85, 47–81, https://doi.org/10.1016/j.earscirev.2007.06.006, 2007.
Álvaro, J. J., Ezzouhairi, H., Ribeiro, M. L., Ramos, J. F., and
Solá, A. R.: Early Ordovician volcanism of the Iberian Chains (NE Spain)
and its influence on preservation of shell concentrations, Bull. Soc.
géol. Fr., 179, 569–581,
https://doi.org/10.2113/gssgfbull.179.6.569, 2008.
Álvaro, J. J., Bellido, F., Gasquet, D., Pereira, F., Quesada, C., and
Sánchez-García, T.: Diachronism of late Neoproterozoic-Cambrian
arc-rift transition of North Gondwana: a comparison of Morocco and the
Iberian Ossa-Morena Zone, J. Afr. Earth Sci., 98, 113–132,
https://doi.org/10.1016/j.jafrearsci.2014.03.024, 2014a.
Álvaro, J. J., Bauluz, B., Clausen, S., Devaere, L., Gil Imaz, A.,
Monceret, E., and Vizcaïno, D.: Stratigraphy of the Cambrian-Lower
Ordovician volcanosedimentary complexes, northern Montagne Noire, France,
Stratigraphy, 11, 83–96,
http://www.scopus.com/inward/ (last access: 30 November 2020),
2014b.
Álvaro, J. J., Colmenar, J., Monceret, E., Pouclet, A., and
Vizcaïno, D.: Late Ordovician (post-Sardic) rifting branches in the
North Gondwanan Montagne Noire and Mouthoumet massifs of southern France,
Tectonophysics, 681, 111–123,
https://doi.org/10.1016/j.tecto.2015.11.031, 2016.
Álvaro, J. J., Casas, J. M., Clausen, S., and Quesada, C.: Early
Palaeozoic geodynamics in NW Gondwana, J. Iberian Geol., 44, 551–565, 2018.
Álvaro, J. J., Cortijo, I., Jensen, S., Lorenzo, S., Palacios, T., and
Pieren, A.: Updated stratigraphic framework and biota of the Ediacaran and
Terreneuvian in the Alcudia-Toledo Mountains of the Central Iberian Zone,
Spain, Est. Geol., 75, e093, https://doi.org/10.1007/s41513-018-0079-x,
2019.
Álvaro, J. J., Casas, J. M., and Quesada, C.: Reconstructing the
pre-Variscan puzzle of Cambro-Ordovician basement rocks in the southwestern
European margin of Gondwana, in: Pannotia to Pangaea: Neoproterozoic and
Paleozoic Orogenic Cycles in the Circum-Atlantic Regional, edited by:
Murphy, J. B., Strachan, R., and Quesada, C., Geological Society London Special Publications, London, UK, https://doi.org/10.1144/SP503-2020-89, 2020.
Antunes, I. M. H. R., Neiva, A. M. R., Silva, M. M. V. G., and Corfu, F.:
The genesis of I- and S-type granitoid rocks of the Early Ordovician Oledo
pluton, Central Iberian Zone (central Portugal), Lithos, 111, 168–185,
https://doi.org/10.1016/j.lithos.2008.07.014, 2009.
Arthaud, F.: Etude tectonique et microtectonique comparée de deux
domaines hercyniens: les nappes de la Montagne Noire (France) et
l'anticlinorium de l'Iglesiente (Sardaigne), PhD thesis, University of Montpellier, France, 178 pp., 1970.
Ayora, C.: Les concentrationes metàlliques de la Vall de
Ribes. PhD thesis, University of Barcelona, Spain, 248 pp., 1980.
Ballèvre, M., Fourcade, S., Capdevila, R., Peucat, J. J., Cocherie, A.,
and Mark Fanning, C.: Geochronology and geochemistry of Ordovician felsic
volcanism in the Southern Armorican Massif (Variscan belt, France):
Implications for the breakup of Gondwana, Gondwana Res., 21, 1019–1036,
https://doi.org/10.1016/j.gr.2011.07.030, 2012.
Barca, S.: Phénomènes de resédimentation et flysch hercynien
à faciès Culm dans le “synclinal du Sarrabus” (SE de la Sardaigne,
Italie), C. R. Acad. Sci., 313, 1051–1057, 1991.
Barca, S. and Cherchi, A.: Regional geological setting, in: Sardinian
Palaeozoic Basement and its Meso–Cainozoic Cover (Italy), edited by: Barca,
S. and Cherchi, A., 32nd Int. Geol. Congress. Field Trip Guide Book, 3–8, 2004.
Barca, S., Cocozza, T., Del Rio, M., Pillola, G. L., and Pittau Demelia, P.:
Datation de l'Ordovicien inférieur par Dictyonema flabelliforme et acritarches dans la partie
supérieure de la formation “cambrienne” de Cabitza (SW de la
Sardaigne, Italie): conséquences géodynamiques, C. R. Acad. Sci., 305, 1109–1113, 1987.
Barca, S., Del Rio, M., and Pittau Demelia, P.: New geological and
stratigraphical data and discovery of Lower Ordovician acritarchs in the San
Vito Sandstone of the Genn'Argiolas Unit (Sarrabus, Southeastern Sardinia),
Riv. It. Paleontol. Stratigr., 94, 339–360, 1988.
Bea, F., Montero, P., Talavera, C., and Zinger, T.: A revised Ordovician age
for the Miranda do Douro orthogneiss, Portugal. Zircon U-Pb ion-microprobe
and LA-ICPMS dating, Geol. Acta, 4, 395–401, 2006.
Bea, F., Montero, P., González Lodeiro, F., and Talavera, C.: Zircon
inheritance reveals exceptionally fast crustal magma generation processes in
Central Iberia during the Cambro-Ordovician, J. Petrol., 48, 2327–2339,
https://doi.org/10.1093/petrology/egm061, 2007.
Bé Mézème, E.: Contribution de la géochronologie U-Th-Pb
sur monazite à la compréhension de la fusion crustale dans la
chaîne Hercynienne française et implication géodynamique, PhD thesis, University of Orléans, France, 250 pp., 2005.
Bindeman, I. N. and Valley, J. W.: Rapid generation of both high- and
low-δ18O, large-volume silicic magmas at the Timber
Mountain/Oasis Valley caldera complex, Nevada, Geol. Soc. Am. Bull., 115,
581–595,
https://doi.org/10.1130/0016-7606(2003)115<0581:RGOBHA>2.0.CO;2, 2003.
Boni, M.: The Permo-Triassic vein and paleokarst ores in southwest
Sardinia: contribution of fluid inclusion studies to their genesis and
paleoenvironment, Mineral. Deposita, 21, 53–62, 1986.
Boni, M. and Koeppel, V.: Ore-lead isotope pattern from the
Iglesiente-Sulcis area (SW Sardinia) and the problem of remobilization of
metals, Mineral. Deposita, 20, 185–193, 1985.
Bryan, S. E., Riley, T. R., Jerram, D. A., Stephens, C. J., and Leat, P.
T.: Silicic volcanism: An undervalued component of large igneous provinces
and volcanic rifted margins, in: Volcanic Rifted Margins, edited by: Menzies,
M. A., Klemperer, S. L., Ebinger, C. J., and Baker, Geological Society of America Special Publication, Boulder, Colorado, USA, 99–120, https://doi.org/10.1130/0-8137-2362-0.97, 2002.
Calvet, P., Lapierre, H., and Chavet, J.: Diversité du volcanisme
Ordovicien dans la région de Pierrefitte (Hautes Pyrénées):
rhyolites calco-alcalines et basaltes alcalins, C. R. Acad. Sci., 307, 805–812, 1988.
Calvino, F.: Note Illustrative della Carta Geologica d'Italia, Muravera. Servizio Geologico d'Italia, Roma, Foglio 227, 1972.
Carmignani, L., Cocozza, T., Ghezzo, C., Pertusati, P. C., and Ricci, C. A.:
Guide-book to the Excursion on the Palaeozoic Basement of Sardinia, IGCP, Paris, France, 1986.
Carmignani, L., Pertusati, P. C., Barca, S., Carosi, R., Di Pisa, A.,
Gattiglio, M., Musumeci, G., and Oggiano, G.: Struttura della catena ercinica in Sardegna, Guida
all'escursione del Gruppo Informali di Geologia Strutturale in Sardegna, Centrooffset Siena, Italy, 1992.
Carmignani, L., Carosi, R., Di Pisa, A., Gattiglio, M., Musumeci, G.,
Oggiano, G., and Pertusati, P.: The hercynian chain in Sardinia (Italy), Geodin. Acta,
7, 31–47, https://doi.org/10.1080/09853111.1994.11105257, 1994.
Carmignani, L., Oggiano, G., Barca, S., Conti, P., Salvadori, I., Eltrudis,
A., Funedda, A., and Pasci, S.: Geologia della Sardegna, Note illustrative della Carta Geologica
della Sardegna a scala 1:200.000, Memorie Descrittive della Carta Geologica
d'Italia, Servizio Geologico, Instituto Poligrafico e Zecca dello
Stato, Roma, 2001.
Caron, C., Lancelot, J., Omenetto, P., and Orgeval, J. J.: Role of the
Sardic tectonic phase in the metallogenesis of SW Sardinia (Iglesiente):
lead isotope evidence, European J. Miner., 9, 1005–1016, 1997.
Casas, J. M.: Ordovician deformations in the Pyrenees: new insights into the
significance of pre–Variscan (“sardic”) tectonics, Geol. Mag., 147,
674–689, https://doi.org/10.1017/S0016756809990756, 2010.
Casas, J. M. and Fernández, O.: On the Upper Ordovician unconformity in
the Pyrenees: New evidence from the La Cerdanya area, Geol. Acta, 5,
193–198, https://doi.org/10.1344/105.000000304, 2007.
Casas, J. M. and Murphy, J. B.: Unfolding the arc: the use of pre-orogenic
constraints to assess the evolution of the Variscan belt in Western Europe,
Tectonophysics, 736, 47–61, https://doi.org/10.1016/j.tecto.2018.04.012,
2018.
Casas, J. M. and Palacios, T.: First biostratigraphical constraints on the
pre-Upper Ordovician sequences of the Pyrenees based on organic-walled
microfossils, C. R. Geosci., 344, 50–56,
https://doi.org/10.1016/j.crte.2011.12.003, 2012.
Casas, J. M., Castiñeiras, P., Navidad, M., Liesa, M., and Carreras, J.:
New insights into the Late Ordovician magmatism in the Eastern Pyrenees:
U-Pb SHRIMP zircon data from the Canigó massif, Gondwana Res., 17,
317–324, https://doi.org/10.1016/j.gr.2009.10.006, 2010.
Casas, J. M., Álvaro, J. J., Clausen, S., Padel, M., Puddu, C.,
Sanz-López, J., Sánchez-García, T., Navidad, M.,
Castiñeiras, P., and Liesa, M.: Palaeozoic basement of the Pyrenees, in:
The Geology of Iberia: A Geodynamic Approach, edited by: Quesada, C. and
Oliveira, J. T., Springer, Heidelberg, Germany, 229–259, 2019.
Castiñeiras, P., Villaseca, C., Barbero, L., and Martín-Romera, C.:
SHRIMP U-Pb zircon dating of anatexis in high-grade migmatite complexes of
Central Spain: implications in the Hercynian evolution of Central Iberia,
Int. J. Earth Sci., 97, 35–50, https://doi.org/10.1007/s00531-006-0167-6,
2008a.
Castiñeiras, P., Navidad, M., Liesa, M., Carreras, J., and Casas, J. M.:
U-Pb zircon ages (SHRIMP) for Cadomian and Lower Ordovician magmatism in
the Eastern Pyrenees: new insights in the pre-Variscan evolution of the
northern Gondwana margin, Tectonophysics, 46, 228–239,
https://doi.org/10.1016/j.tecto.2008.04.005, 2008b.
Castro, A., García-Casco, A., Fernández, C., Corretgé, L. G.,
Moreno-Ventas, I., Gerya, T., and Löw, I.: Ordovician ferrosilicic
magmas: experimental evidence for ultrahigh temperaturas affecting a
metagreywacke source, Gondwana Res., 16, 622–632, https://doi.org/10.1016/j.gr.2008.12.011, 2009.
Charles, N., Faure, M., and Chen, Y.: The emplacement of the Montagne Noire
axial zone (French Massif Central): New insights from petro-textural,
geochronological and AMS studies, 22ème Réunion des Sciences de la
Terre, Nancy, France, 155, 2008.
Charles, N., Faure, M., and Chen, Y.: The Montagne Noire migmatitic dome
emplacement (French Massif Central): New insights from petrofabric and AMS
studies, J. Struct. Geol., 31, 1423–1440,
https://doi.org/10.1016/j.jsg.2009.08.007, 2009.
Clariana, P., Valverde-Vaquero, P., Rubio-Ordóñez, A.,
Beranoaguirre, A., and García-Sansegundo, J.: Pre-Variscan tectonic
events and Late Ordovician magmatism in the Central Pyrenees: U-Pb age and
Hf in zircon isotopic signature from subvolcanic sills in the Pallaresa
massif, J. Iberian Geol., 44, 589–601,
https://doi.org/10.1007/s41513-018-0076-0, 2018.
Cocco, F. and Funedda, A.: New data on the pre-Middle Ordovician
deformation in SE Sardinia: a preliminary note, Rend. online Soc. Geol. It.,
15, 34–36, 2011.
Cocco, F. and Funneda, A.: The Sardic Phase: field evidence of Ordovician
tectonics in SE Sardinia, Italy, Geol. Mag., 156, 25–38,
https://doi.org/10.1017/S0016756817000723, 2017.
Cocco, F., Oggiano, G. Funedda, A., Loi, A., and Casini, L.: Stratigraphic,
magmatic and structural features of Ordovician tectonics in Sardinia
(Italy): a review, J. Iberian Geol., 44, 619–639,
https://doi.org/10.1007/s41513-018-0075-1, 2018.
Cocherie, A.: Datation avec le SHRIMP II du métagranite oeillé du
Somail-Montagne Noire, C. R. technique ANA–ISO/NT, repport of the French Geological Survey (BRGM), 2003.
Cocherie, A., Baudin, T., Guerrot, C., Autran, A., Fanning, M. C., and
Laumonier, B.: U-Pb zircon (ID-TIMS and SHRIMP) evidence for the early
Ordovician intrusion of metagranites in the late Proterozoic Canaveilles
Group of the Pyrenees and the Montagne Noire (France), Bull. Soc. Géol.
France, 176, 269–282, https://doi.org/10.2113/176.3.269, 2005.
Cortesogno, L., Gaggero, L., Oggiano, G., and Paquette, J. L.: Different
tectono-thermal evolution paths in eclogitic rocks from the Axial Zone of
the Variscan Chain in Sardinia (Italy) compared with the Ligurian Alps,
Ofioliti, 29, 125–144, 2004.
Costamagna, L. G., Elter, F. M., Gaggero, L., and Mantovani, F.: Contact
metamorphism in Middle Ordovician arc rocks (SW Sardinia, Italy): New
paleogeographic constraints, Lithos, 264, 577–593,
https://doi.org/10.1016/j.lithos.2016.09.014, 2016.
Cruciani, G., Franceschelli, M., Musumeci, G., Spano, M. E., and Tiepolo,
M.: U-Pb zircon dating and nature of metavolcanics and metarkoses from the
Monte Grighini Unit: new insights on Late Ordovician magmatism in the
Variscan belt in Sardinia, Italy, Int. J. Earth Sci., 102, 2077–2096,
https://doi.org/10.1007/s00531-013-0919-z, 2013.
Cruciani, G., Franceschelli, M., Puxeddu, M., and Tiepolo, M.:
Metavolcanics from Capo Malfatano, SW Sardinia, Italy: New insight on the
age and nature of Ordovician volcanism in the Variscan foreland zone, Geol.
J., 53, 1573–1585, https://doi.org/10.1002/gj.2976, 2018.
Demange, M.: Evolution tectonique de la Montagne noire: un modèle en
transpression, C. R. Acad. Sci., 329, 823–829, 1999.
Demange, M., Guérangé-Lozes, J., and Guérangé, B.: Notice
explicative de la feuille de Lacaune (987) au 1:50 000, BRGM, Orléans,
1996.
Denèle, Y., Barbey, P., Deloule, E., Pelleter, E., Olivier, P., and
Gleizes, G.: Middle Ordovician U-Pb age of the Aston and Hospitalet
orthogneissic laccoliths: their role in the Variscan evolution of the
Pyrenees, Bull. Soc. Géol. France, 180, 209–221,
https://doi.org/10.2113/gssgfbull.180.3.209, 2009.
DePaolo, D. J.: Neodymiun isotopes in the Colorado Front Range and
crust-mantle evolution in the Proterozoic, Nature, 291, 193–196,
https://doi.org/10.1038/291193a0, 1981.
DePaolo, D. J.: Neodymium isotope geochemistry, An introduction, Springer, Berlin, Germany, 1988.
DePaolo, D. J. and Wasserburg, G. J.: Nd isotopic variations and
petrogenetic models, Geophys. Res. Lett., 3, 249–252, 1976.
Dias da Silva, Í.: Geología de las Zonas Centro Ibérica y
Galicia-Tras-os-Montes en la pate oriental del Complejo de Morais,
Portugal/España, Serie Nova Terra, Laboratorio Xeolóxico de Laxe, A Coruña, 45, 1–424, 2014.
Dias da Silva, I., Valverde-Vaquero, P., González-Clavijo, E.,
Díez-Montes, A., and Martínez-Catalán, J. R.: Structural and
stratigraphical significance of U-Pb ages from the Saldanha and Mora
volcanic complexes (NE Portugal, Iberian Variscides), Géol. France, 1,
105–106, https://doi.org/10.1144/SP405.3, 2012.
Dias da Silva Í., Valverde-Vaquero, P., González Clavijo, E.,
Díez-Montes, A., and Martínez Catalán, J. R.: Structural and
stratigraphical significance of U-Pb ages from the Mora and Saldanha
volcanic complexes (NE Portugal, Iberian Variscides), in: The Variscan
Orogeny: Extent, Timescale and the Formation of the European Crust, edited
by: Schulmann, K., Martínez Catalán, J. R., Lardeaux, J. M.,
Janousek, V., and Oggiano, G., Geological Society of London Special Publications, London, UK, 115–135, https://doi.org/10.1144/SP405.3, 2014.
Dias da Silva, I., Díez Fernández, R., Díez Montes, A.,
González Clavijo, E., and Foster, D. A.: Magmatic evolution in the
N-Gondwana margin related to the opening of the Rheic Ocean – evidence from
the Upper Parautochthon of the Galicia-Trás-os-Montes Zone and from the
Central Iberian Zone (NW Iberian Massif), Int. J. Earth Sci., 105,
1127–1151, https://doi.org/10.1007/s00531-015-1232-9, 2016.
Díaz-Alvarado, J., Fernández, C., Chichorro, M., Castro, A., and
Pereira, M. F.: Tracing the Cambro-Ordovician ferrosilicic to calc-alkaline
magmatic association in Iberia by in situ U-Pb SHRIMP zircon geochronology (Gredosmassif, Spanish Central System batholith), Tectonophysics, 681, 95–110,
https://doi.org/10.1016/j.tecto.2016.02.031, 2016.
Díez Balda, M. A., Vegas, R., and González Lodeiro, F.: Central
Iberian Zone, Structures, in: Pre-Mesozoic Geology of Iberia, edited by:
Dallmeyer, R. D. and Martínez García, E. Springer, Berlin, Germany, 172–188, 1990.
Díez Fernández, R., Castiñeiras, P., and Gómez Barreiro,
J.: Age constraints on Lower Paleozoic convection system: Magmatic events in
the NW Iberian Gondwana margin, Gondwana Res., 21, 1066–1079,
https://doi.org/10.1016/j.gr.2011.07.028, 2012.
Díez-Montes, A.: La Geología del Dominio “Ollo de Sapo” en las
Comarcas de Sanabria y Terra do Bolo, PhD thesis, University of Salamanca, Spain, 506 pp., 2007.
Díez Montes, A., Martínez Catalán, J. R., and Bellido Mulas,
F.: Role of the Ollo de Sapo massive felsic volcanism of NW Iberia in the
Early Ordovician dynamics of northern Gondwana, Gondwana Res., 17, 363–376,
https://doi.org/10.1016/j.gr.2009.09.001, 2010.
Di Pisa, A., Gattiglio, M., and Oggiano, G.: Pre-Hercynian magmatic
activity in the nappe zone (internal and external) of Sardinia: evidence of
two within plate basaltic cycles, in: Contributions to the Geology of Italy
with Special Regard to the Paleozoic Basements, edited by: Carmingnani, L.
and Sassi, F. P., Newsl. IGCP, University of Siena, Siena, 276, 107–116, 1992.
Echtler, H. and Malavieille, J.: Extensional tectonics, basement uplift and
Stephano-Permian collapse basin in a late Variscan metamorphic core complex
(Montagne Noire, southern Massif Central), Tectonophysics, 177, 125–138,
https://doi.org/10.1016/0040-1951(90)90277-F, 1990.
El Korh, A., Schmidt, S. T., Ballèvre, M., Ulianov, A., and Bruguier,
O.: Discovery of an albite gneiss from the Ile de Groix (Armorican Massif,
France): geochemistry and LA-ICP-MS U-Pb geochronology of its Ordovician
protolith, Int. J. Earth Sci., 101, 1169–1190,
https://doi.org/10.1007/s00531-011-0732-5, 2012.
Engel, W., Feist, R., and Franke, W.: Le Carbonifère
anté-stéphanien de la Montagne Noire: rapports entre mise en place
des nappes et sédimentation, Bull. BRGM, 2, 341–389, 1980.
Elter, F. M., Francescherelli, M., Ghezzo, C., Memmi, I., and Ricci, C. A.:
The geology of northern Sardinia, IGCP Project n. 5 Newsletter,
87–102, 1986.
Farias, P., Ordoñez-Casado, B., Marcos, A., Rubio-Ordóñez, A.,
and Fanning, C. M.: U-Pb zircon SHRIMP evidence for Cambrian volcanism in
the Schistose Domain within the Galicia-Trás-os-Montes Zone (Variscan
Orogen, NW Iberian Peninsula), Geol. Acta, 12, 209–218,
https://doi.org/10.1344/GeologicaActa2014.12.3.3, 2014.
Faure, M., Ledru, P., Lardeaux, J. M., and Matte, P.: Paleozoic orogenies in
the French Massif Central. A cross section from Béziers to Lyon, 32nd
Int. Geol. Congress Florence, Italy, 20–28 August 2004,
B22, B16–B33, 2004.
Feist, R. and Galtier, J.: 1985. Découverte de flores d'âge
namurien probable dans le flysch à olistolithes de Cabrières
(Hérault). Implications sur la durée de la sédimentation
synorogénique dans la Montagne Noire (France Méridionale), C. R.
Acad. Sci., 300, 207–212, 1985.
Franz, L. and Romer, R. L.: Caledonian high-pressure metamorphism in the
Strona-Ceneri-Zone (Southern Alps of southern Switzerland and northern
Italy), Swiss J. Geosci., 100, 457–467,
https://doi.org/10.1007/s00015-007-1232-2, 2007.
Friedl, G., Finger, F., Paquette, J. L., von Quadt, A., McNaughton, N. J.,
and Fletcher, I. R.: Pre-Variscan geological events in the Austrian part of
the Bohemian Massif deduced from U-Pb zircon ages, Int. J. Earth Sci., 93,
802–823, https://doi.org/10.1007/s00531-004-0420-9, 2004.
Funedda, A. and Oggiano, G.: Outline of the Variscan basement of Sardinia,
in: The Silurian of Sardinia, Volume in Honour of Enrico Serpagli, edited by:
Corradini, C., Ferretti, A., and Štorch, P., Rendiconti della Società Paleontologica Italiana, Roma, 23–35, 2009.
Gaggero L., Oggiano G., Funedda A., and Buzzi, L.: Rifting and arc-related
Early Paleozoic volcanism along the North Gondwana margin: Geochemical and
geological evidence from Sardinia (Italy), J. Geol., 120, 273–292,
https://doi.org/10.1086/664776, 2012.
García-Arias, M., Díez-Montes, A., Villaseca, C., and
Blanco-Quintero, I. F.: The Cambro-Ordovician Ollo de Sapo magmatism in the
Iberian Massif and its Variscan evolution: A review, Earth-Sci. Rev., 176,
345–372, https://doi.org/10.1016/j.earscirev.2017.11.004, 2018.
Gèze, B.: Etude géologique de la Montagne Noire et des Cévennes
méridionales, Mém. Soc. géol. France, Paris, 62, 1–215, 1949.
Giacomini, F., Bomparola, R. M., and Ghezzo, C.: Petrology and geochronology
of metabasites with eclogite facies relics from NE Sardinia: constraints for
the Palaeozoic evolution of Southern Europe, Lithos, 82, 221–248,
https://doi.org/10.1016/j.lithos.2004.12.013, 2005.
Giacomini, F., Bomparola, R. M., Ghezzo, C., and Guldbransen, H.: The
geodynamic evolution of the Southern European Variscides: constraints from
the U/Pb geochronology and geochemistry of the lower Palaeozoic
magmatic-sedimentary sequences of Sardinia (Italy), Contrib. Miner. Petr.,
152, 19–42, https://doi.org/10.1007/s00410-006-0092-5, 2006.
Guérangé-Lozes, J. and Alabouvette, B.: Notice explicative, Carte
géol. France (1/50 000), feuille Saint-Sernin-sur-Rance (960), BRGM,
Orléans, 1999.
Guérangé-Lozes, J. and Alsac, C.: Les nappes varisques de
l'Albigeois cristallin. Lithostratigraphie, volcanisme et déformations,
Géol. France, 3, 309–337, 1986.
Guérangé-Lozes, J., Guérangé, B., Mouline, M. P., and
Delsahut, B.: Notice explicative, Carte géol. France (1/50 000),
feuille Réalmont (959), BRGM, Orléans, 1996.
Guitard, G.: Le métamorphisme hercynienmésozonal et les gneiss
oeillés du masif du Canigou (Pyrénées orientales), Mém.
BRGM, 63, 1–353, 1970.
Gutiérrez-Alonso, G., Fernández-Suárez, J., Gutiérrez-Marco,
J. C., Corfu, F., Murphy, J. B., and Suárez Martínez, S.: U-Pb
depositional age for the upper Barrios Formation (Armorican Quartzite
facies) in the Cantabrian zone of Iberia: implications for stratigraphic
correlation and paleogeography, in: The Evolution of the Rheic Ocean: from
Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision, edited
by: Linnemann, R. D., Nance, P., and Kraft, G. Z., The Geological Society London, UK, 287–296, https://doi.org/10.1130/2007.2423(13), 2007.
Gutiérrez-Alonso, G., Gutiérrez-Marco, J. C.,
Fernández-Suárez, J., Bernárdez, E., and Corfu, F.: Was there a
super-eruption on the Gondwanan coast 477Ma ago?, Tectonophysics, 681, 85–94,
https://doi.org/10.1016/j.tecto.2015.12.012, 2016.
Gutiérrez-Marco, J. C., Robardet, M., Rábano, I., Sarmiento, G., San
José Lancha, M. A., Herranz Araújo, P., and Pieren Vidal, A.:
Ordovician, in: The Geology of Spain, edited by: Gibbons, W. and Moreno, The
Geological Society, London, UK, 31–49, 2002.
Gutiérrez-Marco, J. C., Piçarra, J. M., Meireles, C. A., Cózar,
P., García-Bellido, D. C., Pereira, Z., Vaz, N., Pereira, S., Lopes, G., Oliveira, J. T., Quesada, C., Zamora, S., Esteve, J., Colmenar, J., and Bernárdez, E.: Early
Ordovician-Devonian passive margin stage in the Gondwanan units of the
Iberian massif, in: The Geology of Iberia: A Geodynamic Approach, edited by:
Quesada, C. and Oliveira, Springer, Heidelberg, Germany, 75–98, https://doi.org/10.1007/978-3-030-10519-8_3, 2019.
Hartevelt, J. J. A.: Geology of the upper Segre and Valira valleys, central
Pyrenees, Andorra/Spain, Leid. Geol. Meded., 45, 167–236, 1970.
Helbing, H. and Tiepolo, M.: Age determination of Ordovician magmatism in
NE Sardinia and its bearing on Variscan basement evolution, J. Geol. Soc.,
162, 689–700, https://doi.org/10.1144/0016-764904-103 , 2005.
Huppert, H. E. and Sparks, R. S. J.: The generation of granitic magmas
by intrusion of basalt into continental crust, J. Petrol., 29, 599–624,
1988.
Ibrahim, M. E., El-Kalioby, B. A., Aly, G. M., El-Tohamy, A. M., and
Watanabe, K.: Altered granitic rocks, Nusab El Balgum Area, Southwestern
Desert, Egypt, Mineralogical and geochemical aspects of REEs, Ore Geol.
Rev., 70, 252–261, https://doi.org/10.1016/j.oregeorev.2015.04.016, 2015.
Irber, W.: The lanthanide tetrad effect and its correlation with K/Rb,
Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites,
Geochim. Cosmochim. Ac., 63, 489–508,
https://doi.org/10.1016/S0016-7037(99)00027-7, 1999.
Kröner, A. and Willner, A. P.: Time of formation and peak of Variscan
HP-HT metamorphism of quartz-feldspar rocks in the central Erzgebirge,
Saxony, Germany, Contrib. Mineral. Petrol., 132, 1–20,
https://doi.org/10.1007/s004100050401, 1998.
Lancelot, J. Allegret, A., and Iglesias Ponce de León, M.: Outline of
Upper Precambrian and Lower Paleozoic evolution of the Iberian Peninsula
according to U-Pb dating of zircons, Earth Planet. Sci. Lett., 74,
325–337, 1985.
Laske, R., Bechstädt, T., and Boni, M.: The post-Sardic
Ordovician series, in: Sedimentological, stratigraphical and ore deposits
field guide of the autochtonous Cambro-Ordovician of Southeastern Sardinia,
edited by: Bechstädt, T. and Boni, M., Istituto Superiore per la Protezione
e la Ricerca Ambientale, Roma, 115–146, 1994.
Laumonier, B., Abad, A., Alonso, J. L., Baudelot, S., Bessière, G.,
Besson, M., Bouquet, C., Bourrouilh, R., Brula, P., Carreras, J.,
Centène, A., Courjault-Radé, R., Courtessole, R., Fauconnier, D.,
García-Sansegundo, J., Guitard, G., Moreno-Eiris, E., Perejón, A.,
and Vizcaïno, D.: Le Paléozoïque Inférieur, in:
Synthèse géologique et géophysique des Pyrénées, edited
by: Barnolas, A. and Chiron, J. C., BRGM and IGME, Paris and Madrid, 157–209, 1996.
Leat, P. T., Jackson, S. E., Thorpe, R. S., and Stillman, C. J.:
Geochemistry of bimodal basalt-subalkaline/peralkaline rhyolite provinces
within the Southern British Caledonides, J. Geol. Soc., 143, 259–273, 1986.
Le Corre, C., Auvray, B., Ballèvre, M., and Robardet, M.: Le Massif
Armoricain, Sci. Géol., Bull., 44, 31–103, 1991.
Lentz, D.: U, Mo and REE mineralization in late-tectonic granite pegmatites,
south-west Grenville Province, Canada, Ore Geol. Rev., 11, 197–227,
https://doi.org/10.1016/0169-1368(95)00034-8, 1996.
Leone, F., Hamman, W., Laske, R., Serpagli, E., and Villas, E.:
Lithostratigraphic units and biostratigraphy of the post-Sardic Ordovician
sequence in south-west Sardinia, Boll. Soc. Paleontol. It., 30, 201–235,
1991.
Leone, F., Ferretti, A., Hammann, W., Loi, A., Pillola, G. L., and Serpagli,
E.: A general view of the post-Sardic Ordovician sequence from SW Sardinia,
Rend. Soc. Paleontol. It., 1, 51–68, 2002.
Lescuyer, J. L. and Cocherie, A.: Datation sur monozircons des
métadacites de Sériès: arguments pour un âge
protérozoïque terminal des “schistes X” de la Montagne Noire
(Massif central français), C. R. Acad. Sci., 314,
1071–1077, 1992.
Liesa, M., Carreras, J., Castiñeiras, P., Casas, J. M., Navidad, M., and
Vilà, M.: U-Pb zircon age of Ordovician magmatism in the Albera Massif
(Eastern Pyrenees), Geol. Acta, 9, 1–9,
https://doi.org/10.1344/105.000001651, 2011.
Linnemann, U., Gehmlich, M., Tichomirowa, M., Buschmann, B., Nasdala, L.,
and Jonas, P., Lützner, H., and Bombach, K.: From Cadomian subduction to early Palaeozoic rifting:
the evolution of Saxo-Thuringia at the margin of Gondwana in the light of
single zircon geochronology and basin development (Central European
Variscides, Germany), in: Orogenic Processes: Quantification and Modelling
in the Variscan Belt, edited by: Franke, W., Haak, V., Oncken, O., and
Tanner, D., The Geological Society London Special Publications, London. UK,
131–153,
https://doi.org/10.1144/GSL.SP.2000.179.01.10, 2000.
Loi, A. and Dabard, M. P.: Zircon typology and geochemistry in the
palaeogeographic reconstruction of the Late Ordovician of Sardinia (Italy),
Sediment. Geol., 112, 263–279,
https://doi.org/10.1016/S0037-0738(97)00038-9, 1997.
Loi, A., Barca, S., Chauvel, J. J., Dabard, M. P., and Leone, F.: Analyse
de la sédimentation post-phase sarde les dépôts initiaux à
placers du SE de la Sardaigne, C. R. Soc. Géol. France, 315,
1357–1364, 1992.
López-Sánchez, M. A., Iriondo, A., Marcos, A., and Martínez, F.
J.: A U-Pb zircon age (479 ± 5 Ma) from the uppermost layers of the
Ollo de Sapo Formation near Viveiro (NW Spain): implications for the
duration of rifting-related Cambro-Ordovician volcanism in Iberia, Geol.
Mag., 152, 341–350, https://doi.org/10.1017/S0016756814000272, 2015.
Ludwig, K. R. and Turi, B.: Paleozoic age of the Capo Spartivento
Orthogneiss, Sardinia, Italy, Chem. Geol., 79, 147–153,
https://doi.org/10.1016/0168-9622(89)90017-1, 1989.
Margalef, A., Castiñeiras, P., Casas, J. M., Navidad, M., Liesa, M.,
Linnemann, U., Hofmann, M., and Gärtner, A.: Detrital zircons from the
Ordovician rocks of the Pyrenees: Geochronological constraints and
provenance, Tectonophysics, 681, 124–134,
https://doi.org/10.1016/j.tecto.2016.03.015, 2016.
Marini, F.: “Phase“ sarde et distension ordovicienne du domaine
sud-varisque, effets de point chaud? Une hypothèse fondée sur les
données nouvelles du volcanisme albigeois, C. R. Acad. Sci., 306, 443–450, 1988.
Martí, J., Munoz, J. A., and Vaquer, R.: Les roches volcaniques de
l'Ordovicien supérieur de la région de Ribes de Freser-Rocabruna
(Pyrénées catalanes): caractères et signification, C. R. Acad.
Sci., 302, 1237–1242, 1986.
Martí, J., Solari, L., Casas, J. M., and Chichorro, M.: New late Middle
to early Late Ordovician U-Pb zircon ages of extension-related felsic
volcanic rocks in the Eastern Pyrenees (NE Iberia): tectonic implications,
Geol. Mag., 156, 1783–1792, https://doi.org/10.1017/S0016756819000116,
2019.
Martínez, F., Iriondo, A., Dietsch, C., Aleinikoff, J. N., Peucat, J. J.,
Cirès, J., Reche, J., and Capdevila, R.: U-Pb SHRIMP-RG zircon ages
and Nd signature of lower Paleozoic rifting-related magmatism in the
Variscan basement of the Eastern Pyrenees, Lithos, 127, 10–23,
https://doi.org/10.1016/j.lithos.2011.08.004, 2011.
Martínez Catalán, J. R., Hacar Rodríguez, M. P., Villar Alonso,
P., Peréz-Estaún, A., and González Lodeiro, F.: Lower Paleozoic
extensional tectonics in the limit between the West Asturian-Leonese and
Central Iberian Zones of the Variscan Fold-Belt in NW Spain, Geolog. Runds.,
81, 546–560, https://doi.org/10.1007/BF01828614, 1992.
Martínez Catalán, J. R., Arenas, R., Díaz García, F.,
Gómez Barreiro, J., González Cuadra, P., Abati, J., Castiñeiras, P., Fernández-Suárez, J., Sánchez Martínez, S., Andonaegui, P., González Clavijo, E., Díez-Montes, A., Rubio pascual, F. J., and Valle Aguado, B.: Space and
time in the tectonic evolution of the northwestern Iberian Massif.
Implications for the comprehension of the Variscan belt, J. R. Geol. Soc. Am., 200, 403–423, https://doi.org/10.1130/2007.1200(21), 2007.
Martini, I. P., Tongiorgi, M., Oggiano, G., and Cocozza, T.: Ordovician
alluvial fan to marine shelf transition in SW Sardinia, Western
Mediterranean Sea: tectonically (“Sardic phase”) influenced clastic
sedimentation, Sediment. Geol., 72, 97–115,
https://doi.org/10.1016/0037-0738(91)90125-W, 1991.
Masuda, A. and Akagi, T.: Lanthanide tetrad effect observed in
leucogranites from China, Geochem. J., 23, 245–253,
https://doi.org/10.2343/geochemj.23.245, 1989.
McDougall, N., Brenchley, P. J., Rebelo, J. A., and Romano, M.: Fans and fan
deltas – precursors to the Armorican Quartzite (Ordovician) in western
Iberia, Geol. Mag., 124, 347–359, https://doi.org/10.1017/S0016756800016678,
1987.
McLennan, S. M.: Rare earth element geochemistry and the “tetrad” effect,
Geochim. Cosmochim. Ac., 58, 2025–2033,
https://doi.org/10.1016/0016-7037(94)90282-8, 1994.
Medina, J., Rodríguez Alonso, M. D., and Alonso Gavilán, G.:
Sedimentação em plataforma siliciclástica do Grupo das Beiras
(CXG) na região de Caramulo – Buçaco (Portugal Central), Comun.
Inst. Geol. Min., 85, 39–71, 1998.
Meireles, C., Sequeira, A. J. D., Castro, P., and Ferreira, N. I.: New data
on the lithostratigraphy of Beiras Group (Schist Greywacke Complex) in the
region of Góis-Arganil- Pampilhosa da Serra (Central Portugal), Cuad.
Lab. Xeol. Laxe, 37, 105–124, 2013.
Mezger, J. and Gerdes, A.: Early Variscan (Visean) granites in the core of
central Pyrenean gneiss domes: implications from laser ablation U-Pb and
Th-Pb studies, Gondwana Res., 29, 181–198,
https://doi.org/10.1016/j.gr.2014.11.010, 2016.
Mingram, B., Kröner, A., Hegner, E., and Krentz, O.: Zircon ages,
geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses
from the Erzgebirge, Saxony (Germany), and geodynamic interpretation, Int.
J. Earth Sci., 93, 706–727, https://doi.org/10.1007/s00531-004-0414-7,
2004.
Monecke, T., Dulski, P., and Kempe, U.: Origin of convex tetrads in rare
earth element patterns of hydrothermally altered siliceous igneous rocks
from the Zinnwald Sn-W deposit, Germany, Geochim. Cosmochim. Ac., 71,
335–353, https://doi.org/10.1016/j.gca.2006.09.010, 2007.
Montero, P., Bea, F., González-Lodeiro, F., Talavera, C., and
Whitehouse, M. J.: Zircon ages of the metavolcanic rocks and metagranites of
the Ollo de Sapo Domain in central Spain: implications for the
Neoproterozoic to Early Palaeozoic evolution of Iberia, Geol. Mag., 144,
963–976, https://doi.org/10.1017/S0016756807003858, 2007.
Montero, P., Talavera, C., Bea, F., Lodeiro, F. G., and Whitehouse, M. J.:
Zircon geochronology of the Ollo de Sapo Formation and the age of the
Cambro-Ordovician rifting in Iberia, J. Geol., 117, 174–191,
https://doi.org/10.1086/595017, 2009.
Murphy, J. B., Gutiérrez-Alonso, G., Nance, R. D.,
Fernández-Suárez, J., Keppie, J. D., Quesada, C., Strachan, R. A., and Dostal, J.: Origin of
the Rheic Ocean: rifting along a Neoproterozoic suture?, Geology, 34, 325–328,
https://doi.org/10.1130/G22068.1, 2006.
Nance, R. D., Gutiérrez-Alonso, G., Keppie, J. D., Linnemann, U.,
Murphy, J. B., Quesada, C., Strachan, R. A., and Woodcock, N. H.: Evolution of the Rheic Ocean, Gondwana
Res., 17, 194–222, https://doi.org/10.1016/j.gr.2009.08.001, 2010.
Navidad, M. and Castiñeiras, P.: Early Ordovician magmatism in the
northern Central Iberian Zone (Iberian Massif): new U-Pb (SHRIMP) ages and
isotopic Sr-Nd data, Cuadernos del Museo Geominero 14, 391–398, Instituto Geológico y Minero de España, Madrid, 2011.
Navidad, M., Castiñeiras, P., Casas, J. M., Liesa, M.,
Fernández-Suárez, J., Barnolas, A., Carreras, J., and Gil-Peña,
I.: Geochemical characterization and isotopic ages of Caradocian magmatism
in the northeastern Iberia: insights into the Late Ordovician evolution of
the northern Gondwana margin, Gondwana Res., 17, 325–337,
https://doi.org/10.1016/j.gr.2009.11.013, 2010.
Navidad, M., Castiñeiras, P., Casas, J. M., Liesa, M., Belousova, E.,
Proenza, J., and Aiglsperger, T.: Ordovician magmatism in the Eastern
Pyrenees: Implications for the geodynamic evolution of northern Gondwana,
Lithos, 314/315, 479–496, https://doi.org/10.1016/j.lithos.2018.06.019,
2018.
Neiva, A. M. R., Williams, I. S., Ramos, J. M. F., Gomes, M. E. P., Silva,
M. M. V. G., and Antunes, I. M. H. R.: Geochemical and isotopic constraints
on the petrogenesis of Early Ordovician granodiorite and Variscan two-mica
granites from the Gouveia area, central Portugal, Lithos, 111, 186–202,
https://doi.org/10.1016/j.lithos.2009.01.005, 2009.
Oggiano, G., Gaggero, L., Funedda, A., Buzzi, L., and Tiepolo, M.: Multiple
early Paleozoic volcanic events at the northern Gondwana margin: U-Pb age
evidence from the southern Variscan branch (Sardinia, Italy), Gondwana Res.,
17, 44–58, https://doi.org/10.1016/j.gr.2009.06.001, 2010.
Padel, M., Álvaro, J. J., Clausen, S., Guillot, F., Poujol, M.,
Chichorro, M., Monceret, E., Pereira, M. F., and Vizcaïno, D.: U-Pb
laser ablation ICP-MS zircon dating across the Ediacaran-Cambrian
transition of the Montagne Noire, southern France, C. R. Geosci., 349,
380–390, https://doi.org/10.1016/j.crte.2016.11.002, 2017.
Padel, M., Clausen, S., Álvaro, J. J., and Casas, J. M.: Review of the
Ediacaran-Lower Ordovician (pre-Sardic) stratigraphic framework of the
Eastern Pyrenees, southwestern Europe, Geol. Acta, 16, 339–355,
https://doi.org/10.1344/GeologicaActa2018.16.4.1, 2018.
Palme, H. and O'Neill, H. S. C.: Cosmochemical estimates of mantle
composition, in: Treatise on Geochemistry 2, edited by: Holland, H. D. and
Turekian, K. K., Elsevier-Pergamon, Oxford, UK, 1–38, 2004.
Palmeri, R., Fanning, M., Franceschelli, M., Memmi, I., and Ricci, C. A.:
SHRIMP dating of zircons in eclogite from the Variscan basement in
northeastern Sardinia (Italy), N. Jb. Miner., Mh., 6, 275–288,
https://doi.org/10.1127/0028-3649/2004/2004-0275, 2004.
Pan, Y.: Controls on the fractionation of isovalent trace elements in
magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide
tetrad effect – a discussion of the article by M. Bau, 1996, Contrib.
Mineral. Petrol., 128, 405–408, https://doi.org/10.1007/s004100050159,
1997.
Pankhurst, R. J., Rapela, C. W., Saavedra, J., Baldo, E., Dahlquist, J.,
Pascua, I., and Fanning, C. M.: The Famatinian magmatic arc in the central
Sierras Pampeanas, and Early to Middle Ordovician continental arc on the
Gondwana margin, in: The Proto-Andean Margin of Gondwana, edited by:
Pankhurst, R. J. and Rapela, C. E., The Geological Society of London Special Publications, London, UK,
343–367, https://doi.org/10.1144/GSL.SP.1998.142.01.17, 1998.
Pavanetto, P., Funedda, A., Northrup, C. J., Schmitz, M., Crowley, J., and
Loi, A.: Structure and U-Pb zircon geochronology in the Variscan foreland
of SW Sardinia, Italy, Geol. J., 47, 426–445,
https://doi.org/10.1002/gj.1350, 2012.
Pearce, J. A.: Sources and settings of granitic rocks, Episodes,
19, 120–125, https://doi.org/10.18814/epiiugs/1996/v19i4/005, 1996.
Pearce, J. A., Harris, N. B. W., and Tindle, A. G.: Trace element
discrimination diagrams for the tectonic interpretation of granitic rocks,
J. Petrol., 25, 956–983, https://doi.org/10.1093/petrology/25.4.956, 1984.
Pereira, M. F., Solá, A. R., Chichorro, M., Lopes, L., Gerdes, A., and
Silva, J. B.: North-Gondwana assembly, break-up and paleogeography: U-Pb
isotope evidence from detrital and igneous zircons of Ediacaran and Cambrian
rocks of SW Iberia, Gondwana Res., 22, 866–881,
https://doi.org/10.1016/j.gr.2012.02.010, 2012.
Piercey, S. J.: The setting, style, and role of magmatism in the formation
of volcanogenic massive sulphide deposits, Miner. Deposita, 46, 449–471,
https://doi.org/10.1007/s00126-011-0341-z, 2011.
Pillola, G. L., Leone, F., and Loi, A.: The Cambrian and Early Ordovician
of SW Sardinia, Gior. Geol., 60, 25–38, 1998.
Pistis, M., Loi, A., and Dabard, M. P.: Influence of relative sea-level
variations on the genesis of palaeoplacers, the examples of Sarrabus
(Sardinia, Italy) and the Armorican Massif (western France), C. R. Geosci.,
348, 150–157, https://doi.org/10.1016/j.crte.2015.09.006, 2016.
Pitra, P., Poujol, M., Den Driessche, J. V., Poilvet, J. C., and Paquette,
J. L.: Early Permian extensional shearing of an Ordovician granite: the
Saint-Eutrope “C/S-like” orthogneiss (Montagne Noire, French Massif
Central), C. R. Geosci., 344, 377–384,
https://doi.org/10.1016/j.crte.2012.06.002, 2012.
Pouclet, A., Álvaro, J. J., Bardintzeff, J. M., Gil Imaz, A., Monceret,
E., and Vizcaïno, D.: Cambrian-Early Ordovician volcanism across the
South Armorican and Occitan Domains of the Variscan Belt in France:
Continental break-up and rifting of the northern Gondwana margin, Geosci.
Front., 8, 25–64, https://doi.org/10.1016/j.gsf.2016.03.002, 2017.
Puddu, C., Álvaro, J. J., and Casas, J. M.: The Sardic unconformity
and the Upper Ordovician successions of the Ribes de Freser area, Eastern
Pyrenees, J. Iberian Geol., 44, 603–617,
https://doi.org/10.1007/s41513-018-0084-0, 2018.
Puddu, C., Álvaro, J. J., Carrera, N., and Casas, J. M.: Deciphering the
Sardic (Ordovician) and Variscan deformations in the Eastern Pyrenees, J.
Geol. Soc., 176, 1191–1206, https://doi.org/10.1144/jgs2019-057, 2019.
Quesada, C.: Geological constraints on the Paleozoic tectonic evolution of
tectonostratigraphic terranes in the Iberian Massif, Tectonophysics, 185,
225–245, https://doi.org/10.1016/0040-1951(91)90446-Y, 1991.
Rabin, M., Trap, P., Carry, N., Fréville, K. Cenki-Tok, B. Lobjoie, C.
Gonçalves, P., and Marquer, D.: Strain partitioning along the anatectic
front in the Variscan Montagne Noire massif (southern French Massif
Central), Tectonics, 34, 1709–1735, https://doi.org/10.1002/2014TC003790,
2015.
Robert, J. F.: Étude géologique et métallogénique du val de
Ribas sur le versant espagnol des Pyrénées catalanes, PhD thesis, University of Franche-Comté, France, 294 pp., 1980.
Robert, J. F. and Thiebaut, J.: Découverte d'un volcanisme acide dans
le Caradoc de la région de Ribes de Freser (Prov. de Gérone), C. R.
Acad. Sci., 282, 2050–2079, 1976.
Roger, F., Respaut, J. P., Brunel, M., Matte, P., and Paquette, J. L.:
Première datation U-Pb des orthogneiss oeillés de la zone axiale de
la Montagne Noire (Sud du Massif central): nouveaux témoins du
magmatisme ordovicien dans la chaîne varisque, C. R. Geosci., 336,
19–28, https://doi.org/10.1016/j.crte.2003.10.014, 2004.
Roger, F., Teyssier, C., Respaut, J. P., Rey, P. F., Jolivet, M., Whitney,
D. L., Paquette, J. L., and Brunel, M.: Timing of formation and exhumation
of the Montagne Noire double dome, French massif Central, Tectonophysics,
640/641, 53–69, https://doi.org/10.1016/j.tecto.2014.12.002, 2015.
Rollison, H. R.: Using Geochemical Data: Evaluation, Presentation,
Interpretation, Longman Group, London, UK, 1993.
Romão, J., Dunning, G., Marcos, A., Dias, R., and Ribeiro, A.: O
lacólito granítico de Mação-Penhascoso: idade e as suas
implicações (SW da Zona Centro-Ibérica), e-Terra, 16, 1–4, 2010.
Rossi, P., Oggiano, G., and Cocherie, A.: A restored section of the
“southern Variscan realm” across the Corsica-Sardinia microcontinent, C.
R. Geosci., 224–238, https://doi.org/10.1016/j.crte.2008.12.005, 2009.
Rubio-Ordóñez, A., Valverde-Vaquero, P., Corretgé, L. G.,
Cuesta-Fernández, A., Gallastegui, G., Fernández-González, M.,
and Gerdes, A.: An Early Ordovician tonalitic-granodioritic belt along the
Schistose-Greywacke Domain of the Central Iberian Zone (Iberian Massif,
Variscan Belt), Geol. Mag., 149, 927–939,
https://doi.org/10.1017/S0016756811001129, 2012.
Rudnick, R. L. and Gao, S.: Composition of the Continental Crust, in:
Treatise on Geochemistry, edited by: Holland, H. D. and Turekian, K. K., Elsevier-Pergamon, Oxford, UK, 1–64, 2003.
Sánchez-García, T., Bellido, F., and Quesada, C.: Geodynamic
setting and geochemical signatures of Cambrian-Ordovician rift-related
igneous rocks (Ossa-Morena Zone, SW Iberia), Tectonophysics, 365, 233–255,
2003.
Sánchez-García, T., Quesada, C., Bellido, F., Dunning, G., and
González de Tánago, J.: Two-step magma flooding of the upper crust
during rifting: the Early Paleozoic of the Ossa-Morena Zone (SW Iberia),
Tectonophysics, 461, 72–90, https://doi.org/10.1016/S0040-1951(03)00024-6,
2008.
Sánchez-García, T., Bellido, F., Pereira, M. F., Chichorro, M.,
Quesada, C., Pin, C., and Silva, J. B.: Rift-related volcanism predating the
birth of the Rheic Ocean (Ossa-Morena zone, SW Iberia), Gondwana Res., 17,
392–407, https://doi.org/10.1016/j.gr.2009.10.005, 2010.
Sánchez-García, T., Quesada, C., Bellido, F., Dunning, G. R., Pin,
C., Moreno-Eiris, E., and Perejón, A.: Age and characteristics of the
Loma del Aire unit (SW Iberia): Implications for the regional correlation of
the Ossa-Morena Zone, Tectonophysics, 681, 58–72,
https://doi.org/10.1016/j.tecto.2016.02.043, 2016.
Sánchez-García, T., Chichorro, M., Solá, R., Álvaro, J. J.,
Díez Montes, A., Bellido, F. et al.: The Cambrian – Early Ordovician
Rift Stage in the Gondwanan Units of the Iberian Massif, in: The Geology of
Iberia: A Geodynamic Approach, edited by: Quesada, C. and Oliveira, J. T., Springer International Publishing, Heidelberg, 27–74,
https://doi.org/10.1007/978-3-030-10519-8_2, 2019.
Sarmiento, G. N., Gutiérrez-Marco, J. C., and Robardet, M.: Conodontos
ordovícicos del noroeste de España. Aplicación al modelo de
sedimentación de la región limítrofe entre las zonas
Asturoccidental-Leonesa y Centroibérica durante el Ordovícico
Superior, Rev. Soc. Geol. España, 12, 477–500,
1999.
Schaltegger, U., Abrecht, J., and Corfu, F.: The Ordovician orogeny in the
Alpine basement: constraints from geochronology and geochemistry in the Aar
Massif (Central Alps), Schweizerische Miner. Petrogr. Mitteil., 83, 183–195, 2003.
Shaw, J., Johnston, S., Gutiérrez-Alonso, G., and Weil, A. B.: Oroclines
of the Variscan orogen of Iberia: paleocurrent analysis and paleogeographic
implications, Earth Planet. Sci. Lett., 329–330, 60–70,
https://doi.org/10.1016/j.epsl.2012.02.014, 2012.
Shaw, J., Gutiérrez-Alonso, G., Johnston, S., and Pastor Galán, D.:
Provenance variability along the early Ordovician north Gondwana margin:
paleogeographic and tectonic implications of U-Pb detrital zircon ages from
the Armorican Quartzite of the Iberian Variscan belt, Geol. Soc. Am. Bull.,
126, 702–719, https://doi.org/10.1130/B30935.1, 2014.
Solá, A. R., Pereira, M. F., Williams, I. S., Ribeiro, M. L., Neiva, A.
M. R., Montero, P., Bea, F., and Zinger, T.: New insights from U-Pb zircon
dating of Early Ordovician magmatism on the northern Gondwana margin: the
Urra formation (SW Iberian Massif, Portugal), Tectonophysics, 461, 114–129,
https://doi.org/10.1016/j.tecto.2008.01.011, 2008.
Stern, R. J.: Crustal evolution in the East African Orogen: a neodymium
isotopic perspective, J. African Earth Sci., 34, 109–117,
https://doi.org/10.1016/S0899-5362(02)00012-X, 2002.
Stille, H.: Bemerkungen betreffend die “Sardische” Faultung und den
Ausdruck “Ophiolitisch”, Zeits. Deuts. Gess. Geowiss., 91, 771–773, 1939.
Strelow, E. W. E.: An ion exchange selectivity scale of cations based on equilibrium distributions coefficients, Anal. Chem., 32, 1185–1188, 1960,
Sun, S. S. and McDonough, W. F.: Chemical and isotopic systematics of
oceanic basalts: implications for mantle composition and processes, in:
Magmatism in the Ocean Basins, edited by: Saunders, A. D. and Norry, M. J.,
The Geological Society of London Special Publications, London, UK, 13–345,
https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989.
Syme, E. C.: Ore-Associated and Barren Rhyolites in the central Flin Flon
Belt: Case Study of the Flin Flon Mine Sequence, Manitoba Energy and Mines,
Open File Report OF98-9, 1–32, 1998.
Takahashi, Y., Yoshida, H., Sato, N., Hama, K., Yusa, Y., and Shimizu, H.:
W- and M-type tetrad effects in REE patterns for water-rock systems in the
Tono uranium deposit, central Japan, Chem. Geol., 184, 311–335,
https://doi.org/10.1016/S0009-2541(01)00388-6, 2002.
Talavera, C.: Pre-Variscan magmatism of the Central Iberian Zone: chemical
and isotope composition, geochronology and geodynamic significance, PhD thesis,
University of Granada, Spain, 2009.
Talavera, C., Bea F., Montero P., and Whitehouse, M.: A revised Ordovician
age for the Sisargas orthogneiss, Galicia (Spain). Zircon U-Pb
ion-microprobe and LA-ICPMS dating, Geol. Acta, 8, 313–317,
https://doi.org/10.1344/105.000000259, 2008.
Talavera, C., Montero, P., Bea, F., González Lodeiro, F., and
Whitehouse, M.: U-Pb zircon geochronology of the Cambro-Ordovician
metagranites and metavolcanic rocks of central and NW Iberia, Int. J. Earth.
Sci., 102, 1–23, https://doi.org/10.1007/s00531-012-0788-x, 2013.
Teichmüller, R.: Zur Geologie des Thyrrhenisgebietes, Teil 1: Alte und
junge Krustenbewegungen im südlinchen Sardinien, Abh. Der wissen. Gess.
Göttingen, 3, 857–950, 1931.
Teipel, U., Eichhorn, R., Loth, G., Rohrmüller, J., Höll, R., and
Kennedy, A.: U-Pb SHRIMP and Nd isotopic data from the western Bohemian
Massif (Bayerischer Wald, Germany): Implications for Upper Vendian and Lower
Ordovician magmatism, Int. J. Earth Sci., 93, 782–801,
https://doi.org/10.1007/s00531-004-0419-2, 2004.
Thompsom, M. D., Grunow, A. M., and Ramezani, J.: Cambro-Ordovician
paleogeography of the Southeastern New England Avalon Zone: Implications for
Gondwana breakup, Geol. Soc. Am. Bull., 122, 76–88,
https://doi.org/10.1130/B26581.1, 2010.
Tichomirowa, M., Berger, H. J., Koch, E. A., Belyatski, B., Götze, J.,
Kempe, U., Nasdala, L., and Schaltegger, U.: Zircon ages of high-grade
gneisses in the Eastern Erzgebirge (Central European Variscides) –
constraints on origin of the rocks and Precambrian to Ordovician magmatic
events in the Variscan foldbelt, Lithos, 56, 303–332,
https://doi.org/10.1016/S0024-4937(00)00066-9, 2001.
Tichomirowa, M., Sergeev, S., Berger, H. J., and Leonhardt, D.: Inferring
protoliths of high-grade metamorphic gneisses of the Erzgebirge using
zirconology, geochemistry and comparison with lower-grade rocks from Lusatia
(Saxothuringia, Germany), Contrib. Mineral. Petrol., 164, 375–396,
https://doi.org/10.1007/s00410-012-0742-8, 2012.
Valverde-Vaquero, P. and Dunning, G. R.: New U-Pb ages for Early Ordovician
magmatism in Central Spain, J. Geol. Soc. London, 157, 15–26,
https://doi.org/10.1144/jgs.157.1.15, 2000.
Valverde-Vaquero, P., Marcos, A., Farias, P., and Gallastegui, G.: U-Pb
dating of Ordovician felsic volcanism in the Schistose Domain of the
Galicia-Trás-os-Montes Zone near Cabo Ortegal (NW Spain), Geol. Acta, 3,
27–37, https://doi.org/10.1344/105.000001412, 2005.
Valverde-Vaquero, P., Farias, P., Marcos, A., and Gallastegui, G.: U-Pb
dating of Siluro-Ordovician volcanism in the Verín synform (Orense,
Schistose Domain, Galicia-Trás-os-montes Zone), Geogaceta, 41, 247–250,
2007.
Vilà, M., Pin, C., Enrique, P., and Liesa, M.: Telescoping of three
distinct magmatic suites in an orogenic setting: Generation of Hercynian
igneous rocks of the Albera Massif (Eastern Pyrenees), Lithos, 83, 97–127,
https://doi.org/10.1016/j.lithos.2005.01.002, 2005.
Villaseca, C., Castiñeiras, P., and Orejana, D.: Early Ordovician
metabasites from the Spanish Central System: A remnant of intraplate HP
rocks in the Central Iberian Zone, Gondwana Res., 27, 392–409,
https://doi.org/10.1016/j.gr.2013.10.007, 2013.
Villaseca, C., Merino Martínez, E., Orejana, D., Andersen, T., and
Belousova, E.: Zircon Hf signatures from granitic orthogneisses of the
Spanish Central System: Significance and sources of the Cambro-Ordovician
magmatism in the Iberian Variscan Belt, Gondwana Res., 34, 60–83,
https://doi.org/10.1016/j.gr.2016.03.004, 2016.
Von Quadt, A.: U-Pb zircon and Sr-Nd-Pb whole-rock investigations from
the continental deep drilling (KTB), Geol. Rundsch., 86,
258–271, https://doi.org/10.1007/PL00014659, 1997.
Von Raumer, J. F. and Stampfli, G. M.: The birth of the Rheic Ocean –
early Palaeozoic subsidence patterns and tectonic plate scenarios,
Tectonophysics, 461, 9–20, https://doi.org/10.1016/j.tecto.2008.04.012, 2008.
Von Raumer, J. F., Bussy, F., Schaltegger, U., Schulz, B., and Stampfli, G.:
Pre-Mesozoic Alpine basements: their place in the European Paleozoic
framework, Geol. Soc. Am. Bull., 125, 89–108,
https://doi.org/10.1130/B30654.1, 2013.
Von Raumer, J. F., Stampfli, G. M., Arenas, R., and Sánchez
Martínez, S.: Ediacaran to Cambrian oceanic rocks of the Gondwanan
margin and their tectonic interpretation, Int. J. Earth Sci., 104, 1107–1121,
https://doi.org/10.1007/s00531-015-1142-x, 2015.
Whalen, J. B., Currie, K. L., and Chappell, B. W.: A-type granites:
Geochemical characteristics, discrimination and petrogenesis, Contr. Miner.
Petrol., 95, 407–419, https://doi.org/10.1007/BF00402202, 1987.
Winchester, J. W.: Rare earth chromatography using bis-(2-ethylhexyl) (orthophosphoric acid), J. Chromatogr., 10, 502–506, 1963.
Winchester, J. A. and Floyd, P. A.: Geochemical discrimination of different
magma series and their differentiation products using immobile elements,
Chem. Geol., 20, 325–343, https://doi.org/10.1016/0009-2541(77)90057-2,
1977.
Zeck, H. P., Whitehouse, M. J., and Ugidos, J. M.: 496 ± 3 Ma zircon
ion microprobe age for pre-Hercynian granite, Central Iberian Zone, NE
Portugal (earlier claimed 618 ± 9 Ma), Geol. Mag., 144, 21–31, 2007.
Zurbriggen, R.: Ordovician orogeny in the Alps – a reappraisal, Int. J.
Earth Sci., 104, 335–350, https://doi.org/10.1007/s00531-014-1090-x, 2015.
Zurbriggen, R.: The Cenerian orogeny (early Paleozoic) from the perspective
of the Alpine region, Int. J. Earth Sci., 106, 517–529,
https://doi.org/10.1007/s00531-016-1438-5, 2017.
Zurbriggen, R., Franz, L., and Handy, M. R.: Pre-Variscan deformation,
metamorphism and magmatism in the Strona-Ceneri Zone (southern Alps of
northern Italy and southern Switzerland), Schweiz. Miner. Petrograph.
Mitteil., 77, 361–380, https://doi.org/10.1007/s00015-007-1232-2, 1997.
Zwart, H. J.: The Geology of the Central Pyrenees, Leidse Geol. Meded., 50,
1–74, 1979.
Short summary
A geochemical comparison of early Palaeozoic felsic magmatic episodes throughout the south-western European margin of Gondwana is analysed and includes data from the Iberian Massif, the Eastern Pyrenees, southern France and Sardinia. This dataset favours partial melting of sediments and/or granitoids in the lower continental crust during extensional movements related to the opening of the Rheic Ocean.
A geochemical comparison of early Palaeozoic felsic magmatic episodes throughout the...