Articles | Volume 12, issue 6
https://doi.org/10.5194/se-12-1443-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-12-1443-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dawn and dusk of Late Cretaceous basin inversion in central Europe
Thomas Voigt
CORRESPONDING AUTHOR
Institut für Geowissenschaften,
Friedrich-Schiller-Universität Jena, Burgweg 11, 07749 Jena, Germany
Jonas Kley
Georg-August-Universität Göttingen, Geowissenschaftliches
Zentrum, Goldschmidtstraße 3, 37077 Göttingen
Silke Voigt
Goethe-Universität Frankfurt, Institut für Geowissenschaften,
Altenhöferallee 1, 60438 Frankfurt
Related authors
No articles found.
Renas I. Koshnaw, Jonas Kley, and Fritz Schlunegger
Solid Earth, 15, 1365–1383, https://doi.org/10.5194/se-15-1365-2024, https://doi.org/10.5194/se-15-1365-2024, 2024
Short summary
Short summary
This study investigates how Earth's geodynamic processes shaped the NW Zagros mountain belt in the Middle East. The Neogene foreland basin underwent subsidence due to the load of the surface and the subducting slab and was later influenced by the Neotethys horizontal slab tearing and the associated asthenospheric mantle flow during the Late Miocene and onward.
Johannes Rembe, Renjie Zhou, Edward R. Sobel, Jonas Kley, Jie Chen, Jian-Xin Zhao, Yuexing Feng, and Daryl L. Howard
Geochronology, 4, 227–250, https://doi.org/10.5194/gchron-4-227-2022, https://doi.org/10.5194/gchron-4-227-2022, 2022
Short summary
Short summary
Calcite is frequently formed during alteration processes in the basaltic, uppermost layer of juvenile oceanic crust. Weathered oceanic basalts are hard to date with conventional radiometric methods. We show in a case study from the North Pamir, Central Asia, that calcite U–Pb age data, supported by geochemistry and petrological microscopy, have potential to date sufficiently old oceanic basalts, if the time span between basalt extrusion and latest calcite precipitation (~ 25 Myr) is considered.
David Hindle and Jonas Kley
Solid Earth, 12, 2425–2438, https://doi.org/10.5194/se-12-2425-2021, https://doi.org/10.5194/se-12-2425-2021, 2021
Short summary
Short summary
Central western Europe underwent a strange episode of lithospheric deformation, resulting in a chain of small mountains that run almost west–east across the continent and that formed in the middle of a tectonic plate, not at its edges as is usually expected. Associated with these mountains, in particular the Harz in central Germany, are marine basins contemporaneous with the mountain growth. We explain how those basins came to be as a result of the mountains bending the adjacent plate.
Jakob Bolz and Jonas Kley
Solid Earth, 12, 1005–1024, https://doi.org/10.5194/se-12-1005-2021, https://doi.org/10.5194/se-12-1005-2021, 2021
Short summary
Short summary
To assess the role smaller graben structures near the southern edge of the Central European Basin System play in the basin’s overall deformational history, we take advantage of a feature found on some of these structures, where slivers from older rock units appear along the graben's main fault, surrounded on both sides by younger strata. The implications for the geometry of the fault provide a substantially improved estimate for the magnitude of normal and thrust motion along the fault system.
Hilmar von Eynatten, Jonas Kley, István Dunkl, Veit-Enno Hoffmann, and Annemarie Simon
Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, https://doi.org/10.5194/se-12-935-2021, 2021
Elco Luijendijk, Leo Benard, Sarah Louis, Christoph von Hagke, and Jonas Kley
Solid Earth Discuss., https://doi.org/10.5194/se-2021-22, https://doi.org/10.5194/se-2021-22, 2021
Revised manuscript not accepted
Short summary
Short summary
Our knowledge of the geological history of mountain belts relies strongly on thermochronometers, methods that reconstruct the temperature history of rocks found in mountain belts. Here we provide a new equation that describes the motion of rocks in a simplified, wedge-shaped representation of a mountain belt. The equation can be used to interpret thermochronometers and can help quantify the deformation, uplift and erosion history of mountain belts.
M. Warsitzka, J. Kley, and N. Kukowski
Solid Earth, 6, 9–31, https://doi.org/10.5194/se-6-9-2015, https://doi.org/10.5194/se-6-9-2015, 2015
Short summary
Short summary
This paper summarizes the results of scaled analogue experiments examining the kinematics of salt flow and the formation of salt pillows due to basement faulting and subsequent sedimentation. Our experimental results reveal that salt above a basement normal fault can flow downward or upward depending on the direction of the pressure gradient within the salt layer. Due to upward flow driven by differential loading, salt pillows can form above the higher basement block.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Stratigraphy, sedimentology, geomorphology, morphotectonics, and palaeontology | Discipline: Sedimentology
What does it take to restore geological models with “natural” boundary conditions?
Impact of stress regime change on the permeability of a naturally fractured carbonate buildup (Latemar, the Dolomites, northern Italy)
The influence of extraction of various solvents on chemical properties on Chang 7 shale, Ordos Basin, China
Deep vs. shallow – two contrasting theories? A tectonically activated Late Cretaceous deltaic system in the axial part of the Mid-Polish Trough: a case study from southeast Poland
Miocene high elevation in the Central Alps
What makes seep carbonates ignore self-sealing and grow vertically: the role of burrowing decapod crustaceans
Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining computer X-ray microtomography and focussed ion beam scanning electron microscopy imaging
Birth and closure of the Kallipetra Basin: Late Cretaceous reworking of the Jurassic Pelagonian–Axios/Vardar contact (northern Greece)
Sediment history mirrors Pleistocene aridification in the Gobi Desert (Ejina Basin, NW China)
Tectonic processes, variations in sediment flux, and eustatic sea level recorded by the 20 Myr old Burdigalian transgression in the Swiss Molasse basin
Miocene basement exhumation in the Central Alps recorded by detrital garnet geochemistry in foreland basin deposits
Can anaerobic oxidation of methane prevent seafloor gas escape in a warming climate?
Precipitation of dolomite from seawater on a Carnian coastal plain (Dolomites, northern Italy): evidence from carbonate petrography and Sr isotopes
The Ogooue Fan (offshore Gabon): a modern example of deep-sea fan on a complex slope profile
Formation of linear planform chimneys controlled by preferential hydrocarbon leakage and anisotropic stresses in faulted fine-grained sediments, offshore Angola
From oil field to geothermal reservoir: assessment for geothermal utilization of two regionally extensive Devonian carbonate aquifers in Alberta, Canada
Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece
Melchior Schuh-Senlis, Guillaume Caumon, and Paul Cupillard
Solid Earth, 15, 945–964, https://doi.org/10.5194/se-15-945-2024, https://doi.org/10.5194/se-15-945-2024, 2024
Short summary
Short summary
This paper presents the application of a numerical method for restoring models of the subsurface to a previous state in their deformation history, acting as a numerical time machine for geological structures. The method is applied to a model based on a laboratory experiment. The results show that using force conditions in the computation of the deformation allows us to assess the value of some previously unknown physical parameters of the different materials inside the model.
Onyedika Anthony Igbokwe, Jithender J. Timothy, Ashwani Kumar, Xiao Yan, Mathias Mueller, Alessandro Verdecchia, Günther Meschke, and Adrian Immenhauser
Solid Earth, 15, 763–787, https://doi.org/10.5194/se-15-763-2024, https://doi.org/10.5194/se-15-763-2024, 2024
Short summary
Short summary
We present a workflow that models the impact of stress regime change on the permeability of fractured Latemar carbonate buildup using a displacement-based linear elastic finite-element method (FEM) and outcrop data. Stress-dependent heterogeneous apertures and effective permeability were calculated and constrained by the study area's stress directions. Simulated far-field stresses at NW–SE subsidence deformation and N–S Alpine deformation increased the overall fracture aperture and permeability.
Yan Cao, Zhijun Jin, Rukai Zhu, and Kouqi Liu
Solid Earth, 14, 1169–1179, https://doi.org/10.5194/se-14-1169-2023, https://doi.org/10.5194/se-14-1169-2023, 2023
Short summary
Short summary
Fourier transform infrared (FTIR) was performed on shale before and after solvent extraction. The extraction yield from shale with THF is higher than other solvents. The organic-C-normalized yield of a mature sample is higher than other samples. The aromaticity of organic matter increases, and the length of organic matter aliphatic chains does not vary monotonically with increasing maturity. The results will help in the selection of organic solvents for oil-washing experiments of shale.
Zbyszek Remin, Michał Cyglicki, and Mariusz Niechwedowicz
Solid Earth, 13, 681–703, https://doi.org/10.5194/se-13-681-2022, https://doi.org/10.5194/se-13-681-2022, 2022
Short summary
Short summary
Traditionally, the axial part of the Polish Basin, i.e. the Mid-Polish Trough, was interpreted as the deepest and most subsiding part of the basin during the Cretaceous times. We interpret this area conversely, as representing a landmass – the Łysogóry–Dobrogea Land. Inversion-related tectonics, uplift on the one hand and enhanced subsidence on the other, drove the development of the Szozdy Delta within the axial part of the basin. New heavy mineral data suggest different burial histories.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Jean-Philippe Blouet, Patrice Imbert, Sutieng Ho, Andreas Wetzel, and Anneleen Foubert
Solid Earth, 12, 2439–2466, https://doi.org/10.5194/se-12-2439-2021, https://doi.org/10.5194/se-12-2439-2021, 2021
Short summary
Short summary
Biochemical reactions related to hydrocarbon seepage are known to induce carbonates in marine sediments. Seep carbonates may act as seals and force lateral deviations of rising hydrocarbons. However, crustacean burrows may act as efficient vertical fluid channels allowing hydrocarbons to pass through upward, thereby allowing the vertical growth of carbonate stacks over time. This mechanism may explain the origin of carbonate columns in marine sediments throughout hydrocarbon provinces worldwide.
Arne Jacob, Markus Peltz, Sina Hale, Frieder Enzmann, Olga Moravcova, Laurence N. Warr, Georg Grathoff, Philipp Blum, and Michael Kersten
Solid Earth, 12, 1–14, https://doi.org/10.5194/se-12-1-2021, https://doi.org/10.5194/se-12-1-2021, 2021
Short summary
Short summary
In this work, we combined different imaging and experimental measuring methods for analysis of cross-scale effects which reduce permeability of tight reservoir rocks. Simulated permeability of digital images of rocks is often overestimated, which is caused by non-resolvable clay content within the pores of a rock. By combining FIB-SEM with micro-XCT imaging, we were able to simulate the true clay mineral abundance to match experimentally measured permeability with simulated permeability.
Lydia R. Bailey, Filippo L. Schenker, Maria Giuditta Fellin, Miriam Cobianchi, Thierry Adatte, and Vincenzo Picotti
Solid Earth, 11, 2463–2485, https://doi.org/10.5194/se-11-2463-2020, https://doi.org/10.5194/se-11-2463-2020, 2020
Short summary
Short summary
The Kallipetra Basin, formed in the Late Cretaceous on the reworked Pelagonian–Axios–Vardar contact in the Hellenides, is described for the first time. We document how and when the basin evolved in response to tectonic forcings and basin inversion. Cenomanian extension and basin widening was followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature, with a vergence to the NE, at odds with the regional SW vergence of the margin.
Georg Schwamborn, Kai Hartmann, Bernd Wünnemann, Wolfgang Rösler, Annette Wefer-Roehl, Jörg Pross, Marlen Schlöffel, Franziska Kobe, Pavel E. Tarasov, Melissa A. Berke, and Bernhard Diekmann
Solid Earth, 11, 1375–1398, https://doi.org/10.5194/se-11-1375-2020, https://doi.org/10.5194/se-11-1375-2020, 2020
Short summary
Short summary
We use a sediment core from the Gobi Desert (Ejina Basin, NW China) to illustrate the landscape history of the area. During 2.5 million years a sediment package of 223 m thickness has been accumulated. Various sediment types document that the area turned from a playa environment (shallow water environment with multiple flooding events) to an alluvial–fluvial environment after the arrival of the Heihe in the area. The river has been diverted due to tectonics.
Philippos Garefalakis and Fritz Schlunegger
Solid Earth, 10, 2045–2072, https://doi.org/10.5194/se-10-2045-2019, https://doi.org/10.5194/se-10-2045-2019, 2019
Short summary
Short summary
The controls on the 20 Myr old Burdigalian transgression in the Swiss Molasse basin have been related to a reduction in sediment flux, a rise in global sea level, or tectonic processes in the adjacent Alps. Here, we readdress this problem and extract stratigraphic signals from the Upper Marine Molasse deposits in Switzerland. In conclusion, we consider rollback tectonics to be the main driving force controlling the transgression, which is related to a deepening and widening of the basin.
Laura Stutenbecker, Peter M. E. Tollan, Andrea Madella, and Pierre Lanari
Solid Earth, 10, 1581–1595, https://doi.org/10.5194/se-10-1581-2019, https://doi.org/10.5194/se-10-1581-2019, 2019
Short summary
Short summary
The Aar and Mont Blanc regions in the Alps are large granitoid massifs characterized by high topography. We analyse when these granitoids were first exhumed to the surface. We test this by tracking specific garnet grains, which are exclusively found in the granitoid massifs, in the sediments contained in the alpine foreland basin. This research ties in with ongoing debates on the timing and mechanisms of mountain building.
Christian Stranne, Matt O'Regan, Martin Jakobsson, Volker Brüchert, and Marcelo Ketzer
Solid Earth, 10, 1541–1554, https://doi.org/10.5194/se-10-1541-2019, https://doi.org/10.5194/se-10-1541-2019, 2019
Maximilian Rieder, Wencke Wegner, Monika Horschinegg, Stefanie Klackl, Nereo Preto, Anna Breda, Susanne Gier, Urs Klötzli, Stefano M. Bernasconi, Gernot Arp, and Patrick Meister
Solid Earth, 10, 1243–1267, https://doi.org/10.5194/se-10-1243-2019, https://doi.org/10.5194/se-10-1243-2019, 2019
Short summary
Short summary
The formation of dolomite (CaMg(CO3)2), an abundant mineral in Earth's geological record, is still incompletely understood. We studied dolomites embedded in a 100 m thick succession of coastal alluvial clays of Triassic age in the southern Alps. Observation by light microscopy and Sr isotopes suggests that dolomites may spontaneously from concentrated evaporating seawater, in coastal ephemeral lakes or tidal flats along the western margin of the Triassic Tethys sea.
Salomé Mignard, Thierry Mulder, Philippe Martinez, and Thierry Garlan
Solid Earth, 10, 851–869, https://doi.org/10.5194/se-10-851-2019, https://doi.org/10.5194/se-10-851-2019, 2019
Short summary
Short summary
A large quantity a continental material is transported to the oceans by the world rivers. Once in the ocean, these particles can be transported down the continental shelf thanks to underwater avalanches. The repetition of such massive events can form very important sedimentary deposits at the continent–ocean transition. Data obtained during an oceanic cruise in 2010 allowed us to study such a system located offshore of Gabon and to evaluate the importance sediment transport in this area.
Sutieng Ho, Martin Hovland, Jean-Philippe Blouet, Andreas Wetzel, Patrice Imbert, and Daniel Carruthers
Solid Earth, 9, 1437–1468, https://doi.org/10.5194/se-9-1437-2018, https://doi.org/10.5194/se-9-1437-2018, 2018
Short summary
Short summary
A newly discovered type of hydrocarbon leakage structure is investigated following the preliminary works of Ho (2013; et al. 2012, 2013, 2016): blade-shaped gas chimneys instead of classical cylindrical ones. These so-called
Linear Chimneysare hydraulic fractures caused by overpressured hydrocarbon fluids breaching cover sediments along preferential directions. These directions are dictated by anisotropic stresses induced by faulting in sediments and pre-existing salt-diapiric structures.
Leandra M. Weydt, Claus-Dieter J. Heldmann, Hans G. Machel, and Ingo Sass
Solid Earth, 9, 953–983, https://doi.org/10.5194/se-9-953-2018, https://doi.org/10.5194/se-9-953-2018, 2018
Short summary
Short summary
This study focuses on the assessment of the geothermal potential of two extensive upper Devonian aquifer systems within the Alberta Basin (Canada). Our work provides a first database on geothermal rock properties combined with detailed facies analysis (outcrop and core samples), enabling the identification of preferred zones in the reservoir and thus allowing for a more reliable reservoir prediction. This approach forms the basis for upcoming reservoir studies with a focus on 3-D modelling.
Ernest Chi Fru, Stephanos Kilias, Magnus Ivarsson, Jayne E. Rattray, Katerina Gkika, Iain McDonald, Qian He, and Curt Broman
Solid Earth, 9, 573–598, https://doi.org/10.5194/se-9-573-2018, https://doi.org/10.5194/se-9-573-2018, 2018
Short summary
Short summary
Banded iron formations (BIFs) are chemical sediments last seen in the marine sedimentary record ca. 600 million years ago. Here, we report on the formation mechanisms of a modern BIF analog in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, demonstrating that rare environmental redox conditions, coupled to submarine hydrothermal activity and microbial processes, are required for these types of rocks to form in the modern marine biosphere.
Cited articles
Ahrens, H., Lotsch, D., and Musstopf, R.: Zur Geologie der Grenzschichten
Kreide/Tertiär im Gebiet der Bohrung Nennhausen 2/63, Abh. Zentrales
Geolog. Inst. 1, 127–136, 1965.
Arfai, J., Lutz, R., Franke, D., Gaedicke, C., and Kley, J.: Mass-transport
deposits and reservoir quality of Upper Cretaceous Chalk within the German
Central Graben, North Sea, Int. J. Earth Sci., 105, 797–818, 2016.
Arnold, H.: Die Erforschung der Westfälischen Kreidemulde und zur
Definition der Oberkreidestufen und -zonen, Fortschritte in der Geologie von
Rheinland und Westfalen, 7, 1–14, 1964.
Baldschuhn, R. and Jaritz, W.: Stratigraphie der Oberkreide in
Nordwestdeutschland (Pompeckjsche Scholle), Teil 1: Korrelation der
Bohrlochdiagramme und des Kernmaterials, Geol. Jahrb. A, 38, 3–9, 1977.
Baldschuhn, R., Frisch, U., and Kockel, F.: Inversionsstrukturen in
NW-Deutschland und ihre Genese, Z. dt. Geol. Ges., 136, 129–139, 1985.
Baldschuhn, R., Best, G., and Kockel, F.: Inversion tectonics in the
northwest German Basin, in: Generation, accumulation,
and production of Europe's hydrocarbons, edited by: Spencer, A. M., Sp. Pub. EAPG,
1, 149–159, 1991.
Baldschuhn, R., Binot, F., Fleig, S., and Kockel, F.: Geotektonischer Atlas
von Nordwest-Deutschland und dem deutschen Nordsee-Sektor [Tectonic Atlas of
Northwest Germany and the German North Sea Sector], Geol. Jahrb. A, 153, 1–88,
2001.
Beyer, D., Kunkel, C., Aehnelt, M., Pudlo, D., Voigt, T., Nover, G., and
Gaupp, R.: Influence of depositional environment and diagenesis on
petrophysical properties of clastic sediments (Buntsandstein of the
Thuringian Syncline, Central Germany), Z. Dtsch.
Ges. Geowiss., 165, 345–365, https://doi.org/10.1127/1860-1804/2014/0072, 2014.
Blumenstengel, H. and Krutzsch, W.: Tertiär, in: Geologie von Sachsen-Anhalt, edited by: Bachmann, G. H.,
Ehling, B. C., Eichner, R., and Schwab, M.,
267–292, 2008.
Botor, D., Anczkiewicz, A. A., Mazur, S., and Siwecki, T.: Post-Variscan
thermal history of the Intra-Sudetic Basin (Sudetes, Bohemian Massif) based
on apatite fission track analysis, Int. J. Earth Sci.,
108, 2561–2576, https://doi.org/10.1007/s00531-019-01777-9, 2019.
Bromley, R. G. and Ekdale, A. A.: Mass transport in European Cretaceous
chalk; fabric criteria for its recognition, Sedimentology, 34, 1079–1092,
1987.
Boussaha, M., Thibault, N., Anderskouv, K., Moreau, J., and Stemmerik, L.:
Controls on upper Campanian-Maastrichtian chalk deposition in the eastern
Danish Basin, Sedimentology, 64, 1998–2030, 2017.
Coubal, M., Adamovič, J., Málek, J., and Prouza, V.: Architecture of
thrust faults with alongstrike variations in fault-plane dip: anatomy of the
Lusatian Thrust Fault, Bohemian Massif, J. Geosci., 59,
183–208, 2014.
Coubal, M., Málek, J., Adamovič, J., and
Štěpančíková, P.: Late Cretaceous and Cenozoic dynamics
of the Bohemian Massif inferred from the Paleostress history of the Lusatian
Thrust Fault Belt, J. Geodyn., 87, 26–49,
https://doi.org/10.1016/j.jog.2015.02.006, 2015.
Dadlez, R.: Mesozoic thickness pattern in the Mid-Polish Trough, Geological
Quarterly, 47, 223–240, 2003.
Danišík, M., Migoń, P., Kuhlemann, J., Evans, N. J., Dunkl, I.,
and Frisch, W.: Thermo-chronological constraints on the long-term erosional
history of the Karkonosze Mts., Central Europe, Geomorphology, 117,
78–89, 2010.
Danišík, M., Štěpančiková, P., and Evans, N. J.:
Constraining longterm denudation and faulting history in intraplate regions
by multi-system thermochronology – an example of the Sudetic Marginal Fault
(Bohemian Massif, Central Europe), Tectonics, 31, TS2003, https://doi.org/10.1029/2011TC003012, 2012.
Deckers, J.: The Paleocene stratigraphic records in the Central Netherlands
and close surrounding basins: Highlighting the different responses to a late
Danian change in stress regime within the Central European Basin Systems,
Tectonophysics, 659, 102–108, 2015.
Deckers, J. and van der Voet, E.: A review on the structural styles of
deformation during Late Cretaceous and Paleocene tectonic phases in the
southern North Sea area, J. Geodynam., 115, 1–9, 2018.
Deckers, J., Vendenberghe, N., Lanckacker, T., and de Koninck, R.: The
Pyrenean inversion phase in northern Belgium: an example of a relaxation
inversion?, Int. J. Earth Sci., 105, 583–593, https://doi.org/10.1007/s00531-015-1189-8, 2016.
de Jager, J.: Inverted basins in the Netherlands, similarities and
differences, Neth. J. Geosci.,
82, 355–366, 2003.
de Jager, J.: Geological development, in: Geology of the Netherlands, edited by: Wong, T. E., Batjes, D. A. J., and
de Jager, J., Amsterdam, Roy.
Netherlands Acad. Arts Sci., 5–26, 2007.
DEKORP-BASIN '96 Research Group: Deep crustal structure of the Northeast German
basin: New DEKORP-BASIN'96 deep-profiling results, Geology, 27, 55–58,
1999.
Dielforder, A., Frasca, G., Brune, S., and Ford, M.: Formation of the
Iberian-European convergent plate boundary fault and its effect on
intraplate deformation in Central Europe, Geochem. Geophy.
Geosy., 20, 2395–2417, 2019.
Diener, I.: Kreide, Grundriß der Geologie der Deutschen Demokratischen
Republik, 1, 320–342, 1968.
Embley, R. W.: Anatomy of some Atlantic margin sediment slides and some
comments on ages and mechanisms, in: Marine slides and other mass movements,
Springer, Boston, MA, 189–213, 1982.
Evans, D. J. and Hopson, P. M.: The seismic expression of synsedimentary
channel features within the Chalk of southern England, Proceedings of the
Geologists' Association, 111, 219–230, 2000.
Ewald, J.: Die Lagerung der oberen Kreidebildungen am Nordrand des Harzes,
Monatsberichte der Königlich-Preußischen Akademie der Wissenschaften
zu Berlin, available at: https://digilib.bbaw.de/digitallibrary/digilib.html?fn=/silo10/Bibliothek.tiff/09-mon/1862/tif&pn=690 (last access: 24 June 2021), 674–680, 1862.
Fischer, C., Dunkl, I., von Eynatten, H., Wijbrans, J. R., and Gaupp, R.:
Products and timing of diagenetic processes in Upper Rotliegend sandstones
from Bebertal (North German Basin, Parchim Formation, Flechtingen High,
Germany), Geol. Mag., 149, 827–840, 2012.
Franzke, H. J., Voigt, T., von Eynatten, H., Brix, M. R., and Burmester, G.:
Geometrie und Kinematik der Harznordrandstörung, erläutert an
Profilen aus dem Gebiet von Blankenburg, Geowiss. Mitt. Thüringen, 11,
39–62, 2004.
Frieg, C., Hiss, M., and Kaever, M.: Alb und Cenoman im zentralen und
südlichen Münsterland, Neues Jahrb. Geol.
P., 181, 325–363, 1990.
Geluk, M. C., Duin, E. J. T., Dusar, M., Rijkers, R. H. B., van den Berg, M. W.,
and van Rooijen, P.: Stratigraphy and tectonics of the Roer Valley Graben,
Netherlands J. Geosci./Geol. Mijnb., 73, 129–141, 1994.
Götze, J. and Lewis, R.: Distribution of REE and trace elements in
size and mineral fractions of high-purity quartz sands, Sedimentology,
114, 43–57, https://doi.org/10.1016/0009-2541(94)90040-X, 1994.
Gras, R. and Geluk, M.: Late Cretaceous–Early Tertiary sedimentation and
tectonic inversion in the southern Netherlands, Geol. Mijnbouw, 78,
1–19, 1999.
Haller, W.: Ammoniten aus dem Maastricht der Bohrung Nennhausen 2/63, Abh. zentr. geol. Inst., 1, 137–148, 1965.
Hance, J. J.: Development of a database and assessment of seafloor slope
stability based on published literature, Doctoral dissertation, University
of Texas at Austin, Austin, Texas, 2003.
Hancock, J. M.: Sea-level changes in the British region during the Late
Cretaceous, P. Geologist. Assoc., 100, 565–594, https://doi.org/10.1016/S0016-7878(89)80027-6,
1989.
Hansen, D. L. and Nielsen, S. B.: Why rifts invert in compression,
Tectonophysics, 373, 5–24, 2003.
Haq, B.: Cretaceous eustasy revisited, Global Planet. Change, 113,
44–58, 2014.
Hardman, R. F. P.: Chalk reservoirs of the North Sea, B.
Geol. Soc. Denmark, 30, 119–137, 1982.
Hejl, E., Coyle, D., Lal, N., VandenHaute, P., and Wagner, G. A.: Fission
track dating of the western border of the Bohemian massif: Thermochronology
and tectonic implications, Geol. Rundsch., 86, 210–219, 1997.
Hindle, D. and Kley, J.: The Subhercynian Basin: An example of an intraplate foreland basin due to a broken plate, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2020-185, in review, 2020.
Hofmann, M., Linnemann, U., and Voigt, T.: The Upper Cretaceous section at
Schmilka in Saxony (Elbsandsteingebirge, Germany) – syntectonic
sedimentation and inverted zircon age populations revealed by LA-ICP-MS U/Pb
data, Geologica Saxonica, 59, 101–130, 2013.
Hofmann, M., Niebuhr, B., Linnemann, U., and Wilmsen, M.: Detrital zircon
ages and provenance data from the Early–Middle Turonian boundary interval
of Amberg (upper Winzerberg Formation, Danubian Cretaceous Group, Bavaria),
Z. Dtsch. Ges. Geowiss., 165, 655–668, 2014.
Hofmann, M., Voigt, T., Bittner, L., Gärtner, A., Zieger, J., and
Linnemann, U.: Reworked Middle Jurassic sandstone as a marker for Upper
Cretaceous basin inversion in Central Europe – a case study for the U-Pb
detrital zircon record of the Upper Cretaceous Schmilka section and their
implication for the sedimentary cover of the Lausitz Block (Saxony,
Germany), Int. J. Earth Sci., 107, 913–932,
https://doi.org/10.1007/s00531-017-1552-z, 2018.
Janetschke, N. and Wilmsen, M.: Sequence stratigraphy of the lower Upper
Cretaceous Elbtal group (Cenomanian–Turonian of Saxony, Germany), Z. Dsch.
Ges. Geowiss., 165, 179–207, 2014.
Karpe, W.: Zur Feinstratigraphie der oberkretazischen Karbonatgesteine in
der östlichen subherzynen Kreidemulde, Z. Geol.
Wissenschaft., 1, 269–292, 1973.
Karpe, W.: Kreide, in: Bachmann, G. H., Ehling, B. C., Eichner, R., and
Schwab, M.: Geologie von Sachsen-Anhalt, 244–266, 2008.
Käßner, A., Stanek, K. P., and Lapp, M.: Post-Variscan tectonic and
landscape evolution of the Elbe Fault Zone and the Lusatian Block based on
apatite fission-track data and geomorphologic constraints, Geomorphology,
355, 106860, https://doi.org/10.1016/j.geomorph.2019.106860, 2020.
Kennedy, W. J.: Late Cretaceous and early Palaeocene Chalk Group
sedimentation in the Greater Ekofisk area, North Sea central graben,
B. Cent. Rech. Expl., 11, 91–126, 1987.
Kley, J.: Timing and spatial patterns of Cretaceous and Cenozoic inversion
in the Southern Permian Basin, in: Mesozoic resource
potential in the Southern Permian Basin, edited by: Kilhams, B., Kukla, P. A., Mazur, S.,
McKie, T., Mijnlieff, H. F., and Van Ojik, K., Geol. Soc. Lond., Spec. Pub., 469,
19–31, 2018.
Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in Central
Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision,
Geology, 36, 839–842, https://doi.org/10.1130/G24930A.1, 2008.
Koch, W.: Biostratigraphie in der Oberkreide und Taxonomie von
Foraminiferen. Geologisches Jahrbuch, A38, Stratigraphie der Oberkreide in
Nordwestdeutschland (Pompeckjsche Scholle), 11–123, 1977.
Kölbel, H.: Die tektonische und paläogeographische Entwicklung des
Salzgitterer Gebietes, Abhandlungen des Reichamtes für Bodenforschung,
207, 1–100, 1944.
Kockel, F.: Inversion structures in Central Europe – Expressions and
reasons, an open discussion, Neth. J. Geosci., 82, 351–366, https://doi.org/10.1017/S0016774600020187, 2003.
Kossow, D.: Die kinematische Entwicklung des invertierten,
intrakontinentalen Nordostdeutschen Beckens, PhD thesis, University of
Potsdam, Potsdam, Germany, 1–105, 2001.
König, W., Köthe, A., and Ritz, I.: Die marine Beeinflussung der
Subherzynen Senke und der Mittelharzhochfläche im
Oligozän – Biostratigraphische und sedimentpetrographische Analysen
tertiärer Sandvorkommen, Z. Geol. Wissenschaft., 39, 387–431, 2011.
Krzywiec, P.: Mid-Polish Trough inversion – Seismic examples, main
mechanisms and its relationship to the Alpine – Carpathian collision.
Continental collision and the tectonosedimentary evolution of forelands:
European Geophysical Society Special Publication, 1, 151–165, 2002.
Krzywiec, P.: Structural inversion of the Pomeranian and Kuiavian segments
of the Mid-Polish Trough–lateral variations in timing and structural style,
Geol. Q., 50, 151–168, 2006.
Krzywiec, P.: Mesozoic and
Cenozoic evolution of salt structures within the Polish basin: An overview,
Geological Society, London, Special Publications, 363, 381–394,
https://doi.org/10.1144/SP363.17, 2012.
Krzywiec, P., Gutowski, J., Walaszczyk, I., Wróbel, G., and Wybraniec,
S.: Tectonostratigraphic model of the Late Cretaceous inversion along the
Nowe Miasto-Zawichost Fault Zone, SE Mid-Polish Trough, Geol.
Q., 53, 27–48, 2009.
Krzywiec, P. and Stachowska, A.: Late Cretaceous inversion of the NW segment
of the Mid-Polish Trough – how marginal troughs were formed, and does it
matter at all?, Z. Dtsch. Ges. Geowiss., 167, 107–119,
https://doi.org/10.1127/zdgg/2016/0068, 2016.
Lange, J.-M., Tonk, C., and Wagner, G. A.: Apatitspaltspurendaten zur
postvariskischen thermotektonischen Entwicklung des sächsischen
Grundgebirges – erste Ergebnisse, Zeitschrift der deutschen geologischen
Gesellschaft, 159, 123–132, https://doi.org/10.1127/1860-1804/2008/0159-0123, 2008.
Lehmann, J.: Integrated stratigraphy and palaeoenvironment of the
Cenomanian-Lower Turonian (Upper Cretaceous) of northern Westphalia, north
Germany, Facies, 40, 25–69, 1999.
Lohr, T., Krawczyk, C. M., Tanner, D. C., Samiee, R., Endres, H., Oncken,
O., and Kukla, P. A.: Strain partitioning due to salt: insights from
interpretation of a 3D seismic data set in the NW German Basin, Basin
Res., 19, 579–597, 2007.
Luijendijk, E., Van Balen, R. T., Ter Voorde, M., and Andriessen, P. A. M.:
Reconstructing the Late Cretaceous inversion of the Roer Valley Graben
(southern Netherlands) using a new model that integrates burial and
provenance history with fission track thermochronology, J.
Geophys. Res.-Sol. Ea., 11, B06402, https://doi.org/10.1029/2010JB008071, 2011.
Lykke-Andersen, H. and Surlyk, F.: The Cretaceous–Palaeogene boundary at
Stevns Klint, Denmark: inversion tectonics or sea-floor topography?, J.
Geol. Soc., 161, 343–352, 2004.
Machalski, M. and Malchyk, O.: Relative bathymetric position of opoka and
chalk in the Late Cretaceous European Basin, Cretaceous Res., 102, 30–36, 2019.
Malkovský, M.: The Mesozoic and Tertiary basins of the Bohemian Massif
and their evolution, Tectonophysics, 137, 31–42, 1987.
Malz, A., Nachtweide, C., Emmerlich, S., and Schimpf, L.: Mesozoic
intraplate deformation in the southern part of the Central European Basin –
Results from large-scale 3D modelling, Tectonophysics, 776,
228–315, https://doi.org/10.1016/j.tecto.2019.228315, 2020.
Matthews, K. J., Seton, M., and Müller, R. D.: A global-scale plate
reorganization event at 105–100 Ma, Earth Planet. Sc. Lett.,
355, 283–298, 2012.
Mazur, S., Scheck-Wenderoth, M., and Krzywiec, P.: Different modes of Late
Cretaceous-Early Tertiary inversion in the North German and Polish basins,
Int. J. Earth Sci., 94, 782–798, 2005.
Michon, L., Van Balen, R. T., Merle, O., and Pagnier, H.: The Cenozoic evolution of the Roer Valley Rift System integrated at a European scale, Tectonophysics, 367, 101–126, 2003.
Migoń, P. and Danišík, M.: Erosional history of the Karkonosze
Granite Massif–constraints from adjacent sedimentary basins and
thermochronology, Geol. Q., 56, 441–456, 2012.
Mortimore, R.: A chalk revolution: what have we done to the Chalk of
England?, P. Geologist. Assoc., 122, 232–297, 2011.
Mortimore, R.: Late Cretaceous tectono-sedimentary events in NW Europe,
P. Geol. Assoc., 129, 392–420, https://doi.org/10.1016/j.pgeola.2017.12.004, 2018.
Mortimore, R. N., Wood, C. J., Pomerol, B., and Ernst, G.: Dating the phases
of the Subhercynian tectonic epoch: Late Cretaceous tectonics and eustatics
in the Cretaceous basins of northern Germany compared with the Anglo-Paris
Basin, Zbl. Geo. Pal., 11, 1349–1401,
1998.
Mortimore, R. N. and Pomerol, B.: Upper Cretaceous tectonic disruptions in a
placid Chalk sequence in the Anglo-Paris Basin, J. Geol. Soc., 148, 391–404, 1991.
Mortimore, R. and Pomerol, B.: Upper Cretaceous tectonic phases and end
Cretaceous inversion in the Chalk of the Anglo-Paris Basin, Proceedings of
the geologists' association, 108, 231–255, 1997.
Musstow, R.: Lithologisch-paläogeographische Karte der DDR 1:500 000,
Oberkreide: Cenoman, Turon, Coniac-Santon, Campan, Maastricht, Geological map, Zentrales
Geologisches Institut, Berlin, 1976.
Nádaskay, R., Žák, J., Sláma, J., Sidorinová, T., and
Valečka, J.: Deciphering the Late Paleozoic to Mesozoic tectono
sedimentary evolution of the northern Bohemian Massif from detrital zircon
geochronology and heavy mineral provenance, Int. J. Earth
Sci., 108, 2653–2681, https://doi.org/10.1007/s00531-019-01781-z, 2019.
Navabpour, P., Malz, A., Kley, J., Siegburg, M., Kasch, N., and Ustaszewski, K.:
Intraplate brittle deformation and states of paleostress constrained by
fault kinematics in the central German platform, Tectonophysics, 694,
146–163, https://doi.org/10.1016/j.tecto.2016.11.033, 2017.
Niebuhr, B., Wilmsen, M., Chellouche, P., Richardt, N., and Pürner, T.: Stratigraphy and facies of the Turonian (Upper Cretaceous) Roding Formation at the southwestern margin of the Bohemian Massif (Southern Germany, Bavaria), Z. dt. Ges. Geowiss., 162, 295–316, 2011.
Niebuhr, B., Wilmsen, M., and Janetschke, N.: Cenomanian–Turonian sequence
stratigraphy and facies development of the
Danubian Cretaceous Group (Bavaria, Southern Germany), Z. Dtsch. Ges. Geowiss., 165, 621–640, 2014.
Niebuhr, B., Wilmsen, M., and Voigt, T.: Die Oberkreide
(Cenomanium–Mittelconiacium) im Zittauer Sandsteingebirge (Deutschland,
Tschechien), Z. Dtsch. Ges. Geowiss., 171, 163–197, 2020.
Nielsen, S. B. and Hansen, D. L.: Physical explanation of the formation and
evolution of inversion zones and marginal troughs, Geology, 28, 875–878,
2000.
Nielsen, S., Thomsen, E., Hansen, D. L., and Clausen, O. R.: Plate-wide
stress relaxation explains European Palaeocene basin inversions, Nature,
435, 195–198, 2005.
Nielsen, S. B., Stephenson, R., and Thomsen, E.: Dynamics of mid-Paleocene
north Atlantic rifting linked with European intra-plate deformations,
Nature, 450, 1071–1073, 2007.
Paul, J.: Hat sich der Harz im jüngeren Tertiär und Quartär
gehoben?, Z. Dtsch. Ges. Geowiss., 170, 95–107, 2019.
Petmecky, S., Meier, L., Reiser, H., and Littke, R.: High thermal maturity
in the Lower Saxony Basin: intrusion or deep burial?, Tectonophysics,
304, 317–344, 1999.
Rosenbaum, G., Lister, G. S., and Duboz, C.: Relative motions of Africa,
Iberia and Europe during Alpine orogeny, Tectonophysics, 359, 117–129,
2002.
Schulze, G.: Erste Ergebnisse geologischer Untersuchungsarbeiten im Gebiet
der Scholle von Calvörde, Z. Angew. Geol., 10, 338–348, 1964.
Scotese, C. R., Gahagan, L. M., and Larson, R. L.: Plate tectonic
reconstructions of the Cretaceous and Cenozoic ocean basins, Tectonophysics,
155, 27–48, 1988.
Seifert, A.: Stratigraphie und Paläogeographie des Cenomans und Turons
im sächsischen Elbtalgebiet – Freiberger Forsch.-H., C 14,
Freiberg, 1–218, 1955.
Senglaub, Y., Brix, M. R., Adriasola, A. C., and Littke, R.: New information
on the thermal history of the southwestern Lower Saxony Basin, northern
Germany, based on fission track analysis, Int. J. Earth
Sci., 94, 876-896, 2005.
Senglaub, Y., Littke, R., and Brix, M.: Numerical modelling of burial and
temperature history as an approach for an alternative interpretation of the
Bramsche anomaly, Lower Saxony Basin, Int. J. Earth
Sci., 95, 204–224, 2006.
Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T.,
Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., and Chandler,
M.: Global continental and ocean basin reconstructions since 200 Ma,
Earth-Sci. Rev., 113, 212–270, 2012.
Scotese, C. R., Gahagan, L. M., and Larson, R. L.: Plate tectonic
reconstructions of the Cretaceous and Cenozoic ocean basins, Tectonophysics,
155, 27–48, 1988.
Skoček, V. and Valečka, J.: Paleogeography of the late cretaceous
Quadersandstein of central Europe, Palaeogeogr. Palaeocl., 44, 71–92, 1983.
Sobczyk, A., Danišik, M., Aleksandrowski, P., and Anczkiewicz, A.:
Post-Variscan cooling history in the central Western Sudetes (NE Bohemian
Massif) and its implications for topographic evolution: Insights from
apatite fission-track and zircon (U–Th) He thermochronology, Tectonophysics,
649, 47–57, https ://doi.org/10.1016/j.tecto.2015.02.021, 2015.
Sobczyk, A., Sobel, E. R., and Georgieva, V.: Meso–Cenozoic cooling and
exhumation history of the Orlica-Śnieżnik Dome (Sudetes, NE Bohemian
Massif, Central Europe): Insights from apatite fission-track
thermochronometry, Terra Nova, 32, 122–133, https://doi.org/10.1111/ter.12449, 2019.
Špičáková, L., Uličný, D., and Koudelková, G.:
Tectonosedimentary Evolution of the Cheb Basin (NW Bohemia, Czech Republic)
between Late Oligocene and Pliocene: A Preliminary Note, Stud. Geophys.
Geod., 44, 556–580, 2000.
Standke, G. and Suhr, P.: Tertiär, in: Geologie von Sachsen, edited by: Pälchen, W. and Walter, H., Geologischer Bau und Entwicklungsgeschichte,
358–419, 2008.
Stille, H.: Grundfragen der vergleichenden Tektonik, Borntraeger, Berlin,
443 pp., 1924.
Surlyk, F. and Lykke-Andersen, H.: Contourite drifts, moats and channels in
the Upper Cretaceous chalk of the Danish Basin, Sedimentology, 54,
405–422, 2007.
Thomson, S. N. and Zeh, A.: Fission-track thermochronology of the Ruhla
Crystalline Complex: new constraints on the post-Variscan thermal evolution
of the NW Saxo-Bohemian Massif, Tectonophysics, 324, 17–35, 2000.
Thomson, S. N., Brix, M. R., and Carter, A.: Late Cretaceous denudation of the Harz Massif assessed by apatite fission track analysis, Schriftenreihe deut. Geol. Ges., 2, p. 115, 1997.
Tonndorf, H.: Die Uranlagerstätte Königstein – Bergbaumonographie
Bd. 7, Landesamt für Umwelt und Geologie –
Oberbergamt, 208 pp., 2000.
Tietz, O. and Büchner, J.: The landscape evolution of the Lausitz Block
since the Palaeozoic – with special emphasis to the neovolcanic edifices in
the Lausitz Volcanic Field (Eastern Germany), Z. Dtsch. Ges. Geowiss., 166, 125–147, https://doi.org/10.1127/zdgg/2015/0031, 2015.
Tröger, K.-A.: Zur Ausbildung der Kreide (Cenoman bis Coniac) in der Umrandung des Lausitzer Massivs, Geologie, 13, 717–730, 1964.
Uličný, D.: Depositional systems and sequence stratigraphy of
coarse-grained deltas in a shallow-marine, strike-slip setting: The Bohemian
Cretaceous Basin, Czech Republic, Sedimentology, 48, 599–628, 2001.
Uličný, D., Laurin, J., and Čech, S.: Controls on clastic
sequence geometries in a shallow-marine, transtensional basin: the Bohemian
Cretaceous Basin, Czech Republic, Sedimentology, 56, 1077–1114,
https://doi.org/10.1111/j.1365-3091.2008.01021.x, 2009.
van Buchem, F. S. P., Smit, F. W. H., Buijs, G. J. A., Trudgill, B., and
Larsen, P. H.: Tectonostratigraphic framework and depositional history of
the Cretaceous–Danian succession of the Danish Central Graben (North
Sea) – new light on a mature area, Geological Society, London, Petroleum
Geology Conference series, 8, 9–46, Geological Society of London, https://doi.org/10.1144/PGC8.24, 2018.
Van der Molen, A. S., Dudok van Heel, H. W., and Wong, T. E.: The influence of
tectonic regime on chalk deposition: examples of the sedimentary development
and 3D-seismic stratigraphy of the Chalk Group in the Netherlands offshore
area, Basin Res., 17, 63–81, 2005.
Van der Voet, Hejnen, L., and Reijmer, J. J. G.: Geological evolution of the
Chalk Group in the northern Dutch North Sea: inversion, sedimentation and
redeposition, Geol. Mag., 156, 1265–1284, 2019.
Vandycke, S.: Palaeostress records in Cretaceous formations in NW Europe:
extensional and strike–slip events in relationships with
Cretaceous–Tertiary inversion tectonics, Tectonophysics, 357, 119–136,
2002.
Vandycke, S., Bergerat, F., and Dupuis, C.: Meso-Cenozoic faulting and inferred palaeostresses in the Mons Basin, Belgium, Tectonophysics, 192, 261–271, 1991.
Vejbæk, O. and Andersen, C.: Post mid-Cretaceous inversion tectonics in
the Danish Central Graben – regionally synchronous tectonic events?,
Bull. Geol. Soc. Denmark, 49, 129–144, 2002.
Veevers, J. J.: Change of tectono-stratigraphic regime in the Australian
plate during the 99 Ma (mid-Cretaceous) and 43 Ma (mid-Eocene) swerves of
the Pacific, Geology, 28, 47–50, 2000.
Vissers, R. L. M. and Meijer, P. T.: Iberian plate kinematics and Alpine
collision in the Pyrenees, Earth-Sci. Rev., 114, 61–83, 2012.
Ventura, B. and Lisker, F.: Long-term landscape evolution of the
northeastern margin of the Bohemian Massif: apatite fission-track data from
the Erzgebirge (Germany), Int. J. Earth Sci., 92,
691–700, 2003.
Voigt, E.: Frühdiagenetische Deformation der turonen Plänerkalke bei
Halle/Westf. als Folge einer Grossgleitung unter besonderer
Berücksichtigung des Phacoid-Problems, Mitteilungen des Geologischen
Staatsinstitutes zu Hamburg, 31, 146–275, 1962.
Voigt, E.: Die Lithogenese der Flach- und Tiefwassersedimente des
jüngeren Oberkreidemeeres, eine Parallelisierung orogenetisch bedingter
Ablagerungsverhältnisse am Harzrand in Südschweden und im
preussisch-holländischen Grenzgebiet, Jahrbuch des Halleschen Verbandes
zur Erforschung der Mitteldeutschen Bodenschätze, 8, 3–162, 1929.
Voigt, E.: Über Randtröge vor Schollenrändern und ihre Bedeutung
im Gebiet der Mitteleuropäischen Senke und angrenzender Gebiete, Z.
Deutsch. Geol. Ges., 114, 378–418, 1963.
Voigt, E.: Neue Daten über submarine Großgleitung turoner Gesteine
im Teutoburger Wald bei Halle/Westf. – Zeitschrift der Deutschen
Geologischen Gesellschaft, 128, 57–79, 1977.
Voigt, S., Erbacher, J., Mutterlose, J., Weiss, W., Westerhold, T., Wiese,
F., Wilmsen, M., and Wonik, T.: The Cenomanian – Turonian of the Wunstorf
section – (North Germany): global stratigraphic reference section and new
orbital time scale for Oceanic Anoxic Event 2, Newsletter on Stratigraphy,
43, 65–89, 2008.
Voigt, T.: Entwicklung und Architektur einer fluviatilen Talfüllung –
die Niederschöna Formation im Sächsischen Kreidebecken, Abhandl.
Staatl. Museum Min. Geol. Dresden, Band 43/44, 121–139, 1998.
Voigt, T.: Die Lausitz-Riesengebirgs-Antiklinalzone als kreidezeitliche
Inversionsstruktur: Geologische Hinweise aus den umgebenden Kreidebecken,
Z. Geol. Wissenschaft., 37, 15–39, 2009.
Voigt, T.: Kreide, in: Geologie von
Brandenburg, edited by: Stackebrandt, W. and Franke, D., Schweizerbart, Stuttgart, 240–256, 2015.
Voigt, T., von Eynatten, H., and Franzke, H.-J.: Late Cretaceous
unconformities in the Subhercynian Cretaceous Basin (Germany), Acta Geol.
Pol., 54, 673–694, 2004.
Voigt, T., Wiese, F., von Eynatten, H., Franzke, H.-J., and Gaupp, R.: Facies
evolution of syntectonic Upper Cretaceous Deposits in the Subhercynian
Cretaceous Basin and adjoining areas (Germany), Z. Dt. Geol. Ges., 157,
203–244, 2006.
Voigt, T., Reicherter, K., von Eynatten, H., Littke, R. Voigt, S., and Kley,
J.: Sedimentation during basin inversion, in: Dynamics of complex sedimentary
basins. The example of the Central European Basin System, edited by: Littke, R., Bayer, U.,
Gajewski, D., and Nelskamp, S., Springer, Berlin, 211–232, 2008.
Voigt, T., von Eynatten, H., and Kley, J.: Kommentar zu ,,Nördliche
Harzrandstörung: Diskussionsbeiträge zu Tiefenstruktur, Zeitlichkeit
und Kinematik von Volker Wrede (ZDGG 159/2: 293-316), Z. Dt. Ges. Geowiss.,
160, 93–99, 2009.
von Eynatten, H., Voigt, T., Meier, A., Franzke, H.-J., and Gaupp, R.:
Provenance of the clastic Cretaceous Subhercynian Basin fill: constraints to
exhumation of the Harz Mountains and the timing of inversion tectonics in
the Central European Basin, Int. J. Earth Sci., 97, 1315–1330, 2008.
von Eynatten, H., Dunkl, I., Brix, M., Hoffmann, V.-E., Raab, M., Thomson, S.
N., and Kohn, B.: Late Cretaceous exhumation and uplift of the Harz
Mountains, Germany: a multi-method thermochronological approach, Int. J.
Earth Sci., 108, 2097–2111, https://doi.org/10.1007/s00531-019-01751-5, 2019.
von Eynatten, H., Kley, J., Dunkl, I., Hoffmann, V.-E., and Simon, A.: Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift, Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, 2021.
Warsitzka, M., Jähne-Klingberg, F., Kley, J., and Kukowski, N.: The
timing of salt structure growth in the Southern Permian Basin (Central
Europe) and implications for basin dynamics, Basin Res., 31, 337–360,
2019.
Wrede, V.: Der nördliche Harzrand – flache Abscherbahn oder
wrench-fault-system?, Geol. Rundsch., 77, 101–114, 1988.
Wilmsen, M.: Sequence stratigraphy and palaeoceanography of the Cenomanian
Stage in northern Germany, Cretaceous Res., 24, 525–568, 2003.
Wilmsen, M., Niebuhr, B., and Hiss, M.: The Cenomanian of northern Germany:
facies analysis of a transgressive biosedimentary system, Facies, 51,
242–263, https://doi.org/10.1007/s10347-005-0058-5, 2005.
Wulff, L. and Mutterlose, J.: Late Cretaceous tectonic inversion processes
deciphered by micropalaeontology – a case study from northern Germany,
Newsl. Stratigr., 52, 487–500, 2019.
Zijerveld, L., Stephenson, R. A., Cloetingh, S. A. P. L., Duin, E., and van den
Berg, M.: Subsidence analysis and modelling of the Roer Valley Graben (SE
Netherlands), Tectonophysics, 208, 159–171, 1992.
Ziegler, P. A.: Late Cretaceous and Cenozoic intra-plate compressional
deformations in the Alpine foreland – a geodynamic model, Tectonophysics,
137, 389–420, 1987.
Ziegler, P. A.: Collision related intra-plate compression deformations in
Western and Central Europe, J. Geodynam., 11, 357–388, 1990a.
Ziegler, P. A.: Geological Atlas of Western and Central Europe, 2nd edition.
Shell Internationale Petroleum Mij, BV and Geological Society of London, London, 239 pp., 1990b.
Ziegler, P. A., Cloetingh, S., and van Wees, J. D.: Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples, Tectonophysics, 252, 7–59, 1995.
Short summary
Basin inversion in central Europe is believed to have started during Late Cretaceous (middle Turonian) and probably proceeded until the Paleogene. Data from different marginal troughs in central Europe point to an earlier start of basin inversion (in the Cenomanian). The end of inversion is overprinted by general uplift but had probably already occurred in the late Campanian to Maastrichtian. Both the start and end of inversion occurred with low rates of uplift and subsidence.
Basin inversion in central Europe is believed to have started during Late Cretaceous (middle...
Special issue