Articles | Volume 12, issue 8
https://doi.org/10.5194/se-12-1865-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1865-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Crustal structure of the East African Limpopo margin, a strike-slip rifted corridor along the continental Mozambique Coastal Plain and North Natal Valley
IFREMER, Geosciences Marines, REM/GM/LGS, Centre de Brest, 29280 Plouzané, France
Philippe Schnürle
IFREMER, Geosciences Marines, REM/GM/LGS, Centre de Brest, 29280 Plouzané, France
Angélique Leprêtre
IFREMER, Geosciences Marines, REM/GM/LGS, Centre de Brest, 29280 Plouzané, France
LGO, IUEM, Place Nicolas Copernic, 29280 Plouzané, France
Fanny Verrier
IFREMER, Geosciences Marines, REM/GM/LGS, Centre de Brest, 29280 Plouzané, France
Louise Watremez
Université Lille, CNRS, Université Littoral Côte d’Opale, UMR 8187, LOG,Laboratoire d’Océanologie et de Géosciences, 59000 Lille, France
Joseph Offei Thompson
IFREMER, Geosciences Marines, REM/GM/LGS, Centre de Brest, 29280 Plouzané, France
Philippe de Clarens
TOTAL, R&D, avenue Larribau, 64000 Pau, France
Daniel Aslanian
IFREMER, Geosciences Marines, REM/GM/LGS, Centre de Brest, 29280 Plouzané, France
Maryline Moulin
IFREMER, Geosciences Marines, REM/GM/LGS, Centre de Brest, 29280 Plouzané, France
Related authors
No articles found.
Yurui Zhang, Thierry Huck, Camille Lique, Yannick Donnadieu, Jean-Baptiste Ladant, Marina Rabineau, and Daniel Aslanian
Clim. Past, 16, 1263–1283, https://doi.org/10.5194/cp-16-1263-2020, https://doi.org/10.5194/cp-16-1263-2020, 2020
Short summary
Short summary
The early Eocene (~ 55 Ma) was an extreme warm period accompanied by a high atmospheric CO2 level. We explore the relationships between ocean dynamics and this warm climate with the aid of the IPSL climate model. Our results show that the Eocene was characterized by a strong overturning circulation associated with deepwater formation in the Southern Ocean, which is analogous to the present-day North Atlantic. Consequently, poleward ocean heat transport was strongly enhanced.
Cited articles
Adam, J. M.-C. and Lebedev, S.: Azimuthal anisotropy beneath southern Africa
from very broad-band surface-wave dispersion measurements, Geophys. J. Int., 191, 155–174, https://doi.org/10.1111/j.1365-246X.2012.05583.x,
2012. a
Afilhado, A., Moulin, M., Aslanian, D., Schnürle, P., Klingelhoefer, F.,
Nouzé, H., Rabineau, M., Leroux, E., and Beslier, M.-O.: Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) – II. Sardinia’s margin,
B. Soc. Geol. Fr., 186, 331–351,
https://doi.org/10.2113/gssgfbull.186.4-5.331, 2015. a
Aslanian, D., Moulin, M., Olivet, J.-L., Unternehr, P., Matias, L., Bache, F.,
Rabineau, M., Nouzé, H., Klingelheofer, F., Contrucci, I., and Labails, C.:
Brazilian and African passive margins of the Central Segment of the
South Atlantic Ocean: Kinematic constraints, Tectonophysics, 468,
98–112, https://doi.org/10.1016/j.tecto.2008.12.016, 2009. a
Baby, G.: Mouvements verticaux des marges passives d'Afrique australe
depuis 130 Ma, étude couplée: stratigraphie de bassin: analyse des
formes du relief, PhD thesis, Université Rennes 1, 363 pp., 2017. a
Baby, G., Guillocheau, F., Boulogne, C., Robin, C., and Dall'Asta, M.: Uplift
history of a transform continental margin revealed by the stratigraphic
record: The case of the Agulhas transform margin along the Southern
African Plateau, Tectonophysics, 731, 104–130,
https://doi.org/10.1016/j.tecto.2018.03.014, 2018. a
Basile, C.: Transform continental margins – part 1: Concepts and models,
Tectonophysics, 661, 1–10, https://doi.org/10.1016/j.tecto.2015.08.034, 2015. a
Ben-Avraham, Z., Hartnady, C. J. H., and Roex, A. P. L.: Neotectonic activity
on continental fragments in the Southwest Indian Ocean: Agulhas
Plateau and Mozambique Ridge, J. Geophys. Res.-Sol. Ea., 100, 6199–6211, https://doi.org/10.1029/94JB02881, 1995. a
Bingen, B., Jacobs, J., Viola, G., Henderson, I. H. C., Skår, Ã., Boyd, R.,
Thomas, R. J., Solli, A., Key, R. M., and Daudi, E. X. F.: Geochronology of
the Precambrian crust in the Mozambique belt in NE Mozambique, and
implications for Gondwana assembly, Precambrian Res., 170, 231–255,
https://doi.org/10.1016/j.precamres.2009.01.005, 2009. a
Brune, S.: Evolution of stress and fault patterns in oblique rift systems:
3-D numerical lithospheric-scale experiments from rift to breakup,
Geochem., Geophys., Geosys., 15, 3392–3415,
https://doi.org/10.1002/2014GC005446, 2014. a
Catuneanu, O.: Basement control on flexural profiles and the distribution of
foreland facies: The Dwyka Group of the Karoo Basin, South
Africa, Geology, 32, 517–520, https://doi.org/10.1130/G20526.1, 2004. a
Christensen, N. I. and Mooney, W. D.: Seismic velocity structure and
composition of the continental crust: A global view, J. Geophys. Res.-Sol. Ea., 100, 9761–9788, https://doi.org/10.1029/95JB00259, 1995. a, b
Clerc, C., Ringenbach, J.-C., Jolivet, L., and Ballard, J.-F.: Rifted margins:
Ductile deformation, boudinage, continentward-dipping normal faults and the
role of the weak lower crust, Gondwana Res., 53, 20–40,
https://doi.org/10.1016/j.gr.2017.04.030, 2018. a, b
Cohen, J. and Stockwell, J. J. W.: CWP/SU: Seismic UnxRelease
No. 44: an open source software package for seismic research and processing,
2019. a
Courgeon, S., Bachèlery, P., Jouet, G., Jorry, S. J., Bou, E.,
BouDagher-Fadel, M. K., Révillon,, S., Camoin, G., and Poli, E.: The
offshore east African rift system: new insights from the Sakalaves
seamounts (Davie Ridge, SW Indian Ocean), Terra Nova, 0, 1–9,
https://doi.org/10.1111/ter.12353, 2018. a
Daly, M. C., Chorowicz, J., and Fairhead, J. D.: Rift basin evolution in
Africa: the influence of reactivated steep basement shear zones, Geological
Society, London, Special Publications, 44, 309–334,
https://doi.org/10.1144/GSL.SP.1989.044.01.17, 1989. a
Daly, M. C., Lawrence, S. R., Kimun'a, D., and Binga, M.: Late Palaeozoic
deformation in central Africa: a result of distant collision?, Nature, 350,
605–607, https://doi.org/10.1038/350605a0, 1991. a
Deville, E., Marsset, T., Courgeon, S., Jatiault, R., Ponte, J.-P., Thereau,
E., Jouet, G., Jorry, S. J., and Droz, L.: Active fault system across the
oceanic lithosphere of the Mozambique Channel: Implications for the
Nubia–Somalia southern plate boundary, Earth Planet. Sc. Lett., 502, 210–220, https://doi.org/10.1016/j.epsl.2018.08.052, 2018. a
Dingle, R. V. and Scrutton, R. A.: Continental Breakup and the Development
of Post-Paleozoic Sedimentary Basins around Southern Africa, GSA
Bull., 85, 1467–1474,
https://doi.org/10.1130/0016-7606(1974)85<1467:CBATDO>2.0.CO;2, 1974. a
Domingues, A., Silveira, G., Ferreira, A. M., Chang, S.-J., Custódio,, S., and
Fonseca, J. F.: Ambient noise tomography of the East African Rift in
Mozambique, Geophys. J. Int., 204, 1565–1578,
https://doi.org/10.1093/gji/ggv538, 2016. a, b, c, d
Elliot, D. H. and Fleming, T. H.: Occurrence and Dispersal of Magmas in the
Jurassic Ferrar Large Igneous Province, Antarctica, Gondwana
Res., 7, 223–237, https://doi.org/10.1016/S1342-937X(05)70322-1, 2004. a
Evain, M., Afilhado, A., Rigoti, C., Loureiro, A., Alves, D., Klingelhoefer,
F., Schnurle, P., Feld, A., Fuck, R., Soares, J., de Lima, M. V., Corela, C.,
Matias, L., Benabdellouahed, M., Baltzer, A., Rabineau, M., Viana, A.,
Moulin, M., and Aslanian, D.: Deep structure of the Santos Basin-São
Paulo Plateau System, SE Brazil: Santos Basin-São Paulo
Plateau Structure, J. Geophys. Res.-Sol. Ea., 120,
5401–5431, https://doi.org/10.1002/2014JB011561, 2015. a
Evain, M., Schnurle, P., Lepretre, A., Verrier, F., Watremez, L., Thompson, J. O., De-Clarens, P., Aslanian, D., and Moulin, M: Crustal structure of the East-African Limpopo Margin, a
strike-slip rifted corridor along the continental Mozambique Coastal
Plain and North-Natal Valley, SEANOE, https://doi.org/10.17882/80287, 2021. a
Fischer, M. D., Uenzelmann-Neben, G., Jacques, G., and Werner, R.: The
Mozambique Ridge: a document of massive multistage magmatism, Geophys. J. Int., 208, 449–467, https://doi.org/10.1093/gji/ggw403, 2017. a, b
Geiger, M., Clark, D. N., and Mette, W.: Reappraisal of the timing of the
breakup of Gondwana based on sedimentological and seismic evidence from the
Morondava Basin, Madagascar, J. Afr. Earth Sci., 38,
363–381, https://doi.org/10.1016/j.jafrearsci.2004.02.003, 2004. a
Gernigon, L., Brönner, M., Roberts, D., Olesen, O., Nasuti, A., and Yamasaki,
T.: Crustal and basin evolution of the southwestern Barents Sea: From
Caledonian orogeny to continental breakup, Tectonics, 33, 347–373,
https://doi.org/10.1002/2013TC003439, 2014. a, b
Gohl, K., Uenzelmann-Neben, G., and Grobys, N.: Growth and dispersal of
a southeast african large igneous province, S. Af. J. Geol., 114, 379–386, https://doi.org/10.2113/gssajg.114.3-4.379, 2011. a
Goodlad, S. W.: Tectonic and sedimentary history of the Mid-Natal Valley
(S.W. Indian Ocean), available at: http://hdl.handle.net/11427/23640 (last access: 10 August 2021), University of
Cape Town, 1986. a
Goodlad, S. W., Martin, A. K., and Hartnady, C. J. H.: Mesozoic magnetic
anomalies in the southern Natal Valley, Nature, 295, 686–688,
https://doi.org/10.1038/295686a0, 1982. a, b
Green, A. G.: Seafloor Spreading in the Mozambique Channel, Nature
Physical Science, 236, 19–21, https://doi.org/10.1038/physci236019a0, 1972. a, b
Guiraud, R., Bosworth, W., Thierry, J., and Delplanque, A.: Phanerozoic
geological evolution of Northern and Central Africa: An overview,
J. Afr. Earth Sci., 43, 83–143,
https://doi.org/10.1016/j.jafrearsci.2005.07.017, 2005. a
Hanyu, T., Nogi, Y., and Fujii, M.: Crustal formation and evolution processes
in the Natal Valley and Mozambique Ridge, off South Africa, Polar
Science, 13, 66–81, https://doi.org/10.1016/j.polar.2017.06.002, 2017. a, b, c, d
Hartnady, C., Ben-Avraham, Z., and Rogers, J.: Deep-ocean basins and submarines
rises off the continental margin of south-eastern Africa: new geological
research, 88, 534–539, 1992. a
Hastie, W. W., Watkeys, M. K., and Aubourg, C.: Magma flow in dyke swarms of
the Karoo LIP: Implications for the mantle plume hypothesis, Gondwana
Res., 25, 736–755, https://doi.org/10.1016/j.gr.2013.08.010, 2014. a
Huismans, R. and Beaumont, C.: Depth-dependent extension, two-stage breakup and
cratonic underplating at rifted margins, Nature, 473, 74–78,
https://doi.org/10.1038/nature09988, 2011. a
Jacobs, J. and Thomas, R. J.: Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic – early Paleozoic East African – Antarctic orogen orogen, Geology, 32, 721–724,
https://doi.org/10.1130/G20516.1, 2004. a
Jacobs, J., Pisarevsky, S., Thomas, R. J., and Becker, T.: The Kalahari
Craton during the assembly and dispersal of Rodinia, Precambrian
Res., 160, 142–158, https://doi.org/10.1016/j.precamres.2007.04.022, 2008. a
Jokat, W., Boebel, T., König, M., and Meyer, U.: Timing and geometry of early
Gondwana breakup, J. Geophys. Res.-Sol. Ea., 108, 2428,
https://doi.org/10.1029/2002JB001802, 2003. a
Jokat, W., Ritzmann, O., Reichert, C., and Hinz, K.: Deep Crustal Structure
of the Continental Margin off the Explora Escarpment and in the
Lazarev Sea, East Antarctica, Mar. Geophys. Res., 25,
283–304, https://doi.org/10.1007/s11001-005-1337-9, 2004. a, b, c
Jolivet, L., Gorini, C., Smit, J., and Leroy, S.: Continental breakup and the
dynamics of rifting in back-arc basins: The Gulf of Lion margin:
Backarc rift and lower crust extraction, Tectonics, 34, 662–679,
https://doi.org/10.1002/2014TC003570, 2015. a
Jourdan, F., Féraud, G., Bertrand, H., Kampunzu, A. B., Tshoso, G., Watkeys,
M. K., and Gall, B. L.: Karoo large igneous province: Brevity, origin, and
relation to mass extinction questioned by new 40Ar/39Ar age data,
Geology, 33, 745–748, https://doi.org/10.1130/G21632.1, 2005. a
Jourdan, F., Féraud, G., Bertrand, H., Watkeys, M. K., Kampunzu, A. B., and
Le Gall, B.: Basement control on dyke distribution in Large Igneous
Provinces: Case study of the Karoo triple junction, Earth Planet. Sc. Lett., 241, 307–322, https://doi.org/10.1016/j.epsl.2005.10.003, 2006. a
Jourdan, F., Féraud, G., Bertrand, H., Watkeys, M. K., and Renne, P. R.:
Distinct brief major events in the Karoo large igneous province clarified
by new 40Ar/39Ar ages on the Lesotho basalts, Lithos, 98, 195–209,
https://doi.org/10.1016/j.lithos.2007.03.002, 2007. a
König, M. and Jokat, W.: Advanced insights into magmatism and volcanism of the
Mozambique Ridge and Mozambique Basin in the view of new potential
field data, Geophys. J. Int., 180, 158–180,
https://doi.org/10.1111/j.1365-246X.2009.04433.x, 2010. a, b
Lafourcade, P.: Etude géologique et géophysique de la marge continentale du
sud Mozambique, (17∘ S–28∘ S), PhD Thesis, 132 pp., 1984. a
Le Pourhiet, L., May, D. A., Huille, L., Watremez, L., and Leroy, S.: A genetic
link between transform and hyper-extended margins, Earth Planet. Sc. Lett., 465, 184–192, https://doi.org/10.1016/j.epsl.2017.02.043, 2017. a
Leinweber, V. T. and Jokat, W.: Is there continental crust underneath the
northern Natal Valley and the Mozambique Coastal Plains?,
Geophys. Res. Lett., 38, L14303, https://doi.org/10.1029/2011GL047659, 2011. a, b, c
Leprêtre, A., Schnürle, P., Evain, M., Verrier, F., Moorcroft, D., Clarens,
P. d., Corela, C., Afilhado, A., Loureiro, A., Leroy, S., d'Acremont, E.,
Thompson, J., Aslanian, D., and Moulin, M.: Deep Structure of the North
Natal Valley (Mozambique) Using Combined Wide-Angle and
Reflection Seismic Data, J. Geophys. Res.-Sol. Ea.,
126, e2020JB021171, https://doi.org/10.1029/2020JB021171, 2021. a, b, c, d, e, f, g, h, i, j
Li, H., Tang, Y., Moulin, M., Aslanian, D., Evain, M., Schnürle, P., Leprêtre,
A., and Li, J.: Seismic evidence for crustal architecture and stratigraphy of
the Limpopo Corridor: New insights into the evolution of the sheared
margin offshore southern Mozambique, Mar. Geol., 435, 106468,
https://doi.org/10.1016/j.margeo.2021.106468, 2021. a, b
Loureiro, Afilhado, A., Matias, L., Moulin, M., and Aslanian, D.: Monte Carlo
approach to assess the uncertainty of wide-angle layered models:
Application to the Santos Basin, Brazil, Tectonophysics, 683,
286–307, https://doi.org/10.1016/j.tecto.2016.05.040, 2016. a, b
Loureiro, Schnürle, P., Klingelhöfer, F., Afilhado, A., Pinheiro, J., Evain,
M., Gallais, F., Dias, N. A., Rabineau, M., Baltzer, A., Benabdellouahed, M.,
Soares, J., Fuck, R., Cupertino, J. A., Viana, A., Matias, L., Moulin, M.,
Aslanian, D., Morvan, L., Mazé, J. P., Pierre, D., Roudaut-Pitel, M., Rio,
I., Alves, D., Barros Junior, P., Biari, Y., Corela, C., Crozon, J., Duarte,
J. L., Ducatel, C., Falco, C., Fernagu, P., Vinicius Aparecido Gomes de
Lima, M., Le Piver, D., Mokeddem, Z., Pelleau, P., Rigoti, C., Roest, W., and
Roudaut, M.: Imaging exhumed lower continental crust in the distal
Jequitinhonha basin, Brazil, J. S. Am. Earth Sci.,
84, 351–372, https://doi.org/10.1016/j.jsames.2018.01.009, 2018. a, b
Ludwig, W. J., Nafe, J. E., Simpson, E. S. W., and Sacks, S.:
Seismic-refraction measurements on the Southeast African Continental
Margin, J. Geophys. Res., 73, 3707–3719,
https://doi.org/10.1029/JB073i012p03707, 1968. a
Mahanjane, E. S.: A geotectonic history of the northern Mozambique Basin
including the Beira High – A contribution for the understanding of
its development, Mar. Petrol. Geol., 36, 1–12,
https://doi.org/10.1016/j.marpetgeo.2012.05.007, 2012. a, b
Martin, A. K. and Hartnady, C. J. H.: Plate tectonic development of the south
west Indian Ocean: A revised reconstruction of East Antarctica and
Africa, J. Geophys. Res.-Sol. Ea., 91, 4767–4786,
https://doi.org/10.1029/JB091iB05p04767, 1986. a, b, c
Mascle, J. and Blarez, E.: Evidence for transform margin evolution from the
Ivory Coast–Ghana continental margin, Nature, 326, 378–381,
https://doi.org/10.1038/326378a0, 1987. a
Mougenot, D., Recq, M., Virlogeux, P., and Lepvrier, C.: Seaward extension of
the East African Rift, Nature, 321, 599–603, https://doi.org/10.1038/321599a0, 1986. a, b, c
Moulin, M. and Aslanian, D.: PAMELA-MOZ03 cruise, RV Pourquoi pas?, https://doi.org/10.17600/16001600, 2016. a, b, c
Moulin, M., Aslanian, D., Olivet, J.-L., Contrucci, I., Matias, L., Géli, L.,
Klingelhoefer, F., Nouzé, H., Réhault, J.-P., and Unternehr, P.: Geological
constraints on the evolution of the Angolan margin based on reflection and
refraction seismic data (Za–Ango project), Geophys. J. Int., 162, 793–810, https://doi.org/10.1111/j.1365-246X.2005.02668.x, 2005. a
Moulin, M., Klingelhoefer, F., Afilhado, A., Aslanian, D., Schnurle, P.,
Nouzé, H., Rabineau, M., Beslier, M.-O., and Feld, A.: Deep crustal
structure across a young passive margin from wide-angle and reflection
seismic data (The SARDINIA Experiment) – I. Gulf of Lion's
margin, B. Soc. Géol. France, 186, 309–330,
https://doi.org/10.2113/gssgfbull.186.4-5.309, 2015. a
Moulin, M., Aslanian, D., Evain, M., Leprêtre, A., Schnurle, P., Verrier, F.,
Thompson, J., Clarens, P. D., Leroy, S., and Dias, N.: Gondwana breakup:
Messages from the North Natal Valley, Terra Nova, 32, 205–214,
https://doi.org/10.1111/ter.12448, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u
Mueller, C. O. and Jokat, W.: Geophysical evidence for the crustal variation
and distribution of magmatism along the central coast of Mozambique,
Tectonophysics, 712, 684–703, https://doi.org/10.1016/j.tecto.2017.06.007, 2017. a
Mueller, C. O., Jokat, W., and Schreckenberger, B.: The crustal structure of
Beira High, central Mozambique–Combined investigation of wide-angle
seismic and potential field data, Tectonophysics, 683, 233–254,
https://doi.org/10.1016/j.tecto.2016.06.028, 2016. a, b
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The development
and evaluation of the Earth Gravitational Model 2008 (EGM2008),
J. Geophys. Res., 117, B04406,
https://doi.org/10.1029/2011JB008916, 2012. a, b
Piqué, A., Laville, E., Chotin, P., Chorowicz, J., Rakotondraompiana, S., and
Thouin, C.: L'extension à Madagascar du Néogène à l'Actuel: arguments structuraux et géophysiquesNeogene and present extension in Madagascar: structural and geophysical data, J. Af. Earth Sci.,
28, 975–983, https://doi.org/10.1016/S0899-5362(99)00073-1, 1999. a
Reeves, C. V., Teasdale, J. P., and Mahanjane, E. S.: Insight into the
Eastern Margin of Africa from a new tectonic model of the Indian
Ocean, Geological Society, London, Special Publications, 431, 299–322,
https://doi.org/10.1144/SP431.12, 2016. a, b
Reid: Effects of lithospheric flow on the formation and evolution of a
transform margin, Earth Planet. Sc. Lett., 95, 38–52,
https://doi.org/10.1016/0012-821X(89)90166-0, 1989. a, b
Reid and Jackson: A review of three transform margins off eastern Canada,
Geo-Mar. Lett., 17, 87–93, https://doi.org/10.1007/s003670050012, 1997. a
Riedel, S., Jacobs, J., and Jokat, W.: Interpretation of new regional
aeromagnetic data over Dronning Maud Land (East Antarctica),
Tectonophysics, 585, 161–171, https://doi.org/10.1016/j.tecto.2012.10.011, 2013. a
Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., and Francis, R.:
New global marine gravity model from CryoSat-2 and Jason-1 reveals buried
tectonic structure, Science, 346, 65–67, https://doi.org/10.1126/science.1258213,
2014. a, b
Saria, E., Calais, E., Stamps, D. S., Delvaux, D., and Hartnady, C. J. H.:
Present-day kinematics of the East African Rift, J. Geophys. Res.-Sol. Ea., 119, 3584–3600, https://doi.org/10.1002/2013JB010901, 2014. a
Scheinert, M., Ferraccioli, F., Schwabe, J., Bell, R., Studinger, M., Damaske,
D., Jokat, W., Aleshkova, N., Jordan, T., Leitchenkov, G., Blankenship,
D. D., Damiani, T. M., Young, D., Cochran, J. R., and Richter, T. D.: New
Antarctic gravity anomaly grid for enhanced geodetic and geophysical
studies in Antarctica, Geophys. Res. Lett., 43, 600–610,
https://doi.org/10.1002/2015GL067439, 2016. a
Schnürle, P., Leprêtre, A., Verrier, F., Evain, M., Aslanian, D., De Clarens,
P., Dias, N. A., Loureiro, A., Leroy, S., and Moulin, M.: Crustal structure
of the Natal Valley from combined wide-angle and reflection seismic data
(MOZ3/5 cruise), South Mozambique Margin, in: 18th International
SEISMIX Symposium, Cracow, Poland, 132 pp., 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Senkans, A., Leroy, S., d'Acremont, E., Castilla, R., and Despinois, F.:
Polyphase rifting and break-up of the central Mozambique margin, Mar. Petrol. Geol., 100, 412–433, https://doi.org/10.1016/j.marpetgeo.2018.10.035,
2019. a
Smith, W. H. F. and Sandwell, D. T.: Global Sea Floor Topography from
Satellite Altimetry and Ship Depth Soundings, Science, 277,
1956–1962, https://doi.org/10.1126/science.277.5334.1956, 1997. a
Stockwell, J. W.: The CWP/SU: Seismic Unx packagep, Comput. Geosci., 25, 415–419, 1999. a
Teyssier, C., Tikoff, B., and Markley, M.: Oblique plate motion and continental
tectonics, Geology, 23, 447–450,
https://doi.org/10.1130/0091-7613(1995)023<0447:OPMACT>2.3.CO;2, 1995. a
Thiéblemont, A., Hernández-Molina, F. J., Miramontes, E., Raisson, F., and
Penven, P.: Contourite depositional systems along the Mozambique channel:
The interplay between bottom currents and sedimentary processes, Deep Sea
Res. Pt. I, 147, 79–99,
https://doi.org/10.1016/j.dsr.2019.03.012, 2019. a
Tikku, A. A., Marks, K. M., and Kovacs, L. C.: An Early Cretaceous extinct
spreading center in the northern Natal valley, Tectonophysics, 347,
87–108, https://doi.org/10.1016/S0040-1951(01)00239-6, 2002. a, b
Tozer, B., Watts, A. B., and Daly, M. C.: Crustal structure, gravity anomalies,
and subsidence history of the Parnaíba cratonic basin, Northeast
Brazil: Structure Parnaíba Cratonic Basin, J. Geophys.
Res.-Sol. Ea., 122, 5591–5621, https://doi.org/10.1002/2017JB014348, 2017. a
Tsang-Hin-Sun, E., Evain, M., Julia, J., Lamarque, G., and Schnurle, P.:
Crustal seismic structure and anisotropy of Madagascar and south-eastern
Africa using receiver function harmonics: interplay of inherited local
heterogeneities and current regional stress, Geophys. J. Int., 226, 660–675, https://doi.org/10.1093/gji/ggab118, 2021. a
Vormann, M., Franke, D., and Jokat, W.: The crustal structure of the southern
Davie Ridge offshore northern Mozambique – A wide-angle seismic and
potential field study, Tectonophysics, 778, 228370,
https://doi.org/10.1016/j.tecto.2020.228370, 2020. a
Watkeys, M. K.: Development of the Lebombo rifted volcanic margin of southeast Africa, edited by: Menzies, M. A., Klemperer, S. L., Ebinger, C. J., and Baker, J.: Volcanic Rifted Margins, Geological Society of America Special Paper, 362, 27–46, https://doi.org/10.1130/0-8137-2362-0.27, 2002. a, b, c, d
Watremez, L., Leroy, S., d'Acremont, E., Roche, V., Leprêtre, A., Verrier, F.,
Aslanian, D., Dias, N. A., Afilhado, A., Schnürle, P., Castilla, R.,
Despinois, F., and Moulin, M.: The Limpopo magmatic transform margin
(South Mozambique) – Part 1: insights from deep-structure seismic
imaging, Tectonics, in review, 2021. a, b, c, d, e, f, g, h, i, j, k, l
Watts, A. B.: Gravity anomalies, flexure and crustal structure at the
Mozambique rifted margin, Mar. Petrol. Geol., 18, 445–455,
https://doi.org/10.1016/S0264-8172(00)00079-9, 2001.
a, b
Wessel, P. and Smith, W. H. F.: New, improved version of Generic Mapping
Tools released, EOS Trans. Amer. Geophys. U., 79, 579, 1998. a
White, R. S., McKenzie, D., and O'Nions, R. K.: Oceanic crustal thickness from
seismic measurements and rare earth element inversions, J. Geophys. Res., 97, 19683, https://doi.org/10.1029/92JB01749, 1992.
a, b
Wiles, E., Green, A., Watkeys, M., Jokat, W., and Krocker, R.: Anomalous
seafloor mounds in the northern Natal Valley, southwest Indian Ocean:
Implications for the East African Rift System, Tectonophysics, 630,
300–312, https://doi.org/10.1016/j.tecto.2014.05.030, 2014. a
Zelt, C. A. and Smith, R. B.: Seismic traveltime inversion for 2-D crustal
velocity structure, Geophys. J. Int., 108, 16–34, 1992. a
Short summary
This study analyses recently acquired marine seismic data offshore of southeastern Mozambique. It aims to better constrain the early history and formation of southeastern African margins. The crustal structure and segmentation of the Limpopo margin provide evidence of strike-slip rifting along the eastern North Natal Valley. This has profound consequences on our understanding of the East Gondwana breakup, challenging kinematic models based on an overlap between the Antarctic and African plates.
This study analyses recently acquired marine seismic data offshore of southeastern Mozambique....