Articles | Volume 12, issue 1
https://doi.org/10.5194/se-12-187-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-187-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A systems-based approach to parameterise seismic hazard in regions with little historical or instrumental seismicity: active fault and seismogenic source databases for southern Malawi
Jack N. Williams
CORRESPONDING AUTHOR
School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
Hassan Mdala
Geological Survey Department, Mzuzu Regional Office, Mzuzu, Malawi
Åke Fagereng
School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
Luke N. J. Wedmore
School of Earth Sciences, University of Bristol, Bristol, UK
Juliet Biggs
School of Earth Sciences, University of Bristol, Bristol, UK
Zuze Dulanya
Geography and Earth Sciences Department, University of Malawi, Zomba, Malawi
Patrick Chindandali
Geological Survey Department, Zomba, Malawi
Felix Mphepo
Geological Survey Department, Mzuzu Regional Office, Mzuzu, Malawi
Related authors
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Jack N. Williams, Luke N. J. Wedmore, Åke Fagereng, Maximilian J. Werner, Hassan Mdala, Donna J. Shillington, Christopher A. Scholz, Folarin Kolawole, Lachlan J. M. Wright, Juliet Biggs, Zuze Dulanya, Felix Mphepo, and Patrick Chindandali
Nat. Hazards Earth Syst. Sci., 22, 3607–3639, https://doi.org/10.5194/nhess-22-3607-2022, https://doi.org/10.5194/nhess-22-3607-2022, 2022
Short summary
Short summary
We use geologic and GPS data to constrain the magnitude and frequency of earthquakes that occur along active faults in Malawi. These faults slip in earthquakes as the tectonic plates on either side of the East African Rift in Malawi diverge. Low divergence rates (0.5–1.5 mm yr) and long faults (5–200 km) imply that earthquakes along these faults are rare (once every 1000–10 000 years) but could have high magnitudes (M 7–8). These data can be used to assess seismic risk in Malawi.
Jack N. Williams, Virginia G. Toy, Cécile Massiot, David D. McNamara, Steven A. F. Smith, and Steven Mills
Solid Earth, 9, 469–489, https://doi.org/10.5194/se-9-469-2018, https://doi.org/10.5194/se-9-469-2018, 2018
Short summary
Short summary
We present new data on the orientation of fractures, their fill, and their density around the Alpine Fault, a plate boundary fault on the South Island of New Zealand. Fractures < 160 m of the fault are filled and show a range of orientations, whilst fractures at greater distances (< 500 m) are open and parallel to the rock's mechanical weakness. We interpret the latter fracture set to reflect near-surface processes, whilst the latter are potentially linked to deep-seated Alpine Fault seismicity.
Jack N. Williams, Joseph J. Bevitt, and Virginia G. Toy
Sci. Dril., 22, 35–42, https://doi.org/10.5194/sd-22-35-2017, https://doi.org/10.5194/sd-22-35-2017, 2017
Short summary
Short summary
We compare images of drillcore from the Alpine Fault in New Zealand that were collected using X-ray computed tomography (CT) and neutron tomography (NT). Both techniques provide 3-D images of the core's internal structure, which would not be possible through visual analysis alone. We find that CT scans are more beneficial, as they can image a wider range of rock types, and this scanning technique is more practical. Nevertheless, NT provides complementary scans over limited intervals of core.
Hugh Daigle, João C. Duarte, Ake Fagereng, Raphaël Paris, Patricia Persaud, Ángela María Gómez-García, and the Lisbon MagellanPlus Workshop Participants
Sci. Dril., 32, 101–111, https://doi.org/10.5194/sd-32-101-2023, https://doi.org/10.5194/sd-32-101-2023, 2023
Short summary
Short summary
Natural hazards associated with the ocean can have a direct impact on coastal populations and even affect populations located far away from the coast. These hazards may interact, and they include tsunamis that result in major damage and catastrophic loss of life and submarine landslides, which themselves can produce tsunamis and damage subsea infrastructure. We present ideas for investigating these hazards with scientific ocean drilling.
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, Juliet Biggs, Fabien Albino, Sarah K. Brown, Helen Burns, Andrew Hooper, Milan Lazecky, Yasser Maghsoudi, Richard Rigby, and Tim J. Wright
Geosci. Commun., 6, 75–96, https://doi.org/10.5194/gc-6-75-2023, https://doi.org/10.5194/gc-6-75-2023, 2023
Short summary
Short summary
We evaluate the communication and open data processing of satellite Interferometric Synthetic Aperture Radar (InSAR) data, which measures ground deformation. We discuss the unique interpretation challenges and the use of automatic data processing and web tools to broaden accessibility. We link these tools with an analysis of InSAR communication through Twitter in which applications to earthquakes and volcanoes prevailed. We discuss future integration with disaster risk-reduction strategies.
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Jack N. Williams, Luke N. J. Wedmore, Åke Fagereng, Maximilian J. Werner, Hassan Mdala, Donna J. Shillington, Christopher A. Scholz, Folarin Kolawole, Lachlan J. M. Wright, Juliet Biggs, Zuze Dulanya, Felix Mphepo, and Patrick Chindandali
Nat. Hazards Earth Syst. Sci., 22, 3607–3639, https://doi.org/10.5194/nhess-22-3607-2022, https://doi.org/10.5194/nhess-22-3607-2022, 2022
Short summary
Short summary
We use geologic and GPS data to constrain the magnitude and frequency of earthquakes that occur along active faults in Malawi. These faults slip in earthquakes as the tectonic plates on either side of the East African Rift in Malawi diverge. Low divergence rates (0.5–1.5 mm yr) and long faults (5–200 km) imply that earthquakes along these faults are rare (once every 1000–10 000 years) but could have high magnitudes (M 7–8). These data can be used to assess seismic risk in Malawi.
Joel C. Gill, Faith E. Taylor, Melanie J. Duncan, Solmaz Mohadjer, Mirianna Budimir, Hassan Mdala, and Vera Bukachi
Nat. Hazards Earth Syst. Sci., 21, 187–202, https://doi.org/10.5194/nhess-21-187-2021, https://doi.org/10.5194/nhess-21-187-2021, 2021
Short summary
Short summary
This paper draws on the experiences of seven early career scientists, in different sectors and contexts, to explore the improved integration of natural hazard science into broader efforts to reduce the likelihood and impacts of disasters. We include recommendations for natural hazard scientists, to improve education, training, and research design and to strengthen institutional, financial, and policy actions. We hope to provoke discussion and catalyse changes that will help reduce disaster risk.
Michael Hodge, Juliet Biggs, Åke Fagereng, Austin Elliott, Hassan Mdala, and Felix Mphepo
Solid Earth, 10, 27–57, https://doi.org/10.5194/se-10-27-2019, https://doi.org/10.5194/se-10-27-2019, 2019
Short summary
Short summary
This work attempts to create a semi-automated algorithm (called SPARTA) to calculate height, width and slope of surface breaks produced by earthquakes on faults. We developed the Python algorithm using synthetic catalogues, which can include noise features such as vegetation, hills and ditches, which mimic natural environments. We then apply the algorithm to four fault scarps in southern Malawi, at the southern end of the East African Rift system, to understand their earthquake potential.
Jack N. Williams, Virginia G. Toy, Cécile Massiot, David D. McNamara, Steven A. F. Smith, and Steven Mills
Solid Earth, 9, 469–489, https://doi.org/10.5194/se-9-469-2018, https://doi.org/10.5194/se-9-469-2018, 2018
Short summary
Short summary
We present new data on the orientation of fractures, their fill, and their density around the Alpine Fault, a plate boundary fault on the South Island of New Zealand. Fractures < 160 m of the fault are filled and show a range of orientations, whilst fractures at greater distances (< 500 m) are open and parallel to the rock's mechanical weakness. We interpret the latter fracture set to reflect near-surface processes, whilst the latter are potentially linked to deep-seated Alpine Fault seismicity.
Jack N. Williams, Joseph J. Bevitt, and Virginia G. Toy
Sci. Dril., 22, 35–42, https://doi.org/10.5194/sd-22-35-2017, https://doi.org/10.5194/sd-22-35-2017, 2017
Short summary
Short summary
We compare images of drillcore from the Alpine Fault in New Zealand that were collected using X-ray computed tomography (CT) and neutron tomography (NT). Both techniques provide 3-D images of the core's internal structure, which would not be possible through visual analysis alone. We find that CT scans are more beneficial, as they can image a wider range of rock types, and this scanning technique is more practical. Nevertheless, NT provides complementary scans over limited intervals of core.
Johann F. A. Diener, Åke Fagereng, and Sukey A. J. Thomas
Solid Earth, 7, 1331–1347, https://doi.org/10.5194/se-7-1331-2016, https://doi.org/10.5194/se-7-1331-2016, 2016
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Rock deformation, geomorphology, morphotectonics, and paleoseismology | Discipline: Tectonics
First evidence of active transpressive surface faulting at the front of the eastern Southern Alps, northeastern Italy: insight on the 1511 earthquake seismotectonics
Emanuela Falcucci, Maria Eliana Poli, Fabrizio Galadini, Giancarlo Scardia, Giovanni Paiero, and Adriano Zanferrari
Solid Earth, 9, 911–922, https://doi.org/10.5194/se-9-911-2018, https://doi.org/10.5194/se-9-911-2018, 2018
Short summary
Short summary
We first investigated the recent activity of a major active fault system, probably responsible for the 1511 earthquake, one of the most destructive seismic events of the eastern Alps and of continental Europe over the past millennium.
Cited articles
Accardo, N. J., Shillington, D. J., Gaherty, J. B., Scholz, C. A., Nyblade,
A. A., Chindandali, P. R. N., Kamihanda, G., McCartney, T., Wood, D., and
Wambura Ferdinand, R.: Constraints on Rift Basin Structure and Border Fault
Growth in the Northern Malawi Rift From 3-D Seismic Refraction Imaging, J.
Geophys. Res.-Sol. Ea., 123, 10003–10025, https://doi.org/10.1029/2018JB016504,
2018.
Agostini, A., Bonini, M., Corti, G., Sani, F., and Manetti, P.: Distribution
of Quaternary deformation in the central Main Ethiopian Rift, East Africa,
Tectonics, 30, TC4010, https://doi.org/10.1029/2010TC002833, 2011a.
Agostini, A., Bonini, M., Corti, G., Sani, F., and Mazzarini, F.: Fault
architecture in the Main Ethiopian Rift and comparison with experimental
models: Implications for rift evolution and Nubia-Somalia kinematics, Earth
Planet. Sc. Lett., 301, 479–492, https://doi.org/10.1016/j.epsl.2010.11.024,
2011b.
Ayele, A.: Probabilistic seismic hazard analysis (PSHA) for Ethiopia and the
neighboring region, J. African Earth Sci., 134, 257–264,
https://doi.org/10.1016/j.jafrearsci.2017.06.016, 2017.
Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano,
S., Tiberti, M. M., and Boschi, E.: The Database of Individual Seismogenic
Sources (DISS), version 3: Summarizing 20 years of research on Italy's
earthquake geology, Tectonophysics, 453, 20–43,
https://doi.org/10.1016/j.tecto.2007.04.014, 2008.
Beauval, C., Marinière, J., Yepes, H., Audin, L., Nocquet, J. M.,
Alvarado, A., Baize, S., Aguilar, J., Singaucho, J. C., and Jomard, H.: A new
seismic hazard model for ecuador, B. Seismol. Soc. Am., 108,
1443–1464, https://doi.org/10.1785/0120170259, 2018.
Biasi, G. P. and Wesnousky, S. G.: Steps and gaps in ground ruptures:
Empirical bounds on rupture propagation, B. Seismol. Soc. Am., 106,
1110–1124, https://doi.org/10.1785/0120150175, 2016.
Biggs, J., Nissen, E., Craig, T., Jackson, J., and Robinson, D. P.: Breaking
up the hanging wall of a rift-border fault: The 2009 Karonga earthquakes,
Malawi, Geophys. Res. Lett., 37, L11305, https://doi.org/10.1029/2010GL043179, 2010.
Billings, S. E. and Kattenhorn, S. A.: The great thickness debate: Ice shell
thickness models for Europa and comparisons with estimates based on flexure
at ridges, Icarus, 177, 397–412, https://doi.org/10.1016/j.icarus.2005.03.013, 2005.
Bloomfield, K.: The geology of the Port Herald Area, Bull. Geol. Surv.
Malawi, 9, 76 pp., 1958.
Bloomfield, K.: The Geology of the Zomba Area, Bull. Geol. Surv. Malawi, 16, 193 pp., 1965.
Bloomfield, K. and Garson, M. S.: The Geology of the Kirk Range-Lisungwe
Valley Area, Bull. Geol. Surv. Malawi, 17, 234 pp., 1965.
Box, G. E. P., Hunter, W. G., and Hunter, J. S.: Statistics for
experimenters, John Wiley and SBei ons New York, 653 pp., 1978.
Brace, W. F. and Byerlee, J. D.: Stick-slip as a mechanism for earthquakes,
Science, 153, 990–992, 1966.
Braun, J. and Beaumont, C.: Three-dimensional numerical experiments of
strain partitioning at oblique plate boundaries: implications for
contrasting tectonic styles in the southern Coast Ranges, California, and
central South Island, New Zealand, J. Geophys. Res., 100, 18059–18074,
https://doi.org/10.1029/95jb01683, 1995.
Buck, W. R.: Modes of continental lithospheric extension, J. Geophys. Res.,
96, 20161–20178, https://doi.org/10.1029/91jb01485, 1991.
Calais, E., Camelbeeck, T., Stein, S., Liu, M., and Craig, T. J.: A new
paradigm for large earthquakes in stable continental plate interiors,
Geophys. Res. Lett., 43, 1621–10637, https://doi.org/10.1002/2016GL070815, 2016.
Castaing, C.: Post-Pan-African tectonic evolution of South Malawi in
relation to the Karroo and recent East African rift systems, Tectonophysics,
191, 55–73, https://doi.org/10.1016/0040-1951(91)90232-H, 1991.
Chapola, L. S. and Kaphwiyo, C. E.: The Malawi rift: Geology, tectonics and
seismicity, Tectonophysics, 209, 159–164,
https://doi.org/10.1016/0040-1951(92)90017-Z, 1992.
Childs, C., Watterson, J., and Walsh, J. J.: Fault overlap zones within
developing normal fault systems, J. Geol. Soc., 152, 535–549,
https://doi.org/10.1144/gsjgs.152.3.0535, 1995.
Chisenga, C., Dulanya, Z., and Jianguo, Y.: The structural re-interpretation
of the Lower Shire Basin in the Southern Malawi rift using gravity data, J.
African Earth Sci., 149, 280–290,
https://doi.org/10.1016/j.jafrearsci.2018.08.013, 2019.
Christophersen, A., Litchfield, N., Berryman, K., Thomas, R., Basili, R.,
Wallace, L., Ries, W., Hayes, G. P., Haller, K. M., Yoshioka, T., Koehler,
R. D., Clark, D., Wolfson-Schwehr, M., Boettcher, M. S., Villamor, P.,
Horspool, N., Ornthammarath, T., Zuñiga, R., Langridge, R. M., Stirling,
M. W., Goded, T., Costa, C., and Yeats, R.: Development of the Global
Earthquake Model's neotectonic fault database, Nat. Hazards, 79,
111–135, https://doi.org/10.1007/s11069-015-1831-6, 2015.
Clark, D., McPherson, A., and Van Dissen, R.: Long-term behaviour of
Australian stable continental region (SCR) faults, Tectonophysics, 566–567,
1–30, https://doi.org/10.1016/j.tecto.2012.07.004, 2012.
Cornell, C. A.: Engineering seismic risk analysis, B. Seismol. Soc. Am.,
58, 1583–1606, https://doi.org/10.1016/0167-6105(83)90143-5, 1968.
Corti, G.: Evolution and characteristics of continental rifting: Analog
modeling-inspired view and comparison with examples from the East African
Rift System, Tectonophysics, 522, 1–33,
https://doi.org/10.1016/j.tecto.2011.06.010, 2012.
Corti, G., Philippon, M., Sani, F., Keir, D., and Kidane, T.: Re-orientation
of the extension direction and pure extensional faulting at oblique rift
margins: Comparison between the Main Ethiopian Rift and laboratory
experiments, Terra Nova, 25, 396–404, https://doi.org/10.1111/ter.12049, 2013.
Cowie, P. A., Roberts, G. P., Bull, J. M., and Visini, F.: Relationships
between fault geometry, slip rate variability and earthquake recurrence in
extensional settings, Geophys. J. Int., 189, 143–160,
https://doi.org/10.1111/j.1365-246X.2012.05378.x, 2012.
Cox, S. C., Stirling, M. W., Herman, F., Gerstenberger, M., and Ristau, J.:
Potentially active faults in the rapidly eroding landscape adjacent to the
Alpine Fault, central Southern Alps, New Zealand, Tectonics, 31, TC2011,
https://doi.org/10.1029/2011TC003038, 2012.
Craig, T. J., Jackson, J. A., Priestley, K., and Mckenzie, D.: Earthquake
distribution patterns in Africa: Their relationship to variations in
lithospheric and geological structure, and their rheological implications,
Geophys. J. Int., 185, 403–434, https://doi.org/10.1111/j.1365-246X.2011.04950.x,
2011.
Daly, M. C., Green, P., Watts, A. B., Davies, O., Chibesakunda, F., and
Walker, R.: Tectonics and Landscape of the Central African Plateau and their
Implications for a Propagating Southwestern Rift in Africa, Geochem.
Geophys. Geosys., 21, e2019GC008746, https://doi.org/10.1029/2019GC008746, 2020.
Delvaux, D.: Age of Lake Malawi (Nyasa) and water level fluctuations, Mus.
roy. Afrr. centr., Tervuren (Belg.), Dept. Geol. Min., Rapp. ann. 1993, 1994,
108, 99–108, 1995.
Delvaux, D. and Barth, A.: African stress pattern from formal inversion of
focal mechanism data, Tectonophysics, 482, 105–128,
https://doi.org/10.1016/j.tecto.2009.05.009, 2010.
Delvaux, D., Mulumba, J. L., Sebagenzi, M. N. S., Bondo, S. F., Kervyn, F.,
and Havenith, H. B.: Seismic hazard assessment of the Kivu rift segment
based on a new seismotectonic zonation model (western branch, East African
Rift system), J. African Earth Sci., 134, 831–855,
https://doi.org/10.1016/j.jafrearsci.2016.10.004, 2017.
Dixey, F.: The Nyasaland section of the great rift valley, Geogr. J., 68,
117–137, 1926.
Dixey, F.: The Nyasa-Shire Rift, Geogr. J., 91, 51–56, 1938.
Dulanya, Z.: A review of the geomorphotectonic evolution of the south Malawi
rift, J. African Earth Sci., 129, 728–738,
https://doi.org/10.1016/j.jafrearsci.2017.02.016, 2017.
DuRoss, C. B., Personius, S. F., Crone, A. J., Olig, S. S., Hylland, M. D.,
Lund, W. R., and Schwartz, D. P.: Fault segmentation: New concepts from the
Wasatch Fault Zone, Utah, USA, J. Geophys. Res.-Sol. Ea., 121,
1131–1157, https://doi.org/10.1002/2015JB012519, 2016.
Ebinger, C.: Continental break-up: The East African perspective, Astron.
Geophys., 46, 16–21, https://doi.org/10.1111/j.1468-4004.2005.46216.x, 2005.
Ebinger, C. J.: Tectonic development of the western branch of the East
African rift system, Geol. Soc. Am. Bull., 101, 885–903,
https://doi.org/10.1130/0016-7606(1989)101<0885:TDOTWB>2.3.CO;2,
1989.
Ebinger, C. J., Rosendahl, B. R., and Reynolds, D. J.: Tectonic model of the
Malawi rift, Africa, Tectonophysics, 141, 215–235,
https://doi.org/10.1016/0040-1951(87)90187-9, 1987.
Ebinger, C. J., Oliva, S. J., Pham, T. Q., Peterson, K., Chindandali, P.,
Illsley-Kemp, F., Drooff, C., Shillington, D. J., Accardo, N. J., Gallacher,
R. J., Gaherty, J., Nyblade, A. A., and Mulibo, G.: Kinematics of Active
Deformation in the Malawi Rift and Rungwe Volcanic Province, Africa,
Geochem. Geophys. Geosyst., 20, 3928–3951,
https://doi.org/10.1029/2019GC008354, 2019.
England, P. and Jackson, J.: Uncharted seismic risk, Nat. Geosci., 4,
348–349, https://doi.org/10.1038/ngeo1168, 2011.
Fagereng, Å.: Fault segmentation, deep rift earthquakes and crustal
rheology: Insights from the 2009 Karonga sequence and seismicity in the
Rukwa-Malawi rift zone, Tectonophysics, 601, 216–225,
https://doi.org/10.1016/j.tecto.2013.05.012, 2013.
Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E.,
Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., and Madden, C.:
Uniform California earthquake rupture forecast, version 3 (UCERF3) – The
time-independent model, B. Seismol. Soc. Am., 104, 1122–1180, 2014.
Fullgraf, T., Zammit, C., Bailly, L., Terrier, M., Hyvonen, E., Backman, B.,
Karinen, T., Konnunaho, J., Thomas, R., and Tychsen, J.: Geological Mapping
and Mineral Assessment Project (GEMMAP) of Malawi, Report Inception Phase –
February 2017, available at: https://www.brgm.eu/project/geological-mapping-mineral-inventory-malawi (last access: 7 January 2020), 2017.
Gaherty, J. B., Zheng, W., Shillington, D. J., Pritchard, M. E., Henderson,
S. T., Chindandali, P. R. N., Mdala, H., Shuler, A., Lindsey, N., Oliva, S.
J., Nooner, S., Scholz, C. A., Schaff, D., Ekström, G., and Nettles, M.:
Faulting processes during early-stage rifting: Seismic and geodetic analysis
of the 2009–2010 Northern Malawi earthquake sequence, Geophys. J. Int.,
217, 1767–1782, https://doi.org/10.1093/gji/ggz119, 2019.
Gawthorpe, R. L. and Leeder, M. R.: Tectono-sedimentary evolution of active
extensional basins, Basin Res., 12, 195–218,
https://doi.org/10.1111/j.1365-2117.2000.00121.x, 2000.
Gerstenberger, M. C., Marzocchi, W., Allen, T., Pagani, M., Adams, J.,
Danciu, L., Field, E. H., Fujiwara, H., Luco, N., Ma, K. F., Meletti, C., and
Petersen, M. D.: Probabilistic Seismic Hazard Analysis at Regional and
National Scales: State of the Art and Future Challenges, Rev. Geophys.,
58, e2019RG000653, https://doi.org/10.1029/2019RG000653, 2020.
Goda, K., Gibson, E. D., Smith, H. R., Biggs, J., and Hodge, M.: Seismic risk
assessment of urban and rural settlements around lake malawi, Front. Built
Environ., 2, 2–17, https://doi.org/10.3389/fbuil.2016.00030, 2016.
Goda, K., Kloukinas, P., Risi, R., Hodge, M., Kafodya, I., Ngoma, I., Biggs,
J., Crewe, A., Fagereng, Å., and Macdonald, J.: Scenario-based seismic
risk assessment for Malawi using improved information on earthquake sources
and local building characteristics, in 16th European Conference on
Earthquake Engineering, 1–12, 2018.
Goitom, B., Werner, M. J., Goda, K., Kendall, J. M., Hammond, J. O. S.,
Ogubazghi, G., Oppenheimer, C., Helmstetter, A., Keir, D., and Illsley-Kemp,
F.: Probabilistic seismic-hazard assessment for Eritrea, B. Seismol. Soc. Am., 107, 1478–1494, https://doi.org/10.1785/0120160210, 2017.
Gómez-Vasconcelos, M. G., Villamor, P., Procter, J., Palmer, A., Cronin,
S., Wallace, C., Townsend, D., and Leonard, G.: Characterisation of faults as
earthquake sources from geomorphic data in the Tongariro Volcanic Complex,
New Zealand, New Zeal. J. Geol. Geophys., 1–12, 2018.
Gupta, H. K.: The Malawi earthquake of March 10, 1989: A report of the
macroseismic survey, Tectonophysics, 209, 165–166,
https://doi.org/10.1016/0040-1951(92)90018-2, 1992.
Gupta, S., Cowie, P. A., Dawers, N. H., and Underhill, J. R.: A mechanism to
explain rift-basin subsidence and stratigraphic patterns through fault-array
evolution, Geology, 26, 595–598, https://doi.org/10.1130/0091-7613(1998)026<0595:AMTERB>2.3.CO, 1998.
Habgood, F.: The geology of the country west of the Shire River between
Chikwawa and Chiromo, Bull. Geol. Surv. Malawi, 14, 60 pp., 1963.
Habgood, F., Holt, D. N., and Walshaw, R. D.: The geology of the Thyolo Area,
Bull. Geol. Surv. Malawi, 22, 24 pp., 1973.
Hamiel, Y., Baer, G., Kalindekafe, L., Dombola, K., and Chindandali, P.:
Seismic and aseismic slip evolution and deformation associated with the
2009–2010 northern Malawi earthquake swarm, East African Rift, Geophys. J.
Int., 191, 898–908, https://doi.org/10.1111/j.1365-246X.2012.05673.x, 2012.
Hart, E. and Bryant, W.: Fault-rupture hazard zones in California:
Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault
Zones Maps, 38 pp., 1999.
Heimpel, M. and Olson, P.: A seismodynamical model of lithosphere
deformation: Development of continental and oceanic rift networks, J.
Geophys. Res.-Sol. Ea., 101, 16155–16176, https://doi.org/10.1029/96jb00168,
1996.
Hellebrekers, N., Niemeijer, A. R., Fagereng, Å., Manda, B., and Mvula,
R. L. S.: Lower crustal earthquakes in the East African Rift System:
Insights from frictional properties of rock samples from the Malawi rift,
Tectonophysics, 767, 228167, https://doi.org/10.1016/j.tecto.2019.228167, 2019.
Hodge, M., Biggs, J., Goda, K., and Aspinall, W.: Assessing infrequent large
earthquakes using geomorphology and geodesy: the Malawi Rift, Nat. Hazards,
76, 1781–1806, https://doi.org/10.1007/s11069-014-1572-y, 2015.
Hodge, M., Fagereng, A., Biggs, J., and Mdala, H.: Controls on Early-Rift
Geometry: New Perspectives From the Bilila-Mtakataka Fault, Malawi, Geophys.
Res. Lett., 45, 3896–3905, https://doi.org/10.1029/2018GL077343, 2018a.
Hodge, M., Fagereng, Å., and Biggs, J.: The Role of Coseismic Coulomb Stress
Changes in Shaping the Hard Link Between Normal Fault Segments, J. Geophys. Res.-Sol. Ea., 123, 797–814, https://doi.org/10.1002/2017JB014927, 2018b.
Hodge, M., Biggs, J., Fagereng, Å., Elliott, A., Mdala, H., and Mphepo, F.: A semi-automated algorithm to quantify scarp morphology (SPARTA): application to normal faults in southern Malawi, Solid Earth, 10, 27–57, https://doi.org/10.5194/se-10-27-2019, 2019.
Hodge, M., Biggs, J., Fagereng, Mdala, H., Wedmore, L. N. J., and Williams,
J. N.: Evidence From High-Resolution Topography for Multiple Earthquakes on
High Slip-to-Length Fault Scarps: The Bilila-Mtakataka Fault, Malawi,
Tectonics, 39, e2019TC005933, https://doi.org/10.1029/2019TC005933, 2020.
Iezzi, F., Roberts, G., Walker, J. F., and Papanikolaou, I.: Occurrence of
partial and total coseismic ruptures of segmented normal fault systems:
Insights from the Central Apennines, Italy, J. Struct. Geol., 126, 83–99,
https://doi.org/10.1016/j.jsg.2019.05.003, 2019.
Ivory, S. J., Blome, M. W., King, J. W., McGlue, M. M., Cole, J. E., and
Cohen, A. S.: Environmental change explains cichlid adaptive radiation at
Lake Malawi over the past 1.2 million years, P. Natl. Acad. Sci. USA, 113, 11895–11900, https://doi.org/10.1073/pnas.1611028113, 2016.
Jackson, J.: Living with earthquakes: Know your faults, J. Earthq. Eng., 5,
5–123, https://doi.org/10.1080/13632460109350530, 2001.
Jackson, J. and Blenkinsop, T.: The Malawi Earthquake of March 10, 1989:
Deep faulting within the East African Rift System, Tectonics, 12,
1131–1139, https://doi.org/10.1029/93TC01064, 1993.
Jackson, J. and Blenkinsop, T.: The Bilila-Mtakataka fault in Malawi: an
active, 100-km long, normal fault segment in thick seismogenic crust,
Tectonics, 16, 137–150, https://doi.org/10.1029/96TC02494, 1997.
Jackson, J. A. and White, N. J.: Normal faulting in the upper continental
crust: observations from regions of active extension, J. Struct. Geol.,
11, 15–36, https://doi.org/10.1016/0191-8141(89)90033-3, 1989.
Jomard, H., Cushing, E. M., Palumbo, L., Baize, S., David, C., and Chartier, T.: Transposing an active fault database into a seismic hazard fault model for nuclear facilities – Part 1: Building a database of potentially active faults (BDFA) for metropolitan France, Nat. Hazards Earth Syst. Sci., 17, 1573–1584, https://doi.org/10.5194/nhess-17-1573-2017, 2017.
Kagan, Y. Y., Jackson, D. D., and Geller, R. J.: Characteristic earthquake
model, 1884-2011, R.I.P., Seismol. Res. Lett., 83, 951–953,
https://doi.org/10.1785/0220120107, 2012.
King, A. W. and Dawson, A. L.: The Geology of the Mangochi-Makanjila Area,
Bull. Geol. Surv. Malawi, 35, 69 pp., 1976.
Kloukinas, P., Novelli, V., Kafodya, I., Ngoma, I., Macdonald, J., and Goda,
K.: A building classification scheme of housing stock in Malawi for
earthquake risk assessment, J. Hous. Built Environ., 35, 507–537,
https://doi.org/10.1007/s10901-019-09697-5, 2020.
Kolawole, F., Atekwana, E. A., Laó-Dávila, D. A., Abdelsalam, M. G.,
Chindandali, P. R., Salima, J., and Kalindekafe, L.: Active Deformation of
Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of
Preexisting Precambrian Shear Zone Fabric, Tectonics, 37, 683–704,
https://doi.org/10.1002/2017TC004628, 2018a.
Kolawole, F., Atekwana, E. A., Laó-Dávila, D. A., Abdelsalam, M. G.,
Chindandali, P. R., Salima, J., and Kalindekafe, L.: High-resolution
electrical resistivity and aeromagnetic imaging reveal the causative fault
of the 2009 Mw 6.0 Karonga, Malawi earthquake, Geophys. J. Int., 213,
1412–1425, https://doi.org/10.1093/gji/ggy066, 2018b.
Langridge, R. M., Ries, W. F., Litchfield, N. J., Villamor, P., Van Dissen,
R. J., Barrell, D. J. A., Rattenbury, M. S., Heron, D. W., Haubrock, S.,
Townsend, D. B., Lee, J. M., Berryman, K. R., Nicol, A., Cox, S. C., and
Stirling, M. W.: The New Zealand Active Faults Database, New Zeal. J. Geol.
Geophys., 59, 86–96, https://doi.org/10.1080/00288306.2015.1112818, 2016.
Laõ-Dávila, D. A., Al-Salmi, H. S., Abdelsalam, M. G., and Atekwana,
E. A.: Hierarchical segmentation of the Malawi Rift: The influence of
inherited lithospheric heterogeneity and kinematics in the evolution of
continental rifts, Tectonics, 34, 2399–2417, https://doi.org/10.1002/2015TC003953,
2015.
Lavayssière, A., Drooff, C., Ebinger, C., Gallacher, R., Illsley-Kemp,
F., Oliva, S. J., and Keir, D.: Depth Extent and Kinematics of Faulting in
the Southern Tanganyika Rift, Africa, Tectonics, 38, 842–862,
https://doi.org/10.1029/2018TC005379, 2019.
Leonard, M.: Earthquake fault scaling: Self-consistent relating of rupture
length, width, average displacement, and moment release, B. Seismol. Soc. Am., 100, 1971–1988, https://doi.org/10.1785/0120090189, 2010.
Litchfield, N., Van Dissen, R., Sutherland, R., Barnes, P., Cox, S., Norris,
R., Beavan, R., Langridge, R., Villamor, P., Berryman, K., Stirling, M.,
Nicol, A., Nodder, S., Lamarche, G., Barrell, D., Pettinga, J., Little, T.,
Pondard, N., Mountjoy, J., and Clark, K.: A model of active faulting in New
Zealand, New Zeal. J. Geol. Geophys., 57, 32–56,
https://doi.org/10.1080/00288306.2013.854256, 2014.
Litchfield, N. J., Villamor, P., van Dissen, R. J., Nicol, A., Barnes, P.
M., Barrell, D. J. A., Pettinga, J. R., Langridge, R. M., Little, T. A.,
Mountjoy, J. J., Ries, W. F., Rowland, J., Fenton, C., Stirling, M. W.,
Kearse, J., Berryman, K. R., Cochran, U. A., Clark, K. J., Hemphill-Haley,
M., Khajavi, N., Jones, K. E., Archibald, G., Upton, P., Asher, C., Benson,
A., Cox, S. C., Gasston, C., Hale, D., Hall, B., Hatem, A. E., Heron, D. W.,
Howarth, J., Kane, T. J., Lamarche, G., Lawson, S., Lukovic, B., McColl, S.
T., Madugo, C., Manousakis, J., Noble, D., Pedley, K., Sauer, K., Stahl, T.,
Strong, D. T., Townsend, D. B., Toy, V., Williams, J., Woelz, S., and Zinke,
R.: Surface rupture of multiple crustal faults in the 2016 Mw 7.8
Kaikoura, New Zealand, earthquake, B. Seismol. Soc. Am., 108,
1496–1520, https://doi.org/10.1785/0120170300, 2018.
Lyons, R. P., Scholz, C. A., Cohen, A. S., King, J. W., Brown, E. T., Ivory,
S. J., Johnson, T. C., Deino, A. L., Reinthal, P. N., McGlue, M. M., and
Blome, M. W.: Continuous 1.3-million-year record of East African
hydroclimate, and implications for patterns of evolution and biodiversity,
P. Natl. Acad. Sci. USA, 112, 15568–15573, https://doi.org/10.1073/pnas.1512864112, 2015.
Macgregor, D.: History of the development of the East African Rift System: A
series of interpreted maps through time, J. African Earth Sci., 101,
232–252, https://doi.org/10.1016/j.jafrearsci.2014.09.016, 2015.
Machette, M., Haller, K., and Wald, L.: Quaternary Fault and Fold Database
for the nation, United States Geological Survey Fact Sheet, available at: https://pubs.er.usgs.gov/publication/fs20043033 (last access: 7 January 2021), 2004.
Macheyeki, A. S., Mdala, H., Chapola, L. S., Manhiça, V. J., Chisambi,
J., Feitio, P., Ayele, A., Barongo, J., Ferdinand, R. W., Ogubazghi, G.,
Goitom, B., Hlatywayo, J. D., Kianji, G. K., Marobhe, I., Mulowezi, A.,
Mutamina, D., Mwano, J. M., Shumba, B., and Tumwikirize, I.: Active fault
mapping in Karonga-Malawi after the December 19, 2009 Ms 6.2 seismic event,
J. African Earth Sci., 102, 233–246, https://doi.org/10.1016/j.jafrearsci.2014.10.010,
2015.
Malawi, N. S. O.: 2018 Malawi Population & Housing Census Main Report,
Gov. Malawi, 299 pp., 2018.
Manda, B. W. C., Cawood, P. A., Spencer, C. J., Prave, T., Robinson, R., and
Roberts, N. M. W.: Evolution of the Mozambique Belt in Malawi constrained by
granitoid U-Pb, Sm-Nd and Lu-Hf isotopic data, Gondwana Res., 68, 93–107,
https://doi.org/10.1016/j.gr.2018.11.004, 2019.
McCalpin, J. P.: Paleoseismology, Academic press., 629 pp., 2009.
McCartney, T. and Scholz, C. A.: A 1.3 million year record of synchronous
faulting in the hangingwall and border fault of a half-graben in the Malawi
(Nyasa) Rift, J. Struct. Geol., 91, 114–129, https://doi.org/10.1016/j.jsg.2016.08.012,
2016.
Mesko, G.: Magmatism at the Southern End of the East African Rift System:
Origin and Role During Early Stage Rifting, 311 pp., 2020.
Midzi, V., Hlatywayo, D. J., Chapola, L. S., Kebede, F., Atakan, K., Lombe,
D. K., Turyomurugyendo, G., and Tugume, F. A.: Seismic hazard assessment in
Eastern and Southern Africa, Ann. di Geofis., 42, 1067–1083,
https://doi.org/10.4401/ag-3770, 1999.
Molnar, P.: Earthquake recurrence intervals and plate tectonics, B. Seismol. Soc. Am., 69, 115–133, 1979.
Morell, K. D., Styron, R., Stirling, M., Griffin, J., Archuleta, R., and
Onur, T.: Seismic hazard analyses from geologic and geomorphic data: Current
and future challenges, Tectonics, 39, e2018TC005365, https://doi.org/10.1029/2018tc005365,
2020.
Morley, C. K.: Variable extension in Lake Tanganyika, Tectonics, 7,
785–801, https://doi.org/10.1029/TC007i004p00785, 1988.
Mortimer, E. J., Paton, D. A., Scholz, C. A., Strecker, M. R., and Blisniuk,
P.: Orthogonal to oblique rifting: Effect of rift basin orientation in the
evolution of the North basin, Malawi Rift, East Africa, Basin Res., 19,
393–407, https://doi.org/10.1111/j.1365-2117.2007.00332.x, 2007.
Mortimer, E. J., Kirstein, L. A., Stuart, F. M., and Strecker, M. R.:
Spatio-temporal trends in normal-fault segmentation recorded by
low-temperature thermochronology: Livingstone fault scarp, Malawi Rift, East
African Rift System, Earth Planet. Sc. Lett., 455, 62–72,
https://doi.org/10.1016/j.epsl.2016.08.040, 2016.
Muirhead, J. D., Kattenhorn, S. A., Lee, H., Mana, S., Turrin, B. D.,
Fischer, T. P., Kianji, G., Dindi, E., and Stamps, D. S.: Evolution of upper
crustal faulting assisted by magmatic volatile release during early-stage
continental rift development in the East African Rift, Geosphere, 12,
1670–1700, https://doi.org/10.1130/GES01375.1, 2016.
Muirhead, J. D., Wright, L. J. M., and Scholz, C. A.: Rift evolution in
regions of low magma input in East Africa, Earth Planet. Sc. Lett., 506,
332–346, https://doi.org/10.1016/j.epsl.2018.11.004, 2019.
Ngoma, I., Kafodya, I., Kloukinas, P., Novelli, V., Macdonald, J., and Goda,
K.: Building classification and seismic vulnerability of current housing
construction in Malawi, Malawi J. Sci. Technol., 11, 57–72, 2019.
Nicol, A., Walsh, J. J., Watterson, J., and Underhill, J. R.: Displacement
rates of normal faults, Nature, 390, 157–159, https://doi.org/10.1038/36548,
1997.
Nicol, A., Walsh, J., Berryman, K., and Villamor, P.: Interdependence of
fault displacement rates and paleoearthquakes in an active rift, Geology,
34, 865–868, https://doi.org/10.1130/G22335.1, 2006.
Nicol, A., Van Dissen, R. J., Stirling, M. W., and Gerstenberger, M. C.:
Completeness of the Paleoseismic Active-Fault Record in New Zealand,
Seismol. Res. Lett., 87, 1299–1310, https://doi.org/10.1785/0220160088, 2016a.
Nicol, A., Robinson, R., Van Dissen, R. J., and Harvison, A.: Variability of
recurrence interval and single-event slip for surface-rupturing earthquakes
in New Zealand, New Zeal. J. Geol. Geophys., 59, 97–116,
https://doi.org/10.1080/00288306.2015.1127822, 2016b.
Njinju, E. A., Kolawole, F., Atekwana, E. A., Stamps, D. S., Atekwana, E.
A., Abdelsalam, M. G., and Mickus, K. L.: Terrestrial heat flow in the Malawi
Rifted Zone, East Africa: Implications for tectono-thermal inheritance in
continental rift basins, J. Volcanol. Geotherm. Res., 387,
https://doi.org/10.1016/j.jvolgeores.2019.07.023, 2019.
Novelli, V., Kloukinas, P., De Risi, R., Kafodya, I., Ngoma, I., Macdonald,
J., and Goda, K.: Seismic Mitigation Framework for Non-engineered Masonry
Buildings in Developing Countries: Application to Malawi in the East African
Rift, in Resilient Structures and Infrastructure, Springer, 195–223,
2019.
Nyblade, A. A. and Langston, C. A.: East African earthquakes below 20 km depth and their implications for crustal structure, Geophys. J. Int.,
121, 49–62, https://doi.org/10.1111/j.1365-246X.1995.tb03510.x, 1995.
Olive, J. A., Behn, M. D., and Malatesta, L. C.: Modes of extensional
faulting controlled by surface processes, Geophys. Res. Lett., 41,
6725–6733, https://doi.org/10.1002/2014GL061507, 2014.
Page, M. and Felzer, K.: Southern San Andreas fault seismicity is consistent
with the Gutenberg-Richter magnitude-frequency distribution, B. Seismol. Soc. Am., 105, 2070–2080, https://doi.org/10.1785/0120140340, 2015.
De Pascale, G. P., Araya, J., Perisco, M., Sandoval, F., Sepulveda, S., and
Moncada, D.: New school faults and seismic hazard, guilty (i.e. active)
until proven innocent (i.e. inactive), in: PATA DAYS 2017; 8th International
Workshop on Paleoseismology, Active Tectonics and Archeoseismology,
13–16 November 2017, Blenheim, New Zealand, 2017.
Pérouse, E. and Wernicke, B. P.: Spatiotemporal evolution of fault slip
rates in deforming continents: The case of the Great Basin region, northern
Basin and Range province, Geosphere, 13, 112–135,
https://doi.org/10.1130/GES01295.1, 2017.
Philippon, M., Willingshofer, E., Sokoutis, D., Corti, G., Sani, F., Bonini,
M., and Cloetingh, S.: Slip re-orientation in oblique rifts, Geology, 43,
147–150, https://doi.org/10.1130/G36208.1, 2015.
Pike, J. G.: A pre-colonial history of Malawi, Nyasal. J., 18, 22–54,
1965.
Poblet, J. and Lisle, R. J.: Kinematic evolution and structural styles of
fold-and-thrust belts, Geol. Soc. Spec. Publ., 349, 1–24,
https://doi.org/10.1144/SP349.1, 2011.
Poggi, V., Durrheim, R., Tuluka, G. M., Weatherill, G., Gee, R., Pagani, M.,
Nyblade, A., and Delvaux, D.: Assessing seismic hazard of the East African
Rift: a pilot study from GEM and AfricaArray, Bull. Earthq. Eng., 1–31,
https://doi.org/10.1007/s10518-017-0152-4, 2017.
Quigley, M., Van Dissen, R., Litchfield, N., Villamor, P., Duffy, B.,
Barrell, D., Furlong, K., Stahl, T., Bilderback, E., and Noble, D.: Surface
rupture during the 2010 Mw 7.1 darfield(canterbury) earthquake: Implications
for fault rupture dynamics and seismic-hazard analysis, Geology, 40,
55–58, https://doi.org/10.1130/G32528.1, 2012.
Rabinowitz, N. and Steinberg, D. M.: Seismic hazard sensitivity analysis: a
multi-parameter approach, B. Seismol. Soc. Am., 81, 796–817, 1991.
Roberts, E. M., Stevens, N. J., O'Connor, P. M., Dirks, P. H. G. M.,
Gottfried, M. D., Clyde, W. C., Armstrong, R. A., Kemp, A. I. S., and
Hemming, S.: Initiation of the western branch of the East African Rift
coeval with the eastern branch, Nat. Geosci., 5, 289–294,
https://doi.org/10.1038/ngeo1432, 2012.
Robertson, E. A. M., Biggs, J., Cashman, K. V., Floyd, M. A., and Vye-Brown,
C.: Influence of regional tectonics and pre-existing structures on the
formation of elliptical calderas in the Kenyan Rift, Geol. Soc. Spec. Publ., 420, 43–67, 2016.
Sandwell, D., Mellors, R., Tong, X., Wei, M., and Wessel, P.: Open radar
interferometry software for mapping surface Deformation, Eos, Trans. Am.
Geophys. Union, 92, 234–234, https://doi.org/10.1029/2011EO280002, 2011.
Saria, E., Calais, E., Altamimi, Z., Willis, P., and Farah, H.: A new
velocity field for Africa from combined GPS and DORIS space geodetic
Solutions: Contribution to the definition of the African reference frame
(AFREF), J. Geophys. Res.-Sol. Ea., 118, 1677–1697,
https://doi.org/10.1002/jgrb.50137, 2013.
Saria, E., Calais, E., Stamps, D. S., Delvaux, D., and Hartnady, C. J. H.:
Present-day kinematics of the East African Rift, J. Geophys. Res.-Sol. Ea., 119, 3584–3600, https://doi.org/10.1002/2013JB010901, 2014.
Scholz, C., Shillington, D., Wright, L., Accardo, N., Gaherty, J., and
Chindandali, P.: Intrarift fault fabric, segmentation, and basin evolution
of the Lake Malawi (Nyasa) Rift, East Africa, Geosphere, 16, 1293–1311,
https://doi.org/10.1130/GES02228.1, 2020.
Scholz, C. H.: The Mechanics of Earthquakes and Faulting, 2 Edn., Cambridge
University Press, Cambridge, 504 pp., 2002.
Scholz, C. H. and Contreras, J. C.: Mechanics of continental rift
architecture, Geology, 26, 967–970,
https://doi.org/10.1130/0091-7613(1998)026<0967:MOCRA>2.3.CO, 1998.
Scholz, C. H., Aviles, C. A., and Wesnousky, S. G.: Scaling differences
between large interplate and intraplate earthquakes, B. Seismol. Soc. Am., 76, 65–70, https://doi.org/10.1144/gsjgs.141.4.0763, 1986.
Shillington, D. J., Scholz, C. A., Chindandali, P. R. N., Gaherty, J. B.,
Accardo, N. J., Onyango, E., Ebinger, C. J., and Nyblade, A. A.: Controls on
Rift Faulting in the North Basin of the Malawi (Nyasa) Rift, East Africa,
Tectonics, 39, e2019TC005633, https://doi.org/10.1029/2019TC005633, 2020.
Shudofsky, G. N., Cloetingh, S., Stein, S., and Wortel, R.: Unusually deep
earthquakes in East Africa: Constraints on the thermo-mechanical structure
of a continental rift system, Geophys. Res. Lett., 14, 741–744,
https://doi.org/10.1029/GL014i007p00741, 1987.
Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., and Cheng, C. T.: A
new on-land seismogenic structure source database from the Taiwan earthquake
model (TEM) project for seismic hazard analysis of Taiwan, Terr. Atmos.
Ocean. Sci., 27, 311–323, https://doi.org/10.3319/TAO.2015.11.27.02(TEM), 2016.
Sibson, R. H.: Earthquake faulting as a structural process, J. Struct.
Geol., 11, 1–14, https://doi.org/10.1016/0191-8141(89)90032-1, 1989.
Siegburg, M., Bull, J. M., Nixon, C. W., Keir, D., Gernon, T. M., Corti, G.,
Abebe, B., Sanderson, D. J., and Ayele, A.: Quantitative Constraints on
Faulting and Fault Slip Rates in the Northern Main Ethiopian Rift,
Tectonics, 39, e2019TC006046, https://doi.org/10.1029/2019TC006046, 2020.
Stahl, K.: Some notes on the development of Zomba, Soc. Malawi J., 63,
39–55, 2010.
Stamps, D. S., Calais, E., Saria, E., Hartnady, C., Nocquet, J. M., Ebinger,
C. J., and Fernandes, R. M.: A kinematic model for the East African Rift,
Geophys. Res. Lett., 35, L05304, doi10.1029/2007GL032781, 2008.
Stamps, D. S., Saria, E., and Kreemer, C.: A Geodetic Strain Rate Model for
the East African Rift System, Sci. Rep., 8, 732,
https://doi.org/10.1038/s41598-017-19097-w, 2018.
Stamps, D. S., Kreemer, C., Fernandes, R., Rajaonarison, T. A., and
Rambolamanana, G.: Redefining East African Rift System kinematics, Geology,
49, https://doi.org/10.1130/g47985.1, 2020.
Stein, S., Geller, R. J., and Liu, M.: Why earthquake hazard maps often fail
and what to do about it, Tectonophysics, 562, 1–25, https://doi.org/10.1016/j.tecto.2012.06.047,
2012.
Steinbruch, F.: Geology and geomorphology of the Urema Graben with emphasis
on the evolution of Lake Urema, J. African Earth Sci., 58, 272–284,
https://doi.org/10.1016/j.jafrearsci.2010.03.007, 2010.
Stirling, M. and Gerstenberger, M.: Applicability of the Gutenberg-Richter
relation for major active faults in New Zealand, B. Seismol. Soc. Am.,
108, 718–728, https://doi.org/10.1785/0120160257, 2018.
Stirling, M., McVerry, G., Gerstenberger, M., Litchfield, N., Van Dissen,
R., Berryman, K., Barnes, P., Wallace, L., Villamor, P., Langridge, R.,
Lamarche, G., Nodder, S., Reyners, M., Bradley, B., Rhoades, D., Smith, W.,
Nicol, A., Pettinga, J., Clark, K., and Jacobs, K.: National seismic hazard
model for New Zealand: 2010 update, B. Seismol. Soc. Am., 102,
1514–1542, https://doi.org/10.1785/0120110170, 2012.
Styron, R. and Pagani, M.: The GEM Global Active Faults Database, Earthq.
Spectra, 1–21, https://doi.org/10.1177/8755293020944182, 2020.
Styron, R., García-Pelaez, J., and Pagani, M.: CCAF-DB: The Caribbean
and Central American active fault database, Nat. Hazards Earth Syst. Sci.,
20, 831–857, https://doi.org/10.5194/nhess-20-831-2020, 2020.
Taylor-Silva, B. I., Stirling, M. W., Litchfield, N. J., Griffin, J. D., van
den Berg, E. J., and Wang, N.: Paleoseismology of the Akatore Fault, Otago,
New Zealand, New Zeal. J. Geol. Geophys., 63, 151–167,
https://doi.org/10.1080/00288306.2019.1645706, 2020.
Taylor, M. and Yin, A.: Active structures of the Himalayan-Tibetan orogen
and their relationships to earthquake distribution, contemporary strain
field, and Cenozoic volcanism, Geosphere, 5, 199–214,
https://doi.org/10.1130/GES00217.1, 2009.
U.S. Department of the Interior U.S. Geological Survey: M 5.5 – 24 km NE of
Nsanje, Malawi, available at: https://earthquake.usgs.gov/earthquakes/eventpage/us1000d1cy#executive,
last access: 26 September 2018.
Valentini, A., DuRoss, C. B., Field, E. H., Gold, R. D., Briggs, R. W.,
Visini, F., and Pace, B.: Relaxing Segmentation on the Wasatch Fault Zone:
Impact on Seismic Hazard, B. Seismol. Soc. Am., 110, 83–109,
https://doi.org/10.1785/0120190088, 2020.
Vallage, A. and Bollinger, L.: Testing Fault Models in Intraplate Settings:
A Potential for Challenging the Seismic Hazard Assessment Inputs and
Hypothesis?, Pure Appl. Geophys., 177, 18799-1889, https://doi.org/10.1007/s00024-019-02129-z,
2019.
Van Bocxlaer, B., Salenbien, W., Praet, N., and Verniers, J.: Stratigraphy and paleoenvironments of the early to middle Holocene Chipalamawamba Beds (Malawi Basin, Africa), Biogeosciences, 9, 4497–4512, https://doi.org/10.5194/bg-9-4497-2012, 2012.
Villamor, P., Litchfield, N., Barrell, D., Van Dissen, R., Hornblow, S.,
Quigley, M., Levick, S., Ries, W., Duffy, B., Begg, J., Townsend, D., Stahl,
T., Bilderback, E., Noble, D., Furlong, K., and Grant, H.: Map of the 2010
Greendale Fault surface rupture, Canterbury, New Zealand: Application to
land use planning, New Zeal. J. Geol. Geophys., 55, 223–230,
https://doi.org/10.1080/00288306.2012.680473, 2012.
Villamor, P., Barrell, D. J. A., Gorman, A., Davy, B., Hreinsdóttir, S.,
Hamling, I. J., Stirling, M. W., Cox, S. C., Litchfield, N. J., Holt, A.,
Todd, E., Denys, P., Pearson, C., C, S., Garcia-Mayordomo, J., Goded, T.,
Abbot, E., Ohneiser, C., Lepine, P., and Caratori-Tontini, F.: Unknown faults under
cities, Lower Hutt, 71 pp., 2018.
Wallace, L. M., Barnes, P., Beavan, J., Van Dissen, R., Litchfield, N.,
Mountjoy, J., Langridge, R., Lamarche, G., and Pondard, N.: The kinematics of
a transition from subduction to strike-slip: An example from the central New
Zealand plate boundary, J. Geophys. Res.-Sol. Ea., 117, B02405,
https://doi.org/10.1029/2011JB008640, 2012.
Wallace, R. E.: Earthquake recurrence intervals on the San Andreas fault,
Bull. Geol. Soc. Am., 81, 2875–2890,
https://doi.org/10.1130/0016-7606(1970)81[2875:ERIOTS]2.0.CO;2, 1970.
Wallace, R. W.: Degradation of the Hebgen Lake fault scarps of 1959,
Geology, 8, 225–229, https://doi.org/10.1130/0091-7613(1980)8<225:DOTHLF>2.0.CO;2, 1980.
Walshaw, R. D.: The Geology of the Nchue-Balaka Area, Bull. Geol. Surv.
Malawi, 19, 96 pp., 1965.
Wedmore, L. N. J., Biggs, J., Williams, J. N., Fagereng, Dulanya, Z.,
Mphepo, F., and Mdala, H.: Active Fault Scarps in Southern Malawi and Their
Implications for the Distribution of Strain in Incipient Continental Rifts,
Tectonics, 39, e2019TC005834, https://doi.org/10.1029/2019TC005834, 2020a.
Wedmore, L. N. J., Williams, J. N., Biggs, J., Fagereng, Å., Mphepo, F.,
Dulanya, Z., Willoughby, J., Mdala, H., and Adams, B. A.: Structural
inheritance and border fault reactivation during active early-stage rifting
along the Thyolo fault, Malawi, J. Struct. Geol., 139, 104097,
https://doi.org/10.1016/j.jsg.2020.104097, 2020b.
Wells, D. L. and Coppersmith, K. J.: New Empirical Relationships among
Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface
Displacement, B. Seismol. Soc. Am., 84, 974–1002, 1994.
Wesnousky, S. G.: Displacement and geometrical characteristics of earthquake
surface ruptures: Issues and implications for seismic-hazard analysis and
the process of earthquake rupture, B. Seismol. Soc. Am., 98,
1609–1632, https://doi.org/10.1785/0120070111, 2008.
Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., and Roth,
A.: Accuracy assessment of the global TanDEM-X Digital Elevation Model with
GPS data, ISPRS J. Photogramm. Remote Sens., 139, 171–182, 2018.
Wheeler, W. H. and Rosendahl, B. R.: Geometry of the Livingstone Mountains
Border Fault, Nyasa (Malawi) Rift, East Africa, Tectonics, 13, 303–312,
https://doi.org/10.1029/93TC02314, 1994.
Willemse, E. J. M.: Segmented normal faults: Correspondence between
three-dimensional mechanical models and field data, J. Geophys. Res.-Sol. Ea., 102, 675–692, 1997.
Williams, J. N., Fagereng, Å., Wedmore, L. N. J., Biggs, J., Mphepo, F.,
Dulanya, Z., Mdala, H., and Blenkinsop, T.: How Do Variably Striking Faults
Reactivate During Rifting?, Insights From Southern Malawi, Geochem. Geophys. Geosys., 20, 3588–3607, https://doi.org/10.1029/2019GC008219, 2019.
Tectonic Shift RIFT2018 Report: International Bank for Reconstruction and Development/International Development Association or The World Bank, available at: https://www.gfdrr.org/en/pulication/tectonic-shift-rift2018-report (last access: 6 January 2021), 1818 H Street NW, Washington DC, 20433, 2019.
WorldPop: School of Geography and Environmental Science,
University of Southampton; Department of Geography and Geosciences,
University of Louisville; Departement de Geographie, Universite de Namur
and Center for International Earth Science Info, https://doi.org/10.5258/SOTON/WP00538, 2018.
Wright, L. J. M., Muirhead, J. D., and Scholz, C. A.: Spatio-temporal
variations in upper crustal extension across the different basement terranes
of the Lake Tanganyika Rift, East Africa, Tectonics, 39, e2019TC006019,
https://doi.org/10.1029/2019tc006019, 2020.
Yeats, R.: Active faults of the world, Cambridge University Press, 634 pp., 2012.
Youngs, R. R. and Coppersmith, K. J.: Implications of fault slip rates and
earthquake recurrence models to probabilistic seismic hazard estimates,
B. Seismol. Soc. Am., 75, 939–964, 1985.
Zeng, Y. and Shen, Z. K.: Fault network modeling of crustal deformation in
California constrained using GPS and geologic observations, Tectonophysics,
612, 1–17, https://doi.org/10.1016/j.tecto.2013.11.030, 2014.
Zhang, P., Slemmons, D. B., and Mao, F.: Geometric pattern, rupture
termination and fault segmentation of the Dixie Valley-Pleasant Valley
active normal fault system, Nevada, USA, J. Struct. Geol., 13,
165–176, https://doi.org/10.1016/0191-8141(91)90064-P, 1991.
Zielke, O. and Strecker, M. R.: Recurrence of large earthquakes in magmatic
continental rifts: Insights from a paleoseismic study along the
Laikipia-Marmanet fault, Subukia Valley, Kenya rift, B. Seismol. Soc. Am., 99, 61–70, https://doi.org/10.1785/0120080015, 2009.
Short summary
Earthquake hazard is often specified using instrumental records. However, this record may not accurately forecast the location and magnitude of future earthquakes as it is short (100s of years) relative to their frequency along geologic faults (1000s of years). Here, we describe an approach to assess this hazard using fault maps and GPS data. By applying this to southern Malawi, we find that its faults may host rare (1 in 10 000 years) M 7 earthquakes that pose a risk to its growing population.
Earthquake hazard is often specified using instrumental records. However, this record may not...