Articles | Volume 12, issue 3
https://doi.org/10.5194/se-12-633-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-633-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physical and mechanical rock properties of a heterogeneous volcano: the case of Mount Unzen, Japan
Jackie E. Kendrick
CORRESPONDING AUTHOR
Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3GP, UK
School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FE, UK
Lauren N. Schaefer
Department of Geological Science, University of Canterbury, Christchurch, 8140, New Zealand
now at: US Geological Survey, Golden, CO 80401, USA
Jenny Schauroth
Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3GP, UK
Andrew F. Bell
School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FE, UK
Oliver D. Lamb
Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3GP, UK
Department of Geological Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
Anthony Lamur
Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3GP, UK
Takahiro Miwa
National Research Institute for Earth Science and Disaster Resilience (NIED), Ibaraki, 305 0006, Japan
Rebecca Coats
Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3GP, UK
Yan Lavallée
Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3GP, UK
Ben M. Kennedy
Department of Geological Science, University of Canterbury, Christchurch, 8140, New Zealand
Related authors
Jackie E. Kendrick, Anthony Lamur, Julien Mouli-Castillo, Andrew P. Fraser-Harris, Alexander Lightbody, Katriona Edlmann, Christopher McDermott, and Zoe Shipton
Adv. Geosci., 62, 11–19, https://doi.org/10.5194/adgeo-62-11-2023, https://doi.org/10.5194/adgeo-62-11-2023, 2023
Short summary
Short summary
By testing the strength of granite in compression and tension at a range of deformation rates, we found that the strength increases with faster deformation. This observation highlights that at these rates, relevant for example to geothermal exploration, we have to consider how the rate of deformation impacts the energy released when rocks crack. The results are promising for developing safe procedures for extracting resources from the subsurface.
Yan Lavallée, Takahiro Miwa, James D. Ashworth, Paul A. Wallace, Jackie E. Kendrick, Rebecca Coats, Anthony Lamur, Adrian Hornby, Kai-Uwe Hess, Takeshi Matsushima, Setsuya Nakada, Hiroshi Shimizu, Bernhard Ruthensteiner, and Hugh Tuffen
Solid Earth, 13, 875–900, https://doi.org/10.5194/se-13-875-2022, https://doi.org/10.5194/se-13-875-2022, 2022
Short summary
Short summary
Volcanic eruptions are controlled by the presence of gas bubbles in magma, which, in excess, can cause explosions. Eruption models lack an understanding of how gas percolates in magma flowing in a conduit. Here we study gas percolation in magma associated with the 1994–1995 eruption at Mt. Unzen, Japan. The results show that the pathways for gas escape depend on the depth and ascent rate of magma. Pathways closed at depth but opened along fractures when magma ascended rapidly near the surface.
Rebecca Coats, Jackie E. Kendrick, Paul A. Wallace, Takahiro Miwa, Adrian J. Hornby, James D. Ashworth, Takeshi Matsushima, and Yan Lavallée
Solid Earth, 9, 1299–1328, https://doi.org/10.5194/se-9-1299-2018, https://doi.org/10.5194/se-9-1299-2018, 2018
Short summary
Short summary
Lava domes are mounds of viscous lava and their collapse can cause deadly pyroclastic flows. This paper looks at the example of Mt. Unzen in Japan. Using novel experimental techniques, we discovered that crystals and bubbles in the lava make it behave differently to what was previously thought and that it becomes weaker and more susceptible to collapse as it cools. This calls for a review of current models, allowing for better failure prediction of lava domes in the future.
O. D. Lamb, S. De Angelis, K. Umakoshi, A. J. Hornby, J. E. Kendrick, and Y. Lavallée
Solid Earth, 6, 1277–1293, https://doi.org/10.5194/se-6-1277-2015, https://doi.org/10.5194/se-6-1277-2015, 2015
Short summary
Short summary
In this paper we analyse the seismic record during the extrusion of a lava spine at Unzen volcano, Japan, in 1994. We find two strong groups of similar volcanic earthquakes which, combined with previously published field and experimental observations, we interpret as repetitive fracturing along the margin of the lava spine. This work demonstrates the potential of combining these different approaches for achieving a greater understanding of shallow volcanic processes.
J. E. Kendrick, Y. Lavallée, K.-U. Hess, S. De Angelis, A. Ferk, H. E. Gaunt, P. G. Meredith, D. B. Dingwell, and R. Leonhardt
Solid Earth, 5, 199–208, https://doi.org/10.5194/se-5-199-2014, https://doi.org/10.5194/se-5-199-2014, 2014
Ben Kennedy, Kamen Engel, Jonathan Davidson, Sylvia Tapuke, Dan Hikuroa, Tim Martin, and Pinelopi Zaka
EGUsphere, https://doi.org/10.5194/egusphere-2024-2512, https://doi.org/10.5194/egusphere-2024-2512, 2024
Short summary
Short summary
We transformed a university course into a more flexible, skills-based model, incorporating cultural competence and science communication training using online resources. The new course design was well-received by students, with many highlighting these skills as valuable for their future careers. Our approach provides a model for integrating cultural knowledge and communication skills into scientific education, enhancing student learning and preparing them for diverse professional environments.
Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, Pierre-Henri Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, Dougal Bruce Townsend, Jim William Cole, Chris Edward Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, and Bouchaïb Tibari
Geochronology, 6, 365–395, https://doi.org/10.5194/gchron-6-365-2024, https://doi.org/10.5194/gchron-6-365-2024, 2024
Short summary
Short summary
In this study, we use cosmogenic-sourced 3He to determine the eruption ages of 23 lava flows at Mt Ruapehu, Aotearoa New Zealand, and we show how this method can help overcome challenges associated with traditional dating methods in young lavas. Comparison with other methods demonstrates the accuracy of our data and the method's reliability. The new eruption ages allowed us to identify periods of quasi-simultaneous activity from different volcanic vents during the last 20 000 years.
Jackie E. Kendrick, Anthony Lamur, Julien Mouli-Castillo, Andrew P. Fraser-Harris, Alexander Lightbody, Katriona Edlmann, Christopher McDermott, and Zoe Shipton
Adv. Geosci., 62, 11–19, https://doi.org/10.5194/adgeo-62-11-2023, https://doi.org/10.5194/adgeo-62-11-2023, 2023
Short summary
Short summary
By testing the strength of granite in compression and tension at a range of deformation rates, we found that the strength increases with faster deformation. This observation highlights that at these rates, relevant for example to geothermal exploration, we have to consider how the rate of deformation impacts the energy released when rocks crack. The results are promising for developing safe procedures for extracting resources from the subsurface.
Yan Lavallée, Takahiro Miwa, James D. Ashworth, Paul A. Wallace, Jackie E. Kendrick, Rebecca Coats, Anthony Lamur, Adrian Hornby, Kai-Uwe Hess, Takeshi Matsushima, Setsuya Nakada, Hiroshi Shimizu, Bernhard Ruthensteiner, and Hugh Tuffen
Solid Earth, 13, 875–900, https://doi.org/10.5194/se-13-875-2022, https://doi.org/10.5194/se-13-875-2022, 2022
Short summary
Short summary
Volcanic eruptions are controlled by the presence of gas bubbles in magma, which, in excess, can cause explosions. Eruption models lack an understanding of how gas percolates in magma flowing in a conduit. Here we study gas percolation in magma associated with the 1994–1995 eruption at Mt. Unzen, Japan. The results show that the pathways for gas escape depend on the depth and ascent rate of magma. Pathways closed at depth but opened along fractures when magma ascended rapidly near the surface.
Richard N. Holdaway, Ben Kennedy, Brendan M Duffy, Jiandong Xu, and Clive Oppenheimer
Geochronology Discuss., https://doi.org/10.5194/gchron-2021-13, https://doi.org/10.5194/gchron-2021-13, 2021
Revised manuscript not accepted
Short summary
Short summary
Prehistoric volcanic eruptions are often dated by wiggle matching series of radiocarbon ages on tree rings to standard calibration curves, ignoring potential contamination by 'old' carbon given off by the volcano. We modeled the effects of low amounts of contamination on wiggle match dates for the 10th century Changbaishan eruption and found evidence of contamination in all. We propose a new protocol to identify the presence of contamination, and provide more secure dates for major eruptions.
Rebecca Coats, Jackie E. Kendrick, Paul A. Wallace, Takahiro Miwa, Adrian J. Hornby, James D. Ashworth, Takeshi Matsushima, and Yan Lavallée
Solid Earth, 9, 1299–1328, https://doi.org/10.5194/se-9-1299-2018, https://doi.org/10.5194/se-9-1299-2018, 2018
Short summary
Short summary
Lava domes are mounds of viscous lava and their collapse can cause deadly pyroclastic flows. This paper looks at the example of Mt. Unzen in Japan. Using novel experimental techniques, we discovered that crystals and bubbles in the lava make it behave differently to what was previously thought and that it becomes weaker and more susceptible to collapse as it cools. This calls for a review of current models, allowing for better failure prediction of lava domes in the future.
Donald B. Dingwell, Yan Lavallée, Kai-Uwe Hess, Asher Flaws, Joan Marti, Alexander R. L. Nichols, H. Albert Gilg, and Burkhard Schillinger
Solid Earth, 7, 1383–1393, https://doi.org/10.5194/se-7-1383-2016, https://doi.org/10.5194/se-7-1383-2016, 2016
Short summary
Short summary
Here, we use tomography to reconstructed the pores of erupted pumice and understand the evolution of gas bubbles in magma. Analysis of the pore geometry is used to describe whether the pores where aligned by stretching as ascending magma is pulled apart (pure shear) or sheared like a deck of card (simple shear). We conclude that the latter, simple shear, dominates during magma ascent up to the points where magma fragments to cause an explosion.
O. D. Lamb, S. De Angelis, K. Umakoshi, A. J. Hornby, J. E. Kendrick, and Y. Lavallée
Solid Earth, 6, 1277–1293, https://doi.org/10.5194/se-6-1277-2015, https://doi.org/10.5194/se-6-1277-2015, 2015
Short summary
Short summary
In this paper we analyse the seismic record during the extrusion of a lava spine at Unzen volcano, Japan, in 1994. We find two strong groups of similar volcanic earthquakes which, combined with previously published field and experimental observations, we interpret as repetitive fracturing along the margin of the lava spine. This work demonstrates the potential of combining these different approaches for achieving a greater understanding of shallow volcanic processes.
S. Wiesmaier, D. Morgavi, C. J. Renggli, D. Perugini, C. P. De Campos, K.-U. Hess, W. Ertel-Ingrisch, Y. Lavallée, and D. B. Dingwell
Solid Earth, 6, 1007–1023, https://doi.org/10.5194/se-6-1007-2015, https://doi.org/10.5194/se-6-1007-2015, 2015
Short summary
Short summary
We reproduced in an experiment the mixing of two different magmas by bubbles. Bubbles form filaments when dragging portions of one magma into another and thus mingle both magmas. Bubble mixing must be an accelerating process in nature, because formed filaments are channels of low resistance for subsequently rising bubbles. In natural gas-rich magmas, this may be an important mechanism for magma mixing. Natural samples from Axial Seamount show evidence for bubble mixing.
J. E. Kendrick, Y. Lavallée, K.-U. Hess, S. De Angelis, A. Ferk, H. E. Gaunt, P. G. Meredith, D. B. Dingwell, and R. Leonhardt
Solid Earth, 5, 199–208, https://doi.org/10.5194/se-5-199-2014, https://doi.org/10.5194/se-5-199-2014, 2014
Cited articles
Alatorre-Ibargüengoitia, M. A., Scheu, B., Dingwell, D. B., Delgado-Granados, H., and Taddeucci, J.: Energy consumption by magmatic fragmentation and pyroclast ejection during Vulcanian eruptions, Earth Planet. Sci. Lett., 291, 60–69, https://doi.org/10.1016/j.epsl.2009.12.051, 2010.
Almberg, L. D., Larsen, J. F., Eichelberger, J. C., Vogel, T. A., and Patino, L. C.: Comparison of eruptive and intrusive samples from Unzen Volcano, Japan: Effects of contrasting pressure–temperature–time paths, J. Volcanol. Geoth. Res., 175, 60–70, https://doi.org/10.1016/j.jvolgeores.2008.03.020, 2008.
Althaus, E., Friz-Töpfer, A., Lempp, C., and Natau, O.: Effects of water on strength and failure mode of coarse-grained granites at 300 ∘C, Rock Mech. Rock Eng., 27, 1–21, https://doi.org/10.1007/BF01025953, 1994.
Ashby, M. F. and Sammis, C. G.: The damage mechanics of brittle solids in compression, Pure Appl. Geophys., 133, 489–521, https://doi.org/10.1007/BF00878002, 1990.
ASTM: D3967-08, Standard test method for splitting tensile strength of intact rock core specimens., ASTM International, West Conshohocken, USA, https://doi.org/10.1520/D3967-08, 2008.
ASTM: D7012-14e1, Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, ASTM International, West Conshohocken, USA, https://doi.org/10.1520/D7012-14E01, 2014.
Ayling, M. R., Meredith, P. G., and Murrell, S. A. F.: Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties, I. Elastic-wave propagation measurements on dry rocks, Tectonophysics, 245, 205–221, https://doi.org/10.1016/0040-1951(94)00235-2, 1995.
Ball, J. L., Stauffer, P. H., Calder, E. S., and Valentine, G. A.: The hydrothermal alteration of cooling lava domes, Bull. Volcanol., 77, 102, https://doi.org/10.1007/s00445-015-0986-z, 2015.
Baud, P., Zhu, W., and Wong, T.-F.: Failure mode and weakening effect of water on sandstone, J. Geophys. Res. Solid Earth, 105, 16371–16389, https://doi.org/10.1029/2000JB900087, 2000.
Bell, A. F.: Predictability of Landslide Timing From Quasi-Periodic Precursory Earthquakes, Geophys. Res. Lett., 45, 1860–1869, https://doi.org/10.1002/2017GL076730, 2018.
Bell, A. F., Naylor, M., Heap, M. J., and Main, I. G.: Forecasting volcanic eruptions and other material failure phenomena: An evaluation of the failure forecast method, Geophys. Res. Lett., 38, L15304, https://doi.org/10.1029/2011gl048155, 2011.
Bell, A. F., Kilburn, C. R. J., and Main, I. G.: Volcanic Eruptions, Real-Time Forecasting of, in: Encyclopedia of Earthquake Engineering, edited by: Beer, M., Kougioumtzoglou, I. A., Patelli, E., and Au, I. S.-K., Springer, Berlin, Heidelberg, 1–16, 2014.
Bell, A. F., Naylor, M., Hernandez, S., Main, I. G., Gaunt, H. E., Mothes, P., and Ruiz, M.: Volcanic Eruption Forecasts From Accelerating Rates of Drumbeat Long-Period Earthquakes, Geophys. Res. Lett., 45, 1339–1348, https://doi.org/10.1002/2017gl076429, 2018.
Benson, P. M., Thompson, B. D., Meredith, P. G., Vinciguerra, S., and Young, R. P.: Imaging slow failure in triaxially deformed Etna basalt using 3D acoustic-emission location and X-ray computed tomography, Geophys. Res. Lett., 34, L03303, https://doi.org/10.1029/2006GL028721, 2007.
Benson, P. M., Heap, M. J., Lavallée, Y., Flaws, A., Hess, K. U., Selvadurai, A. P. S., Dingwell, D. B., and Schillinger, B.: Laboratory simulations of tensile fracture development in a volcanic conduit via cyclic magma pressurisation, Earth Planet. Sci. Lett., 349–350, 231–239, https://doi.org/10.1016/j.epsl.2012.07.003, 2012.
Bernard, B., Kueppers, U., and Ortiz, H.: Revisiting the statistical analysis of pyroclast density and porosity data, Solid Earth, 6, 869–879, https://doi.org/10.5194/se-6-869-2015, 2015.
Borgia, A., Ferrari, L., and Pasquarè, G.: Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna, Nature, 357, 231–235, https://doi.org/10.1038/357231a0, 1992.
Brantley, S. R. and Scott, W. E.: The danger of collapsing lava domes; lessons for Mount Hood, Oregon, Earthquakes Volcanoes (USGS), 24, 244–269, 1993.
Bubeck, A., Walker, R. J., Healy, D., Dobbs, M., and Holwell, D. A.: Pore geometry as a control on rock strength, Earth Planet. Sci. Lett., 457, 38–48, https://doi.org/10.1016/j.epsl.2016.09.050, 2017.
Calder, E. S., Luckett, R., Sparks, R. S. J., and Voight, B.: Mechanisms of lava dome instability and generation of rockfalls and pyroclastic flows at Soufrière Hills Volcano, Montserrat, Geol. Soc. Lond. Mem., 21, 173, https://doi.org/10.1144/GSL.MEM.2002.021.01.08, 2002.
Caricchi, L., Burlini, L., and Ulmer, P.: Propagation of P and S-waves in magmas with different crystal contents: Insights into the crystallinity of magmatic reservoirs, J. Volcanol. Geoth. Res., 178, 740–750, https://doi.org/10.1016/j.jvolgeores.2008.09.006, 2008.
Carrasco-Núñez, G., Díaz-Castellón, R., Siebert, L., Hubbard, B., Sheridan, M. F., and Rodríguez, S. R.: Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: The role of sloping substrate and implications for hazard assessment, J. Volcanol. Geoth. Res., 158, 151–176, https://doi.org/10.1016/j.jvolgeores.2006.04.025, 2006.
Cecchi, E., van Wyk de Vries, B., and Lavest, J.-M.: Flank spreading and collapse of weak-cored volcanoes, Bull. Volcanol., 67, 72–91, https://doi.org/10.1007/s00445-004-0369-3, 2004.
Chevrel, M. O., Cimarelli, C., deBiasi, L., Hanson, J. B., Lavallée, Y., Arzilli, F., and Dingwell, D. B.: Viscosity measurements of crystallizing andesite from Tungurahua volcano (Ecuador), Geochem. Geophy. Geosy., 16, 870–889, https://doi.org/10.1002/2014GC005661, 2015.
Chiba, K. and Shimizu, H.: Spatial and temporal distributions of b-value in and around Shinmoe-dake, Kirishima volcano, Japan, Earth Planets Space, 70, 122, https://doi.org/10.1186/s40623-018-0892-7, 2018.
Coats, R.: Young's Modulus for UCS, Zenodo, https://doi.org/10.5281/zenodo.1287237, 2018.
Coats, R., Kendrick, J. E., Wallace, P. A., Miwa, T., Hornby, A. J., Ashworth, J. D., Matsushima, T., and Lavallée, Y.: Failure criteria for porous dome rocks and lavas: a study of Mt. Unzen, Japan, Solid Earth, 9, 1299–1328, https://doi.org/10.5194/se-9-1299-2018, 2018.
Collinson, A. S. D. and Neuberg, J. W.: Gas storage, transport and pressure changes in an evolving permeable volcanic edifice, J. Volcanol. Geoth. Res., 243–244, 1–13, https://doi.org/10.1016/j.jvolgeores.2012.06.027, 2012.
Colombier, M., Wadsworth, F. B., Gurioli, L., Scheu, B., Kueppers, U., Di Muro, A., and Dingwell, D. B.: The evolution of pore connectivity in volcanic rocks, Earth Planet. Sci. Lett., 462, 99–109, https://doi.org/10.1016/j.epsl.2017.01.011, 2017.
Cordonnier, B., Hess, K.-U., Lavallée, Y., and Dingwell, D. B.: Rheological properties of dome lavas: Case study of Unzen volcano, Earth Planet. Sci. Lett., 279, 263–272, 2009.
Day, S. J.: Hydrothermal pore fluid pressure and the stability of porous, permeable volcanoes, Geol. Soc. Spec. Publ., 110, 77–93, https://doi.org/10.1144/gsl.sp.1996.110.01.06, 1996.
Delaney, P. T.: You can pile it only so high, Nature, 357, 194–196, https://doi.org/10.1038/357194a0, 1992.
Donnadieu, F., Merle, O., and Besson, J.-C.: Volcanic edifice stability during cryptodome intrusion, Bull. Volcanol., 63, 61–72, https://doi.org/10.1007/s004450000122, 2001.
Duda, M. and Renner, J.: The weakening effect of water on the brittle failure strength of sandstone, Geophys. J. Int., 192, 1091–1108, https://doi.org/10.1093/gji/ggs090, 2012.
Dusseault, M. B. and Fordham, C. J.: 6 – Time-dependent Behavior of Rocks, in: Rock Testing and Site Characterization, edited by: Hudson, J. A., Pergamon, Oxford, 119–149, 1993.
Elsworth, D. and Voight, B.: Evaluation of volcano flank instability triggered by dyke intrusion, Geol. Soc. Spec. Publ., 110, 45, https://doi.org/10.1144/GSL.SP.1996.110.01.03, 1996.
Elsworth, D., Voight, B., Thompson, G., and Young, S. R.: Thermal-hydrologic mechanism for rainfall-triggered collapse of lava domes, Geology, 32, 969–972, https://doi.org/10.1130/G20730.1, 2004.
Erdem, J. E. and Waite, G. P.: Temporal changes in eruptive behavior identified with coda wave interferometry and seismo-acoustic observations at Fuego Volcano, Guatemala, in: Understanding Open-Vent Volcanism and Related Hazards, edited by: Rose, W. I., Palma, J. L., Granados, H. D., and Varley, N., Geological Society of America, 2013.
Farquharson, J., Heap, M. J., Varley, N. R., Baud, P., and Reuschlé, T.: Permeability and porosity relationships of edifice-forming andesites: A combined field and laboratory study, J. Volcanol. Geoth. Res., 297, 52–68, https://doi.org/10.1016/j.jvolgeores.2015.03.016, 2015.
Farquharson, J., Heap, M. J., Baud, P., Reuschlé, T., and Varley, N. R.: Pore pressure embrittlement in a volcanic edifice, Bull. Volcanol., 78, 6, https://doi.org/10.1007/s00445-015-0997-9, 2016.
Farquharson, J. I., Wild, B., Kushnir, A. R. L., Heap, M. J., Baud, P., and Kennedy, B.: Acid-Induced Dissolution of Andesite: Evolution of Permeability and Strength, J. Geophys. Res.-Sol. Ea., 124, 257–273, https://doi.org/10.1029/2018jb016130, 2019.
Filomena, C. M., Hornung, J., and Stollhofen, H.: Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices, Solid Earth, 5, 1–11, https://doi.org/10.5194/se-5-1-2014, 2014.
Fink, J. H. and Anderson, S. W.: Lava Domes and Coulees, in: Encyclopedia of Volcanoes, edited by: Sigurdsson, H., Houghton, B., McNutt, S. R., Rymer, H., and Stix, J., Academic Press, ISBN 978-0-0805-4798-5 , 307–320, 2000.
Goggin, D., Thrasher, R., and Lake, L.: A theoretical and experimental analysis of minipermeameter response including gas slippage and high velocity flow effects, In Situ, 12, 79–116, 1988.
Grêt, A., Snieder, R., and Scales, J.: Time-lapse monitoring of rock properties with coda wave interferometry, J. Geophys. Res. Solid Earth, 111, B03305, https://doi.org/10.1029/2004jb003354, 2006.
Grgic, D. and Giraud, A.: The influence of different fluids on the static fatigue of a porous rock: Poro-mechanical coupling versus chemical effects, Mech. Mater., 71, 34–51, https://doi.org/10.1016/j.mechmat.2013.06.011, 2014.
Griffiths, L., Heap, M. J., Xu, T., Chen, C.-f., and Baud, P.: The influence of pore geometry and orientation on the strength and stiffness of porous rock, J. Struct. Geol., 96, 149–160, https://doi.org/10.1016/j.jsg.2017.02.006, 2017.
Griffiths, L., Lengliné, O., Heap, M. J., Baud, P., and Schmittbuhl, J.: Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions, J. Geophys. Res.-Sol. Ea., 123, 2246–2261, https://doi.org/10.1002/2017jb015191, 2018.
Gueguen, Y. and Dienes, J.: Transport properties of rocks from statistics and percolation, Math. Geol., 21, 1–13, https://doi.org/10.1007/BF00897237, 1989.
Gutenberg, B. and Richter, C. F.: Seismicity of the Earth and associated phenomena, Princeton University Press, New Jersey, USA, 273, 1949.
Hadziioannou, C., Larose, E., Coutant, O., Roux, P., and Campillo, M.: Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: Laboratory experiments, J. Acoust. Soc. Am., 125, 3688–3695, https://doi.org/10.1121/1.3125345, 2009.
Hale, A. J. and Wadge, G.: The transition from endogenous to exogenous growth of lava domes with the development of shear bands, J. Volcanol. Geoth. Res., 171, 237–257, https://doi.org/10.1016/j.jvolgeores.2007.12.016, 2008.
Haney, M. M., Hotovec-Ellis, A. J., Bennington, N. L., De Angelis, S., and Thurber, C.: Tracking Changes in Volcanic Systems with Seismic Interferometry, in: Encyclopedia of Earthquake Engineering, edited by: Beer, M., Kougioumtzoglou, I. A., Patelli, E., and Au, I. S.-K., Springer, Berlin, Heidelberg, 1–23, 2014.
Harnett, C. E., Benson, P. M., Rowley, P., and Fazio, M.: Fracture and damage localization in volcanic edifice rocks from El Hierro, Stromboli and Tenerife, Sci. Rep., 8, 1942, https://doi.org/10.1038/s41598-018-20442-w, 2018a.
Harnett, C. E., Thomas, M. E., Purvance, M. D., and Neuberg, J.: Using a discrete element approach to model lava dome emplacement and collapse, J. Volcanol. Geoth. Res., 359, 68–77, https://doi.org/10.1016/j.jvolgeores.2018.06.017, 2018b.
Harnett, C. E., Kendrick, J. E., Lamur, A., Thomas, M. E., Stinton, A., Wallace, P. A., Utley, J. E. P., Murphy, W., Neuberg, J., and Lavallée, Y.: Evolution of Mechanical Properties of Lava Dome Rocks Across the 1995–2010 Eruption of Soufrière Hills Volcano, Montserrat, Front. Earth Sci., 7, 7, https://doi.org/10.3389/feart.2019.00007, 2019a.
Harnett, C. E., Thomas, M. E., Calder, E. S., Ebmeier, S. K., Telford, A., Murphy, W., and Neuberg, J.: Presentation and analysis of a worldwide database for lava dome collapse events: the Global Archive of Dome Instabilities (GLADIS), Bull. Volcanol., 81, 16, https://doi.org/10.1007/s00445-019-1276-y, 2019b.
Heap, M., Xu, T., and Chen, C.-F.: The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma, Bull. Volcanol., 76, 1–15, https://doi.org/10.1007/s00445-014-0856-0, 2014a.
Heap, M. J., Baud, P., Meredith, P. G., Vinciguerra, S., Bell, A. F., and Main, I. G.: Brittle creep in basalt and its application to time-dependent volcano deformation, Earth Planet. Sci. Lett., 307, 71–82, https://doi.org/10.1016/j.epsl.2011.04.035, 2011.
Heap, M. J., Lavallée, Y., Petrakova, L., Baud, P., Reuschlé, T., Varley, N. R., and Dingwell, D. B.: Microstructural controls on the physical and mechanical properties of edifice-forming andesites at Volcán de Colima, Mexico, J. Geophys. Res.-Sol. Ea., 2013JB010521, https://doi.org/10.1002/2013jb010521, 2014b.
Heap, M. J., Russell, J. K., and Kennedy, L. A.: Mechanical behaviour of dacite from Mount St. Helens (USA): A link between porosity and lava dome extrusion mechanism (dome or spine)?, J. Volcanol. Geoth. Res., 328, 159–177, https://doi.org/10.1016/j.jvolgeores.2016.10.015, 2016a.
Heap, M. J., Wadsworth, F. B., Xu, T., Chen, C.-f., and Tang, C. a.: The strength of heterogeneous volcanic rocks: A 2D approximation, J. Volcanol. Geoth. Res., 319, 1–11, https://doi.org/10.1016/j.jvolgeores.2016.03.013, 2016b.
Heap, M. J., Villeneuve, M., Albino, F., Farquharson, J. I., Brothelande, E., Amelung, F., Got, J.-L., and Baud, P.: Towards more realistic values of elastic moduli for volcano modelling, J. Volcanol. Geoth. Res., 390, 106684, https://doi.org/10.1016/j.jvolgeores.2019.106684, 2020.
Herd, R. A. and Pinkerton, H.: Bubble coalescence in basaltic lava: Its impact on the evolution of bubble populations, J. Volcanol. Geoth. Res., 75, 137–157, https://doi.org/10.1016/S0377-0273(96)00039-X, 1997.
Hirakawa, Y., Usuki, N., Fujita, K., Tanaka, T., Kaneko, M., Ueno, T., Eguchi, H., and Shimokubo, K.: Monitoring System of a Large Rockslide in Heisei-Shinzan Lava Dome, Mt. Unzen, Japan INTERPRAEVENT 2018 in the Pacific Rim, 1–4 October 2018, Japan, 2018.
Hoek, E., Corkum, B., and Carranza-Torres, C.: Hoek-Brown criterion – 2002 edition, in:
Mining and tunnelling innovation and opportunity, edited by: Hammah, R., Bawden, W., Curran, J., and Telesnicki, M., proceedings of the 5th North American rock mechanics symposium and 17th tunnelling association of Canada conference, University of Toronto, Toronto, Canada, 267–273, 2002.
Hornby, A. J., Kendrick, J. E., Lamb, O. D., Hirose, T., De Angelis, S., von Aulock, F. W., Umakoshi, K., Miwa, T., Henton De Angelis, S., Wadsworth, F. B., Hess, K.-U., Dingwell, D. B., and Lavallée, Y.: Spine growth and seismogenic faulting at Mt. Unzen, Japan, J. Geophys. Res.-Sol. Ea., 2014JB011660, https://doi.org/10.1002/2014JB011660, 2015.
Hornby, A. J., Lavallée, Y., Kendrick, J. E., De Angelis, S., Lamur, A., Lamb, O. D., Rietbrock, A., and Chigna, G.: Brittle-Ductile Deformation and Tensile Rupture of Dome Lava During Inflation at Santiaguito, Guatemala, J. Geophys. Res.-Sol. Ea., 124, 10107–10131, https://doi.org/10.1029/2018JB017253, 2019.
Horwell, C., Williamson, B., Llewellin, E., Damby, D., and Blond, J.: The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes, Bull. Volcanol., 75, 1–19, https://doi.org/10.1007/s00445-013-0696-3, 2013.
Hunt, J. E., Cassidy, M., and Talling, P. J.: Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions, Sci. Rep., 8, 1146, https://doi.org/10.1038/s41598-018-19285-2, 2018.
Husain, T., Elsworth, D., Voight, B., Mattioli, G., and Jansma, P.: Influence of extrusion rate and magma rheology on the growth of lava domes: Insights from particle-dynamics modeling, J. Volcanol. Geoth. Res., 285, 100–117, https://doi.org/10.1016/j.jvolgeores.2014.08.013, 2014.
Ignatieva, A., Bell, A. F., and Worton, B.: Point Process Models for Quasi-Periodic Volcanic Earthquakes, Stat. Volcanol., 4, 1–27, 2018.
ISRM: Suggested methods for determining tensile strength of rock materials, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15, 99–103, https://doi.org/10.1016/0148-9062(78)90003-7, 1978.
Kato, A., Terakawa, T., Yamanaka, Y., Maeda, Y., Horikawa, S., Matsuhiro, K., and Okuda, T.: Preparatory and precursory processes leading up to the 2014 phreatic eruption of Mount Ontake, Japan, Earth Planets Space, 67, 111, https://doi.org/10.1186/s40623-015-0288-x, 2015.
Kendrick, J., Smith, R., Sammonds, P., Meredith, P., Dainty, M., and Pallister, J.: The influence of thermal and cyclic stressing on the strength of rocks from Mount St. Helens, Washington, Bull. Volcanol., 75, 1–12, https://doi.org/10.1007/s00445-013-0728-z, 2013.
Kendrick, J. E., Lavallée, Y., Mariani, E., Dingwell, D. B., Wheeler, J., and Varley, N. R.: Crystal plasticity as an indicator of the viscous-brittle transition in magmas, Nat. Commun., 8, 1926, https://doi.org/10.1038/s41467-017-01931-4, 2017.
Kennedy, B., Farquhar, A., Hilderman, R. X., Villeneuve, M., Heap, M. J., Mordensky, S., Kilgour, G. N., Jolly, A. D., Christenson, B., and Reuschlè, T.: Pressure Controlled Permeability in a Conduit Filled with Fractured Hydrothermal Breccia Reconstructed from Ballistics from Whakaari (White Island), New Zealand, Geosciences, 10, 138, https://doi.org/10.3390/geosciences10040138, 2020.
Kennedy, L. A., Russell, J. K., and Nelles, E.: Origins of Mount St. Helens cataclasites: Experimental insights, Am. Mineral., 94, 995–1004, https://doi.org/10.2138/am.2009.3129, 2009.
Kilburn, C. R. J.: Multiscale fracturing as a key to forecasting volcanic eruptions, J. Volcanol. Geoth. Res., 125, 271–289, 2003.
Klug, C. and Cashman, K. V.: Permeability development in vesiculating magmas: implications for fragmentation, Bull. Volcanol., 58, 87–100, https://doi.org/10.1007/s004450050128, 1996.
Kolzenburg, S., Giordano, D., Cimarelli, C., and Dingwell, D. B.: In situ thermal characterization of cooling/crystallizing lavas during rheology measurements and implications for lava flow emplacement, Geochim. Cosmochim. Ac, 195, 244–258, https://doi.org/10.1016/j.gca.2016.09.022, 2016.
Kremers, S., Scheu, B., Cordonnier, B., Spieler, O., and Dingwell, D. B.: Influence of decompression rate on fragmentation processes: An experimental study, J. Volcanol. Geoth. Res., 193, 182–188, https://doi.org/10.1016/j.jvolgeores.2010.01.015, 2010.
Kueppers, U., Scheu, B., Spieler, O., and Dingwell, D. B.: Field-based density measurements as tool to identify preeruption dome structure: set-up and first results from Unzen volcano, Japan, J. Volcanol. Geoth. Res., 141, 65–75, https://doi.org/10.1016/j.jvolgeores.2004.09.005, 2005.
Lamb, O. D., De Angelis, S., Umakoshi, K., Hornby, A. J., Kendrick, J. E., and Lavallée, Y.: Repetitive fracturing during spine extrusion at Unzen volcano, Japan, Solid Earth, 6, 1277–1293, https://doi.org/10.5194/se-6-1277-2015, 2015.
Lamb, O. D., De Angelis, S., Wall, R. J., Lamur, A., Varley, N. R., Reyes-Dávila, G., Arámbula-Mendoza, R., Hornby, A. J., Kendrick, J. E., and Lavallée, Y.: Seismic and experimental insights into eruption precursors at Volcán de Colima, Geophys. Res. Lett., 44, 6092–6100, https://doi.org/10.1002/2017GL073350, 2017.
Lamur, A., Kendrick, J. E., Eggertsson, G. H., Wall, R. J., Ashworth, J. D., and Lavallée, Y.: The permeability of fractured rocks in pressurised volcanic and geothermal systems, Sci. Rep., 7, 6173, https://doi.org/10.1038/s41598-017-05460-4, 2017.
Lamur, A., Lavallée, Y., Iddon, F. E., Hornby, A. J., Kendrick, J. E., von Aulock, F. W., and Wadsworth, F. B.: Disclosing the temperature of columnar jointing in lavas, Nat. Commun., 9, 1432, https://doi.org/10.1038/s41467-018-03842-4, 2018.
Lavallée, Y., Hess, K. U., Cordonnier, B., and Dingwell, D. B.: Non-Newtonian rheological law for highly crystalline dome lavas, Geology, 35, 843–846, 2007.
Lavallée, Y., Meredith, P. G., Dingwell, D. B., Hess, K. U., Wassermann, J., Cordonnier, B., Gerik, A., and Kruhl, J. H.: Seismogenic lavas and explosive eruption forecasting, Nature, 453, 507–510, 2008.
Lavallée, Y., Benson, P., Hess, K.-U., Flaws, A., Schillinger, B., Meredith, P. G., and Dingwell, D. B.: Reconstructing magma failure and the permeable degassing network, Geology, 41, 515–518, 2013.
Lavallée, Y. and Kendrick, J. E.: A review of the physical and mechanical properties of volcanic rocks and magmas in the brittle and ductile fields, in: Forecasting and planning for volcanic hazards, risks, and disasters, edited by: Papale, P., Elsevier, 2020.
Lesage, P., Heap, M. J., and Kushnir, A.: A generic model for the shallow velocity structure of volcanoes, J. Volcanol. Geoth. Res., 356, 114–126, https://doi.org/10.1016/j.jvolgeores.2018.03.003, 2018.
Li, D. and Wong, L. N. Y.: The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights, Rock Mech. Rock Eng., 46, 269–287, https://doi.org/10.1007/s00603-012-0257-7, 2013.
Lockner, D. A.: The role of acoustic emission in the study of rock, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30, 883–899, 1993.
Lydzba, D., Pietruszczak, S., and Shao, J. F.: On anisotropy of stratified rocks: homogenization and fabric tensor approach, Comput. Geotech., 30, 289–302, https://doi.org/10.1016/S0266-352X(03)00004-1, 2003.
Maccaferri, F., Richter, N., and Walter, T. R.: The effect of giant lateral collapses on magma pathways and the location of volcanism, Nat. Commun., 8, 1097, https://doi.org/10.1038/s41467-017-01256-2, 2017.
Main, I. G., Meredith, P. G., and Sammonds, P. R.: Temporal variations in seismic event rate and b-values from stress corrosion constitutive laws, Tectonophysics, 211, 233–246, 1992.
Makhnenko, R. Y. and Labuz, J. F.: Elastic and inelastic deformation of fluid-saturated rock, Philos. Trans. Royal Soc. A, 374, 20150422, https://doi.org/10.1098/rsta.2015.0422, 2016.
McGuire, W. J.: Volcano instability: a review of contemporary themes, Geol. Soc. Spec. Publ., 110, 1, https://doi.org/10.1144/GSL.SP.1996.110.01.01, 1996.
Meredith, P. G. and Atkinson, B. K.: Stress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite and other basic rocks, Geophys. J. Int., 75, 1–21, 1983.
Meredith, P. G., Main, I. G., and Jones, C.: Temporal Variations in Seismicity During Quasi-Static and Dynamic Rock Failure, Tectonophysics, 175, 249–268, 1990.
Miwa, T., Okumura, S., Matsushima, T., and Shimizu, H.: Asymmetric deformation structure of lava spine in Unzen Volcano Japan, American Geophysical Union, Fall Meeting San Francisco, CA, 9–13 December 2013, abstract no. 2013AGUFM.V14A..03M, 2013.
Mollo, S., Vinciguerra, S., Iezzi, G., Iarocci, A., Scarlato, P., Heap, M. J., and Dingwell, D. B.: Volcanic edifice weakening via devolatilization reactions, Geophys. J. Int., 186, 1073–1077, https://doi.org/10.1111/j.1365-246X.2011.05097.x, 2011.
Mordensky, S. P., Villeneuve, M. C., Farquharson, J. I., Kennedy, B. M., Heap, M. J., and Gravley, D. M.: Rock mass properties and edifice strength data from Pinnacle Ridge, Mt. Ruapehu, New Zealand, J. Volcanol. Geoth. Res., 367, 46–62, https://doi.org/10.1016/j.jvolgeores.2018.09.012, 2018.
Mordensky, S. P., Heap, M. J., Kennedy, B. M., Gilg, H. A., Villeneuve, M. C., Farquharson, J. I., and Gravley, D. M.: Influence of alteration on the mechanical behaviour and failure mode of andesite: implications for shallow seismicity and volcano monitoring, Bull. Volcanol., 81, 44, https://doi.org/10.1007/s00445-019-1306-9, 2019.
Mueller, S., Melnik, O., Spieler, O., Scheu, B., and Dingwell, D. B.: Permeability and degassing of dome lavas undergoing rapid decompression: An experimental determination, Bull. Volcanol., 67, 526–538, https://doi.org/10.1007/s00445-004-0392-4, 2005.
Mueller, S., Scheu, B., Spieler, O., and Dingwell, D. B.: Permeability control on magma fragmentation, Geology, 36, 399–402, 2008.
Nakada, S. and Fujii, T.: Preliminary report on the activity at Unzen Volcano (Japan), November 1990–November 1991: Dacite lava domes and pyroclastic flows, J. Volcanol. Geoth. Res., 54, 319–333, https://doi.org/10.1016/0377-0273(93)90070-8, 1993.
Nakada, S. and Motomura, Y.: Petrology of the 1991-1995 eruption at Unzen: effusion pulsation and groundmass crystallization, J. Volcanol. Geoth. Res., 89, 173–196, https://doi.org/10.1016/s0377-0273(98)00131-0, 1999.
Nakada, S., Miyake, Y., Sato, H., Oshima, O., and Fujinawa, A.: Endogenous growth of dacite dome at Unzen volcano (Japan), 1993–1994, Geology, 23, 157–160, https://doi.org/10.1130/0091-7613(1995)023<0157:egodda>2.3.co;2, 1995.
Nakada, S., Shimizu, H., and Ohta, K.: Overview of the 1990-1995 eruption at Unzen Volcano, J. Volcanol. Geoth. Res., 89, 1–22, https://doi.org/10.1016/s0377-0273(98)00118-8, 1999.
Noguchi, S., Toramaru, A., and Nakada, S.: Relation between microlite textures and discharge rate during the 1991-1995 eruptions at Unzen, Japan, J. Volcanol. Geoth. Res., 175, 141–155, https://doi.org/10.1016/j.jvolgeores.2008.03.025, 2008.
Okumura, S., Nakamura, M., Nakano, T., Uesugi, K., and Tsuchiyama, A.: Shear deformation experiments on vesicular rhyolite: Implications for brittle fracturing, degassing, and compaction of magmas in volcanic conduits, J. Geophys. Res.-Sol. Ea., 115, B06201, https://doi.org/10.1029/2009JB006904, 2010.
Pappalardo, G., Punturo, R., Mineo, S., and Contrafatto, L.: The role of porosity on the engineering geological properties of 1669 lavas from Mount Etna, Eng. Geol., 221, 16–28, https://doi.org/10.1016/j.enggeo.2017.02.020, 2017.
Patanè, G., Montalto, A., Imposa, S., and Menza, S.: The role of regional tectonics, magma pressure and gravitational spreading in earthquakes of the eastern sector of Mt. Etna volcano (Italy), J. Volcanol. Geoth. Res., 61, 253–266, https://doi.org/10.1016/0377-0273(94)90007-8, 1994.
Paterson, M. S. and Wong, T.: Experimental Rock Deformation – The Brittle Field, Springer, Berlin, Heidelberg, 2005.
Planet: Planet Application Program Interface: In Space for Life on Earth, available at: https://api.planet.com (last access: 7 June 2020), San Francisco, CA, 2017.
Pola, A., Crosta, G. B., Fusi, N., and Castellanza, R.: General characterization of the mechanical behaviour of different volcanic rocks with respect to alteration, Eng. Geol., 169, 1–13, https://doi.org/10.1016/j.enggeo.2013.11.011, 2014.
Pollock, A. A.: Acoustic emission – 2: Acoustic emission amplitudes, Non-Destruct. Test., 6, 264–269, https://doi.org/10.1016/0029-1021(73)90074-1, 1973.
Reid, M. E., Keith, T. E. C., Kayen, R. E., Iverson, N. R., Iverson, R. M., and Brien, D. L.: Volcano collapse promoted by progressive strength reduction: new data from Mount St. Helens, Bull. Volcanol., 72, 761–766, https://doi.org/10.1007/s00445-010-0377-4, 2010.
Reid, M. E., Christian, S. B., and Brien, D. L.: Gravitational stability of three-dimensional stratovolcano edifices, J. Geophys. Res.-Sol. Ea., 105, 6043–6056, https://doi.org/10.1029/1999JB900310, 2000.
Ribeiro, A.: Soft plate and impact tectonics, Springer, Berlin, Heidelberg, ISBN 978-3-540-67963-9, 2012.
Roberts, N. S., Bell, A. F., and Main, I. G.: Are volcanic seismic b-values high, and if so when?, J. Volcanol. Geoth. Res., 308, 127–141, https://doi.org/10.1016/j.jvolgeores.2015.10.021, 2015.
Rosas-Carbajal, M., Komorowski, J.-C., Nicollin, F., and Gibert, D.: Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics, Sci. Rep., 6, 29899, https://doi.org/10.1038/srep29899, 2016.
Saar, M. O. and Manga, M.: Permeability-porosity relationship in vesicular basalts, Geophys. Res. Lett., 26, 111–114, https://doi.org/10.1029/1998gl900256, 1999.
Saito, T. and Shikawa, N.: Magnetic petrology and its implication for magma mixing of the 1991-1995 dacite at Unzen volcano, Japan, Earth Planets Space, 59, 863–870, 2007.
Sammis, C. G. and Ashby, M. F.: The failure of brittle porous solids under compressive stress states, Acta Metall. Mater., 34, 511–526, https://doi.org/10.1016/0001-6160(86)90087-8, 1986.
Sammonds, P. R. and Ohnaka, M.: Evolution of microseismicity during frictional sliding, Geophys. Res. Lett., 25, 699–702, 1998.
Sato, H., Fujii, T., and Nakada, S.: Crumbling of dacite dome lava and generation of pyroclastic flows at Unzen volcano, Nature, 360, 664–666, https://doi.org/10.1038/360664a0, 1992.
Saubin, E., Kennedy, B., Tuffen, H., Villeneuve, M., Davidson, J., and Burchardt, S.: Comparative field study of shallow rhyolite intrusions in Iceland: Emplacement mechanisms and impact on country rocks, J. Volcanol. Geoth. Res., 388, 106691, https://doi.org/10.1016/j.jvolgeores.2019.106691, 2019.
Schaefer, L. N., Kendrick, J. E., Lavallée, Y., Oommen, T., and Chigna, G.: Geomechanical rock properties of a basaltic volcano, Front. Earth Sci., 3, 29, https://doi.org/10.3389/feart.2015.00029, 2015.
Schaefer, L. N., Di Traglia, F., Chaussard, E., Lu, Z., Nolesini, T., and Casagli, N.: Monitoring volcano slope instability with Synthetic Aperture Radar: A review and new data from Pacaya (Guatemala) and Stromboli (Italy) volcanoes, Earth-Sci. Rev., 192, 236–257, https://doi.org/10.1016/j.earscirev.2019.03.009, 2019.
Scheu, B., Kern, H., Spieler, O., and Dingwell, D. B.: Temperature dependence of elastic P- and S-wave velocities in porous Mt. Unzen dacite, J. Volcanol. Geoth. Res., 153, 136–147, https://doi.org/10.1016/j.jvolgeores.2005.08.007, 2006a.
Scheu, B., Spieler, O., and Dingwell, D. B.: Dynamics of explosive volcanism at Unzen volcano: an experimental contribution, Bull. Volcanol., 69, 175–187, 2006b.
Scheu, B., Kueppers, U., Mueller, S., Spieler, O., and Dingwell, D. B.: Experimental volcanology on eruptive products of Unzen volcano, J. Volcanol. Geoth. Res., 175, 110–119, https://doi.org/10.1016/j.jvolgeores.2008.03.023, 2008.
Scholz, C. H.: The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes, B. Seismol. Soc. Am., 58, 399–415, 1968.
Schorlemmer, D., Wiemer, S., and Wyss, M.: Variations in earthquake-size distribution across different stress regimes, Nature, 437, 539–542, https://doi.org/10.1038/nature04094, 2005.
Shi, X., Jiang, Y., and Hirakawa, Y.: Growth and potential collapse of the lava dome in Unzen volcano and the estimation on block-and-ash flows, Geosci. J., 22, 273–286, https://doi.org/10.1007/s12303-017-0051-3, 2018.
Shields, J. K., Mader, H. M., Caricchi, L., Tuffen, H., Mueller, S., Pistone, M., and Baumgartner, L.: Unravelling textural heterogeneity in obsidian: Shear-induced outgassing in the Rocche Rosse flow, J. Volcanol. Geoth. Res., 310, 137–158, https://doi.org/10.1016/j.jvolgeores.2015.12.003, 2016.
Shimada, M.: Mechanism of deformation in a dry porous basalt at high pressures, Tectonophysics, 121, 153–173, https://doi.org/10.1016/0040-1951(86)90041-7, 1986.
Singh, J., Curtis, A., Zhao, Y., Cartwright-Taylor, A., and Main, I.: Coda Wave Interferometry for Accurate Simultaneous Monitoring of Velocity and Acoustic Source Locations in Experimental Rock Physics, J. Geophys. Res.-Sol. Ea., 124, 5629–5655, https://doi.org/10.1029/2019JB017577, 2019.
Smith, R., Sammonds, P. R., Tuffen, H., and Meredith, P. G.: Evolution of the mechanics of the 2004-2008 Mt. St. Helens lava dome with time and temperature, Earth Planet. Sci. Lett., 307, 191–200, https://doi.org/10.1016/j.epsl.2011.04.044, 2011.
Smith, T.: A capillary model for stress-corrosion cracking of metals in fluid media, Corros. Sci., 12, 45–56, https://doi.org/10.1016/S0010-938X(72)90539-2, 1972.
Snieder, R., Grêt, A., Douma, H., and Scales, J.: Coda Wave Interferometry for Estimating Nonlinear Behavior in Seismic Velocity, Science, 295, 2253–2255, https://doi.org/10.1126/science.1070015, 2002.
Snieder, R., Prejean, S., and Johnson, J. B.: Spatial variation in Mount St. Helens clones from coda wave analysis, Center for Wave Phenomena Consortium Preject, CPW-543, 2006.
Spieler, O., Kennedy, B., Kueppers, U., Dingwell, D. B., Scheu, B., and Taddeucci, J.: The fragmentation threshold of pyroclastic rocks, Earth Planet. Sci. Lett., 226, 139–148, 2004.
Surono, Jousset, P., Pallister, J., Boichu, M., Buongiorno, M. F., Budisantoso, A., Costa, F., Andreastuti, S., Prata, F., Schneider, D., Clarisse, L., Humaida, H., Sumarti, S., Bignami, C., Griswold, J., Carn, S., Oppenheimer, C., and Lavigne, F.: The 2010 explosive eruption of Java's Merapi volcano – A “100 year” event, J. Volcanol. Geoth. Res., 241–242, 121–135, https://doi.org/10.1016/j.jvolgeores.2012.06.018, 2012.
Thomas, M. E., Petford, N., and Bromhead, E. N.: Volcanic rock-mass properties from Snowdonia and Tenerife: implications for volcano edifice strength, J. Geol. Soc., 161, 939–946, https://doi.org/10.1144/0016-764903-166, 2004.
Tibaldi, A.: Multiple sector collapses at stromboli volcano, Italy: how they work, Bull. Volcanol., 63, 112–125, https://doi.org/10.1007/s004450100129, 2001.
van Wyk de Vries, B. and Francis, P. W.: Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading, Nature, 387, 387–390, https://doi.org/10.1038/387387a0, 1997.
Vanorio, T., Prasad, M., Patella, D., and Nur, A.: Ultrasonic velocity measurements in volcanic rocks: correlation with microtexture, Geophys. J. Int., 149, 22–36, https://doi.org/10.1046/j.0956-540x.2001.01580.x, 2002.
Vasseur, J., Wadsworth, F. B., Lavallee, Y., Bell, A. F., Main, I. G., and Dingwell, D. B.: Heterogeneity: The key to failure forecasting, Sci. Rep., 5, 13259, https://doi.org/10.1038/srep13259, 2015.
Voight, B., Janda, R. J., Glicken, H., and Douglass, P. M.: Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980, Géotechnique, 33, 243–273, https://doi.org/10.1680/geot.1983.33.3.243, 1983.
Voight, B.: A Method for prediction of volcanic eruptions, Nature, 332, 125–130, 1988.
Voight, B.: A relation to describe rate-dependent material failure, Science, 243, 200–203, 1989.
Voight, B. and Elsworth, D.: Instability and collapse of hazardous gas-pressurized lava domes, Geophys. Res. Lett., 27, 1–4, 2000.
Wallace, P. A., Kendrick, J. E., Miwa, T., Ashworth, J. D., Coats, R., Utley, J. E. P., Henton De Angelis, S., Mariani, E., Biggin, A., Kendrick, R., Nakada, S., Matsushima, T., and Lavallée, Y.: Petrological Architecture of a Magmatic Shear Zone: A Multidisciplinary Investigation of Strain Localisation During Magma Ascent at Unzen Volcano, Japan, J. Petrol., 60, 791–826, https://doi.org/10.1093/petrology/egz016, 2019.
Walter, T. R., Wang, R., Zimmer, M., Grosser, H., Lühr, B., and Ratdomopurbo, A.: Volcanic activity influenced by tectonic earthquakes: Static and dynamic stress triggering at Mt. Merapi, Geophys. Res. Lett., 34, L05304, https://doi.org/10.1029/2006GL028710, 2007.
Walter, T. R., Subandriyo, J., Kirbani, S., Bathke, H., Suryanto, W., Aisyah, N., Darmawan, H., Jousset, P., Luehr, B. G., and Dahm, T.: Volcano-tectonic control of Merapi's lava dome splitting: The November 2013 fracture observed from high resolution TerraSAR-X data, Tectonophysics, 639, 23–33, https://doi.org/10.1016/j.tecto.2014.11.007, 2015.
Walter, T. R., Harnett, C. E., Varley, N., Bracamontes, D. V., Salzer, J., Zorn, E. U., Bretón, M., Arámbula, R., and Thomas, M. E.: Imaging the 2013 explosive crater excavation and new dome formation at Volcán de Colima with TerraSAR-X, time-lapse cameras and modelling, J. Volcanol. Geoth. Res., 369, 224–237, https://doi.org/10.1016/j.jvolgeores.2018.11.016, 2019.
Watanabe, T., Shimizu, Y., Noguchi, S., and Nakada, S.: Permeability measurements on rock samples from Unzen Scientific Drilling Project Drill Hole 4 (USDP-4), J. Volcanol. Geoth. Res., 175, 82–90, https://doi.org/10.1016/j.jvolgeores.2008.03.021, 2008.
Weaver, J., Eggertsson, G. H., Utley, J. E. P., Wallace, P. A., Lamur, A., Kendrick, J. E., Tuffen, H., Markússon, S. H., and Lavallée, Y.: Thermal Liability of Hyaloclastite in the Krafla Geothermal Reservoir, Iceland: The Impact of Phyllosilicates on Permeability and Rock Strength, Geofluids, 2020, 9057193, https://doi.org/10.1155/2020/9057193, 2020.
Webb, S.: Silicate melts: Relaxation, rheology, and the glass transition, Rev. Geophys., 35, 191–218, https://doi.org/10.1029/96RG03263, 1997.
Williams, R., Rowley, P., and Garthwaite, M. C.: Reconstructing the Anak Krakatau flank collapse that caused the December 2018 Indonesian tsunami, Geology, 47, 973–976, https://doi.org/10.1130/G46517.1, 2019.
Wong, L. N. Y. and Jong, M. C.: Water Saturation Effects on the Brazilian Tensile Strength of Gypsum and Assessment of Cracking Processes Using High-Speed Video, Rock Mech. Rock Eng., 47, 1103–1115, https://doi.org/10.1007/s00603-013-0436-1, 2014.
Wyering, L. D., Villeneuve, M. C., Wallis, I. C., Siratovich, P. A., Kennedy, B. M., Gravley, D. M., and Cant, J. L.: Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand, J. Volcanol. Geoth. Res., 288, 76–93, https://doi.org/10.1016/j.jvolgeores.2014.10.008, 2014.
Zhang, G., Li, H., Wang, M., Li, X., Wang, Z., and Deng, S.: Crack-induced acoustic emission and anisotropy variation of brittle rocks containing natural fractures, J. Geophys. Eng., 16, 599–610, https://doi.org/10.1093/jge/gxz031, 2019.
Zimmerman, R. W.: Compressibility of Sandstones, Developments in Petroleum Science, edited by: Zimmerman, R. W., Elsevier, 1991.
Short summary
The last lava dome eruption of Mount Unzen (Japan) ended in 1995, but ongoing instability means much of the area remains an exclusion zone. The rocks in the lava dome impact its stability; heterogeneity (contrasting properties) and anisotropy (orientation-specific properties) can channel fluids and localise deformation, enhancing the risk of lava dome collapse. We recommend using measured material properties to interpret geophysical signals and to model volcanic systems.
The last lava dome eruption of Mount Unzen (Japan) ended in 1995, but ongoing instability means...