Articles | Volume 12, issue 4
https://doi.org/10.5194/se-12-801-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-801-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mapping and evaluating kinematics and the stress and strain field at active faults and fissures: a comparison between field and drone data at the NE rift, Mt Etna (Italy)
Alessandro Tibaldi
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy
CRUST – Interuniversity Center for 3D Seismotectonics with Territorial Applications, Chieti, Italy
Noemi Corti
Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy
Emanuela De Beni
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania, Catania, Italy
Fabio Luca Bonali
Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy
CRUST – Interuniversity Center for 3D Seismotectonics with Territorial Applications, Chieti, Italy
Susanna Falsaperla
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania, Catania, Italy
Horst Langer
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania, Catania, Italy
Marco Neri
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania, Catania, Italy
Massimo Cantarero
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania, Catania, Italy
Danilo Reitano
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania, Catania, Italy
Luca Fallati
Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy
Related authors
Alessandro Tibaldi, Federico Pasquaré Mariotto, Paolo Oppizzi, Fabio Luca Bonali, Nino Tsereteli, Levan Mebonia, and Johni Chania
Earth Syst. Sci. Data, 13, 3321–3335, https://doi.org/10.5194/essd-13-3321-2021, https://doi.org/10.5194/essd-13-3321-2021, 2021
Short summary
Short summary
Under a NATO project, we installed a monitoring system at the Khoko landslide facing the Enguri artificial reservoir (Greater Caucasus). During 2016–2019, we compare slope deformation with meteorological factors and variations in the water level of the reservoir. Our results indicate that the landslide displacements appear to be controlled by variations in hydraulic load and partially by rainfall.
Alessandro Tibaldi, Paolo Oppizzi, John Gierke, Thomas Oommen, Nino Tsereteli, and Zurab Gogoladze
Nat. Hazards Earth Syst. Sci., 19, 71–91, https://doi.org/10.5194/nhess-19-71-2019, https://doi.org/10.5194/nhess-19-71-2019, 2019
Short summary
Short summary
In the framework of the NATO Science for Peace and Security Program, we have increased the knowledge on the geohazards affecting the Enguri hydroelectrical plant (Caucasus, Georgia). 2 km from the dam, active deformation (2–5 cm yr−1) affects a slope facing the water reservoir. Our field, seismological and numerical analyses show that the worst scenario is represented by seismic shaking with a local peak ground acceleration capable of generating an unstable rock volume of up to 48 ± 12 × 106 m3.
Federico Pasquaré Mariotto and Alessandro Tibaldi
Nat. Hazards Earth Syst. Sci., 16, 663–674, https://doi.org/10.5194/nhess-16-663-2016, https://doi.org/10.5194/nhess-16-663-2016, 2016
Short summary
Short summary
Palaeoseismological techniques applied with artificial trenches at three deep-seated gravity slope deformations (DSGSDs) in the Alps document extensional deformation and reverse slips. The data indicate that reverse slip might occur both at the toe and in the central-upper portions of DSGSDs. The reverse slip is interpreted as due either to locking of the frontal blocks of a DSGSD or to the relative decrease in the rate of downward movement in the frontal blocks with respect to the rear blocks.
Alessandro Tibaldi, Federico Pasquaré Mariotto, Paolo Oppizzi, Fabio Luca Bonali, Nino Tsereteli, Levan Mebonia, and Johni Chania
Earth Syst. Sci. Data, 13, 3321–3335, https://doi.org/10.5194/essd-13-3321-2021, https://doi.org/10.5194/essd-13-3321-2021, 2021
Short summary
Short summary
Under a NATO project, we installed a monitoring system at the Khoko landslide facing the Enguri artificial reservoir (Greater Caucasus). During 2016–2019, we compare slope deformation with meteorological factors and variations in the water level of the reservoir. Our results indicate that the landslide displacements appear to be controlled by variations in hydraulic load and partially by rainfall.
Alessandro Tibaldi, Paolo Oppizzi, John Gierke, Thomas Oommen, Nino Tsereteli, and Zurab Gogoladze
Nat. Hazards Earth Syst. Sci., 19, 71–91, https://doi.org/10.5194/nhess-19-71-2019, https://doi.org/10.5194/nhess-19-71-2019, 2019
Short summary
Short summary
In the framework of the NATO Science for Peace and Security Program, we have increased the knowledge on the geohazards affecting the Enguri hydroelectrical plant (Caucasus, Georgia). 2 km from the dam, active deformation (2–5 cm yr−1) affects a slope facing the water reservoir. Our field, seismological and numerical analyses show that the worst scenario is represented by seismic shaking with a local peak ground acceleration capable of generating an unstable rock volume of up to 48 ± 12 × 106 m3.
Federico Pasquaré Mariotto and Alessandro Tibaldi
Nat. Hazards Earth Syst. Sci., 16, 663–674, https://doi.org/10.5194/nhess-16-663-2016, https://doi.org/10.5194/nhess-16-663-2016, 2016
Short summary
Short summary
Palaeoseismological techniques applied with artificial trenches at three deep-seated gravity slope deformations (DSGSDs) in the Alps document extensional deformation and reverse slips. The data indicate that reverse slip might occur both at the toe and in the central-upper portions of DSGSDs. The reverse slip is interpreted as due either to locking of the frontal blocks of a DSGSD or to the relative decrease in the rate of downward movement in the frontal blocks with respect to the rear blocks.
M. Neri, G. Le Cozannet, P. Thierry, C. Bignami, and J. Ruch
Nat. Hazards Earth Syst. Sci., 13, 1929–1943, https://doi.org/10.5194/nhess-13-1929-2013, https://doi.org/10.5194/nhess-13-1929-2013, 2013
Related subject area
Subject area: Crustal structure and composition | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Extensional fault geometry and evolution within rifted margin hyper-extended continental crust leading to mantle exhumation and allochthon formation
Experimental grain growth of quartz aggregates under wet conditions and its application to deformation in nature
Júlia Gómez-Romeu and Nick Kusznir
Solid Earth, 15, 477–492, https://doi.org/10.5194/se-15-477-2024, https://doi.org/10.5194/se-15-477-2024, 2024
Short summary
Short summary
We investigate the extensional fault geometry and its evolution during the stretching and thinning of continental crust and lithosphere leading to continental breakup. We focus on the fault-controlled processes that thin and rupture the final 10 km of continental crust at magma-poor margins prior to mantle exhumation. We show that isostatic fault rotation in response to extension is fundamental to understanding the formation of tectonic structures observed on seismic reflection data.
Junichi Fukuda, Hugues Raimbourg, Ichiko Shimizu, Kai Neufeld, and Holger Stünitz
Solid Earth, 10, 621–636, https://doi.org/10.5194/se-10-621-2019, https://doi.org/10.5194/se-10-621-2019, 2019
Short summary
Short summary
Grain size is a key factor for deformation. Quartz is one of the main constituents of the crust, but little is known about grain growth that can change grain size. We therefore experimentally determined grain growth laws for quartz. We discuss the importance of the grain size exponent, water fugacity exponent, and activation energy. Our results indicate that the contribution of grain growth to deformation may become important in lower-crustal conditions.
Cited articles
Acocella, V. and Neri, M.: What makes flank eruptions? The 2001 Etna
eruption and the possible triggering mechanisms, B. Volcanol., 65,
517–529, https://doi.org/10.1007/s00445-003-0280-3, 2003.
Acocella, V. and Neri, M.: Structural features of an active strike-slip
fault on the sliding flank of Mt. Etna (Italy), J. Struct. Geol., 27/2,
343–355, https://doi.org/10.1016/j.jsg.2004.07.006, 2005.
Acocella, V. and Neri, M.: Dike propagation in volcanic edifices: overview
and possible developments, Special Issue: Gudmundsson – Volcanoes,
Tectonophysics, 471, 67–77, https://doi.org/10.1016/j.tecto.2008.10.002, 2009.
Acocella, V., Korme, T., and Salvini, F.: Formation of normal faults along
the axial zone of the Ethiopian Rift, J. Struct. Geol., 25, 503–513, 2003.
Acocella, V., Neri, M., and Norini, G.: An overview of analogue models to
understand a complex volcanic instability: application to Etna, Italy, J.
Volcanol. Geoth. Res., 251, 98–111,
https://doi.org/10.1016/j.jvolgeores.2012.06.003, 2013.
Acocella, V., Neri, M., Behncke, B., Bonforte, A., del Negro, C., and Ganci,
G.: Why does a mature volcano need new vents? The case of the New Southeast
Crater at Etna, Front. Earth Sci., 4, 67, https://doi.org/10.3389/feart.2016.00067, 2016.
Alparone, S., Bonaccorso, A., Bonforte, A., and Currenti, G.: Long-term
stress-strain analysis of volcano flank instability: The eastern sector of
Etna from 1980 to 2012, J. Geophys. Res., 118, 5098–5108,
https://doi.org/10.1002/jgrb.50364, 2013a.
Alparone, S., Cocina, O., Gambino, S., Mostaccio, A., Spampinato, S.,
Tuvè, T., and Ursino, A.: Seismological features of the
Pernicana–Provenzana Fault System (Mt. Etna, Italy) and implications for
the dynamics of northeastern flank of the volcano, J. Volcanol. Geoth. Res.,
251, 16–26, https://doi.org/10.1016/j.jvolgeores.2012.03.010,
2013b.
Antoniou, V., Nomikou, P., Bardouli, P., Sorotou, P., Bonali, F., Ragia, L.,
and Metaxas, A.: The story map for Metaxa mine (Santorini, Greece): a unique
site where history and volcanology meet each other, in: Proceedings of the
5th International Conference on Geographical Information Systems Theory,
Applications and Management, Heraklion, Greece, 3–5 May 2019, SciTePress, 1,
212–219, 2019.
Apuani, T., Corazzato, C., Merri, A., and Tibaldi, A.: Understanding Etna
flank instability through numerical models, J. Volcanol.
Geoth. Res., 251, 112–126, https://doi.org/10.1016/j.jvolgeores.2012.06.015, 2013.
Azzaro, R.: Seismicity and active tectonics in the Etna region: constraints
for a seismotectonic model, in: Mt. Etna: volcano laboratory, Geophysical
monograph, edited by: Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., and
Falsaperla, S., AGU, Washington D.C., 143, 205–220, https://doi.org/10.1029/143GM13, 2004.
Azzaro, R., Ferreli, L., Michetti, A. L., Serva, L., and Vittori, E.:
Environmental hazard of capable faults: the case of the Pernicana fault (Mt.
Etna, Sicily), Nat. Hazards, 17, 147–162, 1998.
Azzaro, R., Mattia, M., and Puglisi, G.: Fault creep and kinematics of the
eastern segment of the Pernicana Fault (Mt. Etna, Italy) derived from
geodetic observations and their tectonic
significance, Tectonophysics, 333, 401–415, 2001.
Behncke, B., Branca, S., Corsaro, R. A., De Beni, E., Miraglia, L., and
Proietti, C.: The 2011–2012 summit activity of Mount Etna: birth, growth
and products of the new SE crater, J. Volcanol. Geoth. Res., 270, 10–21,
2014.
Benassi, F., Dall'Asta, E., Diotri, F., Forlani, G., Morra di Cella, U.,
Roncella, R., and Santise, M.: Testing accuracy and repeatability of UAV
blocks oriented with gnss-supported aerial triangulation, Remote Sens., 9,
172, https://doi.org/10.3390/rs9020172, 2017.
Bonali, F. L., Corazzato, C., and Tibaldi, A.: Identifying rift zones on
volcanoes: an example from La Réunion island, Indian Ocean, B.
Volcanol., 73, 347–366, 2011.
Bonali, F. L., Tibaldi, A., Marchese, F., Fallati, L., Russo, E., Corselli,
C., and Savini, A.: UAV-based surveying in volcano-tectonics: An example
from the Iceland rift, J. Struct. Geol., 121, 46–64, 2019a.
Bonali, F. L., Tibaldi, A., Mariotto, F. P., Saviano, D., Meloni, A., and
Sajovitz, P.: Geometry, oblique kinematics and extensional strain variation
along a diverging plate boundary: The example of the northern Theistareykir
Fissure Swarm, NE Iceland, Tectonophysics, 756, 57–72, 2019b.
Bonali, F. L., Tibaldi, A., Corti, N., Fallati, L., and Russo, E.:
Reconstruction of Late Pleistocene-Holocene Deformation through Massive Data
Collection at Krafla Rift (NE Iceland) Owing to Drone-Based
Structure-from-Motion Photogrammetry, Appl. Sci., 10, 6759, https://doi.org/10.3390/app10196759, 2020.
Bonforte, A., Guglielmino, F., Coltelli, M., Ferretti, A., and Puglisi, G.:
Structural assessment of Mount Etna volcano from Permanent Scatterers
analysis, Geochem. Geophy. Geosy., 12, Q02002, https://doi.org/10.1029/2010GC003213, 2011.
Borgia, A., Ferrari, L., and Pasquarè, G.: Importance of gravitational
spreading in the tectonic and volcanic evolution of Mount Etna, Nature,
357, 231–235, 1992.
Branca, S., Coltelli M., and Groppelli G.: Geological evolution of a complex
basaltic stratovolcano: Mount Etna, Italy, It. J. Geosci. (Boll. Soc. Geol.
It.), 130, 306–317, https://doi.org/10.3301/IJG.2011.13, 2011.
Brunier, G., Fleury, J., Anthony, E. J., Gardel, A., and Dussouillez, P.:
Close-range airborne Structure-from-Motion Photogrammetry for
high-resolution beach morphometric surveys: Examples from an embayed
rotating beach, Geomorphology, 261, 76–88, 2016.
Burns, J. H. R. and and Delparte, D.: Comparison of commercial
structure-from-motion photogrammetry software used for underwater
three-dimensional modeling of coral reef environments, in: International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, ISPRS Archives, 42, 127–131, 2017.
Cappello, A., Neri, M., Acocella, V., Gallo, G., Vicari, A., and Del Negro,
C.: Spatial vent opening probability map of Mt. Etna volcano (Sicily,
Italy), B. Volcanol., 74, 2083–2094, https://doi.org/10.1007/s00445-012-0647-4,
2012.
Cawood, A. J., Bond, C. E., Howell, J. A., Butler, R. W., and Totake, Y.: LiDAR,
UAV or compass-clinometer? Accuracy, coverage and the effects on structural
models, J. Struct. Geol., 98, 67–82, 2017.
Chu, D. and Gordon, R. G.: Evidence for motion between Nubia and Somalia
along the Southwest Indian Ridge, Nature, 398, 64–67, https://doi.org/10.1038/18014,
1999.
Cocina, O., Neri, G., Privitera, E., and Spampinato, S.: Stress tensor
computations in the Mount Etna area (Southern Italy) and tectonic
implications, J. Geodyn., 23, 109–127, 1997.
Cocina, O., Neri, G., Privitera, E., and Spampinato, S.: Seismogenic stress
field beneath Mt. Etna (South Italy) and possible relationships with
volcano-tectonic features, J. Volcanol. Geoth. Res.,
83, 335–348, 1998.
Coltelli, M., Garduño, V.H., Neri, M., Pasquarè, G., and Pompilio,
M.: Geology of northern wall of Valle del Bove, Etna (Sicily), Acta
Vulcanol., 5, 55–68, 1994.
Coltelli, M., Del Carlo, P., and Vezzoli, L.: Stratigraphic constrains for
explosive activity in the last 100 ka at Etna volcano. Italy, Int. J.
Earth Sci., 89, 665–677, 2000.
Condomines, M., Tanguy, J. C., Kieffer, G., and Allegre, C. J.: Magmatic
evolution of a volcano studied by 230Th–238U disequilibrium and trace
elements systematics: the Etna case, Geochim. Cosmochim. Ac., 46,
1397–1416, 1982.
Cook, K. L.: An evaluation of the effectiveness of low-cost UAVs and
structure from motion for geomorphic change detection, Geomorphology, 278,
195–208, 2017.
Cortesi, C., Fornaseri, M., Romano, R., Alessio, M., Allegri, L., Azzi, C.,
Bella, F., Calderoni, G., Follieri, M., Improta, S., Magri, D., Preite,
Martinez M., Sadori, L., Petrone, V., and Turi, B.: Cronologia 14C di
piroclastiti recenti del Monte Etna identificazione e distribuzione dei
fossili vegetali, Boll. Soc. Geol. It., 107, 531–545, 1988.
D'Amato, D., Pace, B., Di Nicola, L., Stuart, F. M., Visini, F., Azzaro, R.,
Branca, S., and Barfod, D. N.: Holocene slip rate variability along the
Pernicana fault system (Mt. Etna, Italy): Evidence from offset lava flows,
GSA Bulletin, 129, 304–317, 2017.
Darmawan, H., Walter, T. R., Brotopuspito, K. S., and Nandaka, I. G. M. A.:
Morphological and structural changes at the Merapi lava dome monitored in
2012–15 using unmanned aerial vehicles (UAVs), J. Volcanol. Geoth.
Res., 349, 256–267, 2018.
De Beni, E., Branca, S., Coltelli, M., Groppelli, G., and Wijbrans J.:
40Ar/39Ar isotopic dating of Etna volcanic succession, It. J. Geosci. (Boll.
Soc. Geol. It.), 130, 292–305, https://doi.org/10.3301/IJG.2011.14, 2011.
De Beni, E., Cantarero, M., and Messina, A.: UAVs for volcano monitoring: A
new approach applied on an active lava flow on Mt. Etna (Italy), during the
27 February–02 March 2017 eruption, J. Volcanol. Geoth. Res., 369,
250–262, 2019.
Del Negro, C., Cappello, A., Neri, M., Bilotta, G., Hérault, A., and
Ganci, G.: Lava flow hazards at Etna volcano: constraints imposed by
eruptive history and numerical simulations, Scientific Reports – Nature, 3,
3493, https://doi.org/10.1038/srep03493, 2013.
De Novellis, V., Atzori, S., De Luca, C., Manzo, M., Valerio, E., Bonano,
M., C., Cardaci, R., Castaldo, D., Di Bucci, M., Manunta, G., Onorato, S.,
Pepe, G., Solaro, P., Tizzani, I., Zinno, M., Neri, R., Lanari, and
Casuet, F.: DInSAR analysis and analytical modeling of Mount Etna displacements:
The December 2018 volcano-tectonic crisis, Geophys. Res. Lett., 46, 5817–5827,
https://doi.org/10.1029/2019GL082467, 2019.
Esposito, G., Mastrorocco, G., Salvini, R., Oliveti, M., and Starita, P.:
Application of UAV photogrammetry for the multi-temporal estimation of
surface extent and volumetric excavation in the Sa Pigada Bianca open-pit
mine, Sardinia, Italy. Environ, Earth Sci., 76, 103, https://doi.org/10.1007/s12665-017-6409-z, 2017.
Fallati, L., Saponari, L., Savini, A., Marchese, F., Corselli, C., and
Galli, P.: Multi-Temporal UAV Data and Object-Based Image Analysis (OBIA)
for Estimation of Substrate Changes in a Post-Bleaching Scenario on a
Maldivian Reef, Remote Sens., 12, 2093, https://doi.org/10.3390/rs12132093, 2020.
Favalli, M., Innocenti, F., Teresa Pareschi, M., Pasquarè, G.,
Mazzarini, F., Branca, S., and Tibaldi, A.: The DEM or Mt. Etna:
geomorphological and structural implications, Geodin. Acta, 12,
279–290, 1999.
Garduño, V. H., Neri, M., Pasquarè, G., Borgia, A., and Tibaldi A.:
Geology of the NE-Rift of Mount Etna (Sicily, Italy), Acta Vulcanologica, 9, 91–100, 1997.
Gerloni, I. G., Carchiolo, V., Vitello, F. R., Sciacca, E., Becciani, U.,
Costa, A., Riggi, S., Bonali, F. L., Russo, E., Fallati, L., Marchese, F.,
and Tibaldi, A.: Immersive Virtual Reality for Earth Sciences, in:
Proceedings of the 2018 Federated Conference on Computer Science and
Information Systems (FedCSIS) IEEE, Poznan, Poland, 9–12 September 2018,
527–534, 2018.
Geshi, N. and Neri, M.: Dynamic feeder dyke systems in basaltic volcanoes:
the exceptional example of the 1809 Etna eruption (Italy), Front. Earth Sci.,
2, 13, https://doi.org/10.3389/feart.2014.00013, 2014.
Gillot, P. Y., Kieffer, G., and Romano, R.: The evolution of Mount Etna in the
light of potassium-argon dating, Acta Vulcanol., 5, 81–87, 1994.
Groppelli, G. and Tibaldi, A.: Control of rock rheology on deformation
style and slip-rate along the active Pernicana Fault, Mt. Etna, Italy,
Tectonophysics, 305, 521–537, https://doi.org/10.1016/S0040-1951(99)00035-9,
1999.
Guardo, R. A., De Siena, L., and Dreidemie, C.: Mt. Etna feeding system and
sliding flank: a new 3D image from earthquakes distribution in a
customisable GIS, Front. Earth Sci., 8, 589925, https://doi.org/10.3389/feart.2020.589925, 2020.
Gudmundsson, A.: Geometry, formation and development of tectonic fractures
on the Reykjanes Peninsula, southwest Iceland, Tectonophysics, 139,
295–308, 1987.
Gudmundsson, A., De Guidi, G., and Scudero, S.: Length–displacement scaling
and fault growth, Tectonophysics, 608, 1298–1309, 2013.
Gwinner, K., Coltelli, M., Flohrer, J., Jaumann, R., Matz, K. D., Marsella,
M., Roatsch T., Scholten F., and Trauthan, F.: The HRSC-AX Mt. Etna project:
High-resolution orthoimages and 1 m DEM at regional scale, International
Archives of Photogrammetry and Remote Sensing, XXXVI (Part 1), available at: http://isprs.free. fr/documents/Papers/T05-23 (last access: 10 January 2021), 2006.
Hu, J. C., Angelier, J., Lee, J. C., Chu, H. T., and Byrne, D.: Kinematics
of convergence, deformation and stress distribution in the Taiwan collision
area: 2-D finite-element numerical modelling, Tectonophysics, 255,
243–268, 1996.
James, M. R. and Robson, S.: Straightforward reconstruction of 3D surfaces
and topography with a camera: accuracy and geoscience application, J.
Geophys. Res.-Earth, 117, F03017, https://doi.org/10.1029/2011JF002289, 2012.
James, M. R., Robson, S., d'Oleire-Oltmanns, S., and Niethammer, U.:
Optimising UAV topographic surveys processed with structure-from-motion:
ground control quality, quantity and bundle adjustment, Geomorphology, 280,
51–66, 2017.
Javernick, L., Brasington, J., and Caruso, B.: Modeling the topography of
shallow braided rivers using Structure-from-Motion photogrammetry,
Geomorphology, 213, 166–182, 2014.
Jestin, F., Huchon, P., and Gaulier, J. M.: The Somalia plate and the
East-African Rift system – Present-day kinematics, Geophys. J. Int., 116,
637–654, https://doi.org/10.1111/j.1365-246X.1994.tb03286.x, 1994.
Keir, D., Ebinger, C. J., Stuart, G. W., Daly, E., and Ayele, A.: Strain
accommodation by magmatism and faulting as rifting proceeds to breakup:
Seismicity of the northern Ethiopian rift, J. Geophys. Res.-Sol. Ea.,
111, B05314, https://doi.org/10.1029/2005JB003748, 2006.
Kozhurin, A., Acocella, V., Kyle, P. R., Lagmay, F. M., Melekestsev, I. V.,
Ponomareva, V., Rust, D., Tibaldi, A., Tunesi, A., Corazzato, C., Rovida, A.,
Sakharovh, A., Tengonciang, A., and Uyd, H.: Trenching studies of active faults
in Kamchatka, eastern Russia: Palaeoseismic, tectonic and hazard
implications, Tectonophysics, 417, 285–304, 2006.
Lanzafame, G., Neri, M., Coltelli, M., Lodato, L., and Rust, D.: North-South
compression in the Nit. Etna region (Sicily): spatial and temporal
distribution, Acta Vulcanologica, 9, 121–134, 1997.
Lee, J. C. and Angelier, J.: Paleostress trajectory maps based on the
results of local determinations: the “Lissage” program, Comput.
Geosci., 20, 161–191, 1994.
Lizarazo, I., Angulo, V., and Rodríguez, J.: Automatic mapping of land
surface elevation changes from UAV-based imagery, Int. J. Remote Sens., 38,
2603–2622, 2017.
Lomax, A., Virieux, J., Volant, P., and Thierry-Berge, C.: Probabilistic
earthquake location in 3D and layered models, in: Advances in Seismic Event
Location, edited by: Thurber, C. H. and Rabinowitz, N., Kluwer Academic
Publishers, Dordrecht/Boston/London, 101–134, 2000.
Lyakhovsky, V., Segev, A., Schattner, U., and Weinberger, R.: Deformation
and seismicity associated with continental rift zones propagating toward
continental margins, Geochem. Geophy. Geosy., 13, Q01012,
https://doi.org/10.1029/2011GC003927, 2012.
Maestro, A., Somoza, L., Rey, J., Martínez-Frías, J., and
López-Martínez, J.: Active tectonics, fault patterns, and stress
field of Deception Island: a response to oblique convergence between the
Pacific and Antarctic plates, J. S. Am. Earth Sci.,
23, 256–268, 2007.
Mattia, M., Bruno, V., Caltabiano, T., Cannata, A., Cannavò, F.,
D'Alessandro, W., di Grazia, G., Federico, C., Giammanco, S., la Spina, A.,
Liuzzo, M., Longo, M., Monaco, C., Patanè, D., and Salerno, G.: A
comprehensive interpretative model of slow slip events on Mt. Etna's eastern
flank, Geochem. Geophy. Geosy., 16, 635–658, https://doi.org/10.1002/2014GC005585, 2015.
Mostaccio, A., Tuvè, T., Patanè, D., Barberi, G., and Zuccarello, L.:
Improving Seismic Surveillance at Mt. Etna Volcano by Probabilistic
Earthquake Location in a 3D Model, B. Seismol. Soc.
Am., 103, 2447–2459, https://doi.org/10.1785/0120110202, 2013.
Müller, D., Walter, T. R., Schöpa, A., Witt, T., Steinke, B.,
Gudmundsson, M. T., and Dürig, T.: High-resolution digital elevation
modeling from TLS and UAV campaign reveals structural complexity at the
2014/2015 Holuhraun eruption site, Iceland, Front. Earth Sci., 5, 59 pp., https://doi.org/10.3389/feart.2017.00059, 2017.
Munoz-Martín, A., Cloetingh, S. A. P. L., De Vicente, G., and Andeweg, B.:
Finite-element modelling of Tertiary paleostress fields in the eastern part
of the Tajo Basin (central Spain), Tectonophysics, 300, 47–62, 1998.
Neri, M., Acocella, V., and Behncke, B.: The role of the Pernicana Fault
System in the spreading of Mount Etna (Italy) during the 2002–2003 eruption,
Bull. Volcanol., 66, 417–430, https://doi.org/10.1007/s00445-003-0322-x, 2004.
Neri, M., Acocella, V., Behncke, B., Maiolino, V., Ursino, A., and
Velardita, R.: Contrasting triggering mechanisms of the 2001 and 2002–2003
eruptions of Mount Etna (Italy), J. Volcanol. Geoth. Res., 144, 235–255,
https://doi.org/10.1016/j.jvolgeores.2004.11.025, 2005.
Neri, M., Acocella, V., Behncke, B., Giammanco, S., Mazzarini, F., and Rust
D.: Structural analysis of the eruptive fissures at Mount Etna (Italy), Ann.
Geophys., 54, 464–479, https://doi.org/10.4401/ag-5332, 2011.
Patanè, D., Cocina, O., Falsaperla, S., Privitera, E., and
Spampinato, S.: Mt. Etna volcano: A seismological framework, in: Mt. Etna
Volcano Laboratory, edited by: Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C.,
Falsaperla, S., American Geophysical Monograph 143, 147–165, AGU,
Washington, D. C., https://doi.org/10.1029/143GM10, 2004.
Ruch, J., Acocella, V., Storti, F., Neri, M., Pepe, S., Solaro, G., and
Sansosti, E.: Detachment depth of an unstable volcano revealed by rollover
deformation: an integrated approach at Mt. Etna, Geophys. Res. Lett., 37,
L16304, https://doi.org/10.1029/2010GL044131, 2010.
Ruch, J., Pepe, S., Casu, F., Acocella, V., Neri, M., Solaro, G., and
Sansosti, E.: How do rift zones relate to volcano flank instability? Evidence
from collapsing rifts at Etna, Geophys. Res. Lett., 39, L20311,
https://doi.org/10.1029/2012GL053683, 2012.
Ruch, J., Pepe, S., Casu, F., Solaro, G., Pepe, A., Acocella, V., Neri, M.,
and Sansosti, E.: Seismo-tectonic behavior of the Pernicana Fault System (Mt
Etna): a gauge for volcano flank instability?, J. Geophys. Res.-Sol. Ea.,
118, 4398–4409, https://doi.org/10.1002/jgrb.50281, 2013.
Salvador, A.: International Stratigraphic Guide, edited by: Salvador, GSA, A.,
Boulder, USA, 1–214, 1994.
Siniscalchi, A., Tripaldi, S., Neri, M., Balasco, M., Romano, G., Ruch, J.,
and Schiavone D.: Flank instability structure of Mt Etna inferred by a
magnetotelluric survey, J. Geophys. Res., 117, B03216,
https://doi.org/10.1029/2011JB008657, 2012.
Smith, M. W., Carrivick, J. L., and Quincey, D. J.: Structure from motion
photogrammetry in physical geography, Prog. Phys. Geogr., 40, 247–275,
2016.
Solaro, G., Acocella, V., Pepe, S., Ruch, J., Neri, M., and Sansosti E.:
Anatomy of an unstable volcano through InSAR data: multiple processes
affecting flank instability at Mt. Etna in 1994–2008, J. Geophys. Res., 115,
B10405, https://doi.org/10.1029/2009JB000820, 2010.
Tibaldi, A.: Morphology of pyroclastic cones and tectonics, J.
Geophys. Res.-Sol. Ea., 100, 24521–24535, 1995.
Tibaldi, A. and Bonali, F. L.: Intra-arc and back-arc volcano-tectonics:
Magma pathways at Holocene Alaska-Aleutian volcanoes, Earth-Sci. Rev.,
167, 1–26, 2017.
Tibaldi, A. and Ferrari, L.: Latest Pleistocene-Holocene tectonics of the
Ecuadorian Andes, Tectonophysics, 205, 109–125, 1992.
Tibaldi, A. and Groppelli, G.: Volcano-tectonic activity along structures
of the unstable NE flank of Mt. Etna (Italy) and their possible origin,
J. Volcanol. Geoth. Res., 115, 277–302, 2002.
Tibaldi, A., Bonali, F. L., Mariotto, F. P., Russo, E., and Tenti, L. R.:
The development of divergent margins: Insights from the North Volcanic Zone,
Iceland, Earth Planet. Sc. Lett., 509, 1–8, 2019.
Tibaldi, A., Bonali, F. L., Vitello, F., Delage, E., Nomikou, P., Antoniou,
V., Becciani U., Van Wyk de Vries B., Krokos M., and Whitworth, M.: Real
world-based immersive Virtual Reality for research, teaching and
communication in volcanology, B. Volcanol., 82, 38, https://doi.org/10.1007/s00445-020-01376-6, 2020.
Trippanera, D., Ruch, J., Acocella, V., and Rivalta, E.: Experiments of
dike-induced deformation: insights on the long-term evolution of divergent
plate boundaries, J. Geophys. Res.-Sol. Ea., 120, 6913–6942, 2015.
Trippanera, D., Ruch, J., Passone, L., and Jónsson, S.: Structural
mapping of dike-induced faulting in Harrat Lunayyir (Saudi Arabia) by using
high resolution drone imagery, Front. Earth Sci., 7, 168 pp., https://doi.org/10.3389/feart.2019.00168, 2019.
Turner, D., Lucieer, A., and Watson, C.: An automated technique for
generating georectified mosaics from ultra-high resolution unmanned aerial
vehicle (UAV) imagery, based on structure from motion (SfM) Point clouds,
Remote Sens., 4, 1392–1410, 2012.
Urulaub, M., Petersen, F., Gross, F., Bonforte, A., Puglisi, G.,
Guglielmino, F., Krastel, S., Lange, D., and Kopp, H.: Gravitational
collapse of Mount Etna's southeastern flank, Sci. Adv., 4,
eaat9700, https://doi.org/10.1126/sciadv.aat9700, 2018.
Verhoeven, G.: Taking computer vision aloft–archaeological
three-dimensional reconstructions from aerial photographs with photoscan,
Archaeol. Prospect., 18, 67–73, 2011.
Villani, F., Pucci, S., Azzaro, R., Civico, R., Cinti, F. R., Pizzimenti,
L., Tarabusi, G., Branca, S., Brunori, C. A., Caciagli, M., Cantarero, M., Cucci,
L., D'Amico, S., De Beni, E., De Martini, P. M., Mariucci, M. T., Messina, A.,
Montone, P., Nappi, R., Nave, R., Pantosti, D., Ricci, T., Sapia, V., Smedile, A.,
Vallone, R., and Venuti, A.: Surface ruptures database related to the 26
December 2018, MW 4.9 Mt. Etna earthquake, southern Italy, Sci. Data,
7, 1–9, 2020.
Vollgger, S. A. and Cruden, A. R.: Mapping folds and fractures in basement
and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson,
Victoria, Australia, J. Struct. Geol., 85, 168–187, 2016.
Walter, T. R., Acocella, V., Neri, M., and Amelung, F.: Feedback processes
between magmatism and E-flank movement at Mt. Etna (Italy) during the
2002–2003 eruption, J. Geophys. Res., 110, B10205, https://doi.org/10.1029/2005JB003688,
2005.
Weismüller, C., Urai, J. L., Kettermann, M., von Hagke, C., and Reicherter, K.: Structure of massively dilatant faults in Iceland: lessons learned from high-resolution unmanned aerial vehicle data, Solid Earth, 10, 1757–1784, https://doi.org/10.5194/se-10-1757-2019, 2019.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds,
J. M.: “Structure-from-Motion” photogrammetry: a low-cost, effective tool for
geoscience applications, Geomorphology, 179, 300–314, 2012.
Short summary
The Northeast Rift of Mt Etna is affected by ground deformation linked to gravity sliding of the volcano flank and dike injection. Drone surveys show that the rift is affected by NE-striking extensional fractures and normal faults. Given an age of 1614 CE for the offset lavas, we obtained an extension rate of 1.9 cm yr−1 for the last 406 years. The stress field is characterised by a NW–SE σHmin. Drone surveys allow us to quickly collect data with a resolution of 2–3 cm.
The Northeast Rift of Mt Etna is affected by ground deformation linked to gravity sliding of the...