Articles | Volume 13, issue 7
https://doi.org/10.5194/se-13-1127-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1127-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution
R. Dietmar Müller
CORRESPONDING AUTHOR
EarthByte Group, School of Geosciences, The University of Sydney, Sydney, NSW
2006, Australia
Invited contribution by R. Dietmar Müller, recipient of the EGU Stephan Mueller Medal 2021.
Nicolas Flament
GeoQuEST Research Centre, School of Earth and Environmental Sciences,
University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
John Cannon
EarthByte Group, School of Geosciences, The University of Sydney, Sydney, NSW
2006, Australia
Michael G. Tetley
University of Texas Institute for Geophysics, Jackson School of
Geosciences, The University of Texas at Austin, Austin, Texas 78758, USA
Simon E. Williams
Department of Geology, Northwest University, Xi'an, 710069, China and
EarthByte Group, School of Geosciences, The University of Sydney, Sydney, NSW 2006,
Australia
Xianzhi Cao
Frontiers Science Center for Deep Ocean Multispheres and Earth System;
Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College
of Marine Geosciences, Ocean University of China, Qingdao 266100, China
Ömer F. Bodur
GeoQuEST Research Centre, School of Earth and Environmental Sciences,
University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
Sabin Zahirovic
EarthByte Group, School of Geosciences, The University of Sydney, Sydney, NSW
2006, Australia
Andrew Merdith
School of Earth and Environment, University of Leeds, Leeds, UK
Related authors
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Rohitash Chandra, Danial Azam, Arpit Kapoor, and R. Dietmar Müller
Geosci. Model Dev., 13, 2959–2979, https://doi.org/10.5194/gmd-13-2959-2020, https://doi.org/10.5194/gmd-13-2959-2020, 2020
Short summary
Short summary
Forward landscape and sedimentary basin evolution models pose a major challenge in the development of efficient inference and optimization methods. Bayesian inference provides a methodology for estimation and uncertainty quantification of free model parameters. In this paper, we present an application of a surrogate-assisted Bayesian parallel tempering method where that surrogate mimics a landscape evolution model. We use the method for parameter estimation and uncertainty quantification.
Hugo K. H. Olierook, Richard Scalzo, David Kohn, Rohitash Chandra, Ehsan Farahbakhsh, Gregory Houseman, Chris Clark, Steven M. Reddy, and R. Dietmar Müller
Solid Earth Discuss., https://doi.org/10.5194/se-2019-4, https://doi.org/10.5194/se-2019-4, 2019
Revised manuscript not accepted
Sascha Brune, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 9, 1187–1206, https://doi.org/10.5194/se-9-1187-2018, https://doi.org/10.5194/se-9-1187-2018, 2018
Short summary
Short summary
Fragmentation of continents often involves obliquely rifting segments that feature a complex three-dimensional structural evolution. Here we show that more than ~ 70 % of Earth’s rifted margins exceeded an obliquity of 20° demonstrating that oblique rifting should be considered the rule, not the exception. This highlights the importance of three-dimensional approaches in modelling, surveying, and interpretation of those rift segments where oblique rifting is the dominant mode of deformation.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Jodie Pall, Sabin Zahirovic, Sebastiano Doss, Rakib Hassan, Kara J. Matthews, John Cannon, Michael Gurnis, Louis Moresi, Adrian Lenardic, and R. Dietmar Müller
Clim. Past, 14, 857–870, https://doi.org/10.5194/cp-14-857-2018, https://doi.org/10.5194/cp-14-857-2018, 2018
Short summary
Short summary
Subduction zones intersecting buried carbonate platforms liberate significant atmospheric CO2 and have the potential to influence global climate. We model the spatio-temporal distribution of carbonate platform accumulation within a plate tectonic framework and use wavelet analysis to analyse linked behaviour between atmospheric CO2 and carbonate-intersecting subduction zone (CISZ) lengths since the Devonian. We find that increasing CISZ lengths likely contributed to a warmer Palaeogene climate.
Wenchao Cao, Sabin Zahirovic, Nicolas Flament, Simon Williams, Jan Golonka, and R. Dietmar Müller
Biogeosciences, 14, 5425–5439, https://doi.org/10.5194/bg-14-5425-2017, https://doi.org/10.5194/bg-14-5425-2017, 2017
Short summary
Short summary
We present a workflow to link paleogeographic maps to alternative plate tectonic models, alleviating the problem that published global paleogeographic maps are generally presented as static maps and tied to a particular plate model. We further develop an approach to improve paleogeography using paleobiology. The resulting paleogeographies are consistent with proxies of eustatic sea level change since ~400 Myr ago. We make the digital global paleogeographic maps available as an open resource.
Michael Rubey, Sascha Brune, Christian Heine, D. Rhodri Davies, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 8, 899–919, https://doi.org/10.5194/se-8-899-2017, https://doi.org/10.5194/se-8-899-2017, 2017
Short summary
Short summary
Earth's surface is constantly warped up and down by the convecting mantle. Here we derive geodynamic rules for this so-called
dynamic topographyby employing high-resolution numerical models of global mantle convection. We define four types of dynamic topography history that are primarily controlled by the ever-changing pattern of Earth's subduction zones. Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution.
Nicholas Barnett-Moore, Rakib Hassan, Nicolas Flament, and Dietmar Müller
Solid Earth, 8, 235–254, https://doi.org/10.5194/se-8-235-2017, https://doi.org/10.5194/se-8-235-2017, 2017
Short summary
Short summary
We use 3D mantle flow models to investigate the evolution of the Iceland plume in the North Atlantic. Results show that over the last ~ 100 Myr a remarkably stable pattern of flow in the lowermost mantle beneath the region resulted in the formation of a plume nucleation site. At the surface, a model plume compared to published observables indicates that its large plume head, ~ 2500 km in diameter, arriving beneath eastern Greenland in the Palaeocene, can account for the volcanic record and uplift.
N. Herold, J. Buzan, M. Seton, A. Goldner, J. A. M. Green, R. D. Müller, P. Markwick, and M. Huber
Geosci. Model Dev., 7, 2077–2090, https://doi.org/10.5194/gmd-7-2077-2014, https://doi.org/10.5194/gmd-7-2077-2014, 2014
J. Cannon, E. Lau, and R. D. Müller
Solid Earth, 5, 741–755, https://doi.org/10.5194/se-5-741-2014, https://doi.org/10.5194/se-5-741-2014, 2014
S. Zahirovic, M. Seton, and R. D. Müller
Solid Earth, 5, 227–273, https://doi.org/10.5194/se-5-227-2014, https://doi.org/10.5194/se-5-227-2014, 2014
M. Hosseinpour, R. D. Müller, S. E. Williams, and J. M. Whittaker
Solid Earth, 4, 461–479, https://doi.org/10.5194/se-4-461-2013, https://doi.org/10.5194/se-4-461-2013, 2013
C. Heine, J. Zoethout, and R. D. Müller
Solid Earth, 4, 215–253, https://doi.org/10.5194/se-4-215-2013, https://doi.org/10.5194/se-4-215-2013, 2013
N. Wright, S. Zahirovic, R. D. Müller, and M. Seton
Biogeosciences, 10, 1529–1541, https://doi.org/10.5194/bg-10-1529-2013, https://doi.org/10.5194/bg-10-1529-2013, 2013
R. D. Müller and T. C. W. Landgrebe
Solid Earth, 3, 447–465, https://doi.org/10.5194/se-3-447-2012, https://doi.org/10.5194/se-3-447-2012, 2012
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Thomas Frasson, Stéphane Labrosse, Henri-Claude Nataf, Nicolas Coltice, and Nicolas Flament
Solid Earth, 15, 617–637, https://doi.org/10.5194/se-15-617-2024, https://doi.org/10.5194/se-15-617-2024, 2024
Short summary
Short summary
Heat flux heterogeneities at the bottom of Earth's mantle play an important role in the dynamic of the underlying core. Here, we study how these heterogeneities are affected by the global rotation of the Earth, called true polar wander (TPW), which has to be considered to relate mantle dynamics with core dynamics. We find that TPW can greatly modify the large scales of heat flux heterogeneities, notably at short timescales. We provide representative maps of these heterogeneities.
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Rohitash Chandra, Danial Azam, Arpit Kapoor, and R. Dietmar Müller
Geosci. Model Dev., 13, 2959–2979, https://doi.org/10.5194/gmd-13-2959-2020, https://doi.org/10.5194/gmd-13-2959-2020, 2020
Short summary
Short summary
Forward landscape and sedimentary basin evolution models pose a major challenge in the development of efficient inference and optimization methods. Bayesian inference provides a methodology for estimation and uncertainty quantification of free model parameters. In this paper, we present an application of a surrogate-assisted Bayesian parallel tempering method where that surrogate mimics a landscape evolution model. We use the method for parameter estimation and uncertainty quantification.
Ömer F. Bodur and Patrice F. Rey
Solid Earth, 10, 2167–2178, https://doi.org/10.5194/se-10-2167-2019, https://doi.org/10.5194/se-10-2167-2019, 2019
Short summary
Short summary
Convection in the deep Earth dynamically changes the elevation of plates. Amplitudes of those vertical motions predicted from numerical models are significantly higher than observations. We find that at small wavelengths (< 1000 km) this misfit can be due to the oversimplification in viscosity of rocks. By a suite of numerical experiments, we show that considering the non–Newtonian rheology of the mantle results in predictions in amplitude of dynamic topography consistent with observations.
Xuesong Ding, Tristan Salles, Nicolas Flament, and Patrice Rey
Geosci. Model Dev., 12, 2571–2585, https://doi.org/10.5194/gmd-12-2571-2019, https://doi.org/10.5194/gmd-12-2571-2019, 2019
Short summary
Short summary
This work introduced a quantitative stratigraphic framework within a source-to-sink numerical code, pyBadlands, and evaluated two stratigraphic interpretation techniques. This quantitative framework allowed us to quickly construct the strata formations and automatically produce strata interpretations. We further showed that the accommodation succession method, compared with the trajectory analysis method, provided more reliable interpretations as it is independent of time-dependent processes.
Hugo K. H. Olierook, Richard Scalzo, David Kohn, Rohitash Chandra, Ehsan Farahbakhsh, Gregory Houseman, Chris Clark, Steven M. Reddy, and R. Dietmar Müller
Solid Earth Discuss., https://doi.org/10.5194/se-2019-4, https://doi.org/10.5194/se-2019-4, 2019
Revised manuscript not accepted
Sascha Brune, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 9, 1187–1206, https://doi.org/10.5194/se-9-1187-2018, https://doi.org/10.5194/se-9-1187-2018, 2018
Short summary
Short summary
Fragmentation of continents often involves obliquely rifting segments that feature a complex three-dimensional structural evolution. Here we show that more than ~ 70 % of Earth’s rifted margins exceeded an obliquity of 20° demonstrating that oblique rifting should be considered the rule, not the exception. This highlights the importance of three-dimensional approaches in modelling, surveying, and interpretation of those rift segments where oblique rifting is the dominant mode of deformation.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Jodie Pall, Sabin Zahirovic, Sebastiano Doss, Rakib Hassan, Kara J. Matthews, John Cannon, Michael Gurnis, Louis Moresi, Adrian Lenardic, and R. Dietmar Müller
Clim. Past, 14, 857–870, https://doi.org/10.5194/cp-14-857-2018, https://doi.org/10.5194/cp-14-857-2018, 2018
Short summary
Short summary
Subduction zones intersecting buried carbonate platforms liberate significant atmospheric CO2 and have the potential to influence global climate. We model the spatio-temporal distribution of carbonate platform accumulation within a plate tectonic framework and use wavelet analysis to analyse linked behaviour between atmospheric CO2 and carbonate-intersecting subduction zone (CISZ) lengths since the Devonian. We find that increasing CISZ lengths likely contributed to a warmer Palaeogene climate.
Wenchao Cao, Sabin Zahirovic, Nicolas Flament, Simon Williams, Jan Golonka, and R. Dietmar Müller
Biogeosciences, 14, 5425–5439, https://doi.org/10.5194/bg-14-5425-2017, https://doi.org/10.5194/bg-14-5425-2017, 2017
Short summary
Short summary
We present a workflow to link paleogeographic maps to alternative plate tectonic models, alleviating the problem that published global paleogeographic maps are generally presented as static maps and tied to a particular plate model. We further develop an approach to improve paleogeography using paleobiology. The resulting paleogeographies are consistent with proxies of eustatic sea level change since ~400 Myr ago. We make the digital global paleogeographic maps available as an open resource.
Michael Rubey, Sascha Brune, Christian Heine, D. Rhodri Davies, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 8, 899–919, https://doi.org/10.5194/se-8-899-2017, https://doi.org/10.5194/se-8-899-2017, 2017
Short summary
Short summary
Earth's surface is constantly warped up and down by the convecting mantle. Here we derive geodynamic rules for this so-called
dynamic topographyby employing high-resolution numerical models of global mantle convection. We define four types of dynamic topography history that are primarily controlled by the ever-changing pattern of Earth's subduction zones. Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution.
Nicholas Barnett-Moore, Rakib Hassan, Nicolas Flament, and Dietmar Müller
Solid Earth, 8, 235–254, https://doi.org/10.5194/se-8-235-2017, https://doi.org/10.5194/se-8-235-2017, 2017
Short summary
Short summary
We use 3D mantle flow models to investigate the evolution of the Iceland plume in the North Atlantic. Results show that over the last ~ 100 Myr a remarkably stable pattern of flow in the lowermost mantle beneath the region resulted in the formation of a plume nucleation site. At the surface, a model plume compared to published observables indicates that its large plume head, ~ 2500 km in diameter, arriving beneath eastern Greenland in the Palaeocene, can account for the volcanic record and uplift.
N. Herold, J. Buzan, M. Seton, A. Goldner, J. A. M. Green, R. D. Müller, P. Markwick, and M. Huber
Geosci. Model Dev., 7, 2077–2090, https://doi.org/10.5194/gmd-7-2077-2014, https://doi.org/10.5194/gmd-7-2077-2014, 2014
J. Cannon, E. Lau, and R. D. Müller
Solid Earth, 5, 741–755, https://doi.org/10.5194/se-5-741-2014, https://doi.org/10.5194/se-5-741-2014, 2014
S. Zahirovic, M. Seton, and R. D. Müller
Solid Earth, 5, 227–273, https://doi.org/10.5194/se-5-227-2014, https://doi.org/10.5194/se-5-227-2014, 2014
M. Hosseinpour, R. D. Müller, S. E. Williams, and J. M. Whittaker
Solid Earth, 4, 461–479, https://doi.org/10.5194/se-4-461-2013, https://doi.org/10.5194/se-4-461-2013, 2013
C. Heine, J. Zoethout, and R. D. Müller
Solid Earth, 4, 215–253, https://doi.org/10.5194/se-4-215-2013, https://doi.org/10.5194/se-4-215-2013, 2013
N. Wright, S. Zahirovic, R. D. Müller, and M. Seton
Biogeosciences, 10, 1529–1541, https://doi.org/10.5194/bg-10-1529-2013, https://doi.org/10.5194/bg-10-1529-2013, 2013
R. D. Müller and T. C. W. Landgrebe
Solid Earth, 3, 447–465, https://doi.org/10.5194/se-3-447-2012, https://doi.org/10.5194/se-3-447-2012, 2012
Cited articles
Arnould, M., Ganne, J., Coltice, N., and Feng, X.: Northward drift of the
Azores plume in the Earth's mantle, Nat. Commun., 10, 1–8, 2019.
Auer, L., Boschi, L., Becker, T., Nissen-Meyer, T., and Giardini, D.:
Savani: A variable resolution whole-mantle model of anisotropic shear
velocity variations based on multiple data sets, J. Geophys.
Res.-Sol. Ea., 119, 3006–3034, https://doi.org/10.1002/2013JB010773, 2014.
Austermann, J., Kaye, B. T., Mitrovica, J. X., and Huybers, P.: A
statistical analysis of the correlation between large igneous provinces and
lower mantle seismic structure, Geophys. J. Int., 197, 1–9,
2014.
Becker, T.: On the effect of temperature and strain-rate dependent viscosity
on global mantle flow, net rotation, and plate-driving forces, Geophys. J. Int., 167, 943–957, 2006.
Behn, M. D., Conrad, C. P., and Silver, P. G.: Detection of upper mantle
flow associated with the African Superplume, Earth Planet. Sc.
Lett., 224, 259–274, 2004.
Bower, D. J., Gurnis, M., and Seton, M.: Lower mantle structure from
paleogeographically constrained dynamic Earth models, Geochem.
Geophy. Geosy., 14, 44–63, 2013.
Bower, D. J., Gurnis, M., and Flament, N.: Assimilating lithosphere and slab
history in 4-D Earth models, Phys. Earth Planet. Int.,
238, 8–22, https://doi.org/10.1016/j.pepi.2014.10.013, 2015 (code available at: https://github.com/EarthByte/citcoms, last access: 26 October 2021).
Brasier, M.: Secret chambers: the inside story of cells and complex life,
Oxford and New York, Oxford University Press, 298 p., ISBN 978-0-19-964400-1, 2012.
Bryan, S. E. and Ernst, R. E.: Revised definition of large igneous provinces
(LIPs), Earth-Sci. Rev., 86, 175–202, 2008.
Bull, A. L., Domeier, M., and Torsvik, T. H.: The effect of plate motion
history on the longevity of deep mantle heterogeneities, Earth Planet.
Sc. Lett., 401, 172–182, 2014.
Bunge, H.-P., Richards, M. A., Lithgow-Bertelloni, C., Baumgardner, J. R.,
Grand, S. P., and Romanowicz, B. A.: Time scales and heterogeneous structure
in geodynamic Earth models, Science, 280, 91–95, 1998.
Burke, K. and Torsvik, T. H.: Derivation of large igneous provinces of the
past 200 million years from long-term heterogeneities in the deep mantle,
Earth Planet. Sc. Lett., 227, 531–538, 2004.
Butterworth, N., Talsma, A., Müller, R., Seton, M., Bunge, H.-P.,
Schuberth, B., Shephard, G., and Heine, C.: Geological, tomographic,
kinematic and geodynamic constraints on the dynamics of sinking slabs,
J. Geodyn., 73, 1–13, 2014.
Cao, W., Flament, N., Zahirovic, S., Williams, S., and Müller, R. D.:
The interplay of dynamic topography and eustasy on continental flooding in
the late Paleozoic, Tectonophysics, 761, 108–121, 2019.
Cao, X., Flament, N., and Müller, R. D.: Coupled evolution of plate
tectonics and basal mantle structure, Geochem. Geophy. Geosy.,
22, e2020GC009244, https://doi.org/10.1029/2020GC009244, 2021a.
Cao, X., Flament, N., Bodur, O., and Müller, R. D.: The evolution of
basal mantle structure in response to supercontinent aggregation and
dispersal, Sci. Repo., in press, https://doi.org/10.1038/s41598-021-02359-z, 2021b.
Cao, X., Flament, N., Li, S., and Müller, R. D.: Spatio-temporal
evolution and dynamic origin of Jurassic-Cretaceous magmatism in the South
China Block, Earth-Sci. Rev., 217, 103605, https://doi.org/10.1016/j.earscirev.2021.103605, 2021c.
Coffin, M. F., Duncan, R. A., Eldholm, O., Fitton, J. G., Frey, F. A.,
Larsen, H. C., Mahoney, J. J., Saunders, A. D., Schlich, R., and Wallace, P.
J.: Large igneous provinces and scientific ocean drilling: Status quo and a
look ahead, Oceanography, 19, 150–160, 2006.
Conrad, C. P. and Behn, M. D.: Constraints on lithosphere net rotation and
asthenospheric viscosity from global mantle flow models and seismic
anisotropy, Geochem. Geophy. Geosy., 11, Q05W05, https://doi.org/10.1029/2009GC002970, 2010.
Cox, A. and Hart, R. B.: Plate tectonics: How it works, John Wiley &
Sons, Wiley, ISBN 978-0-865-42313-8, 2009.
Currie, C. A. and Beaumont, C.: Are diamond-bearing Cretaceous kimberlites
related to low-angle subduction beneath western North America?, Earth Planet. Sc. Lett., 303, 59–70, 2011.
Davaille, A. and Romanowicz, B.: Deflating the LLSVPs: bundles of mantle
thermochemical plumes rather than thick stagnant “piles”, Tectonics, 39,
e2020TC006265, https://doi.org/10.1029/2020TC006265, 2020.
Davies, D., Goes, S., and Lau, H.: Thermally dominated deep mantle LLSVPs: a
review, Earth's Heterogeneous Mantle,
edited by: Khan, A. and Deschamps, F., The Earth's Heterogeneous Mantle,
Springer Geophysics,
441–477, https://doi.org/10.1007/978-3-319-15627-9_14, 2015a.
Davies, D., Goes, S., and Sambridge, M.: On the relationship between
volcanic hotspot locations, the reconstructed eruption sites of large
igneous provinces and deep mantle seismic structure, Earth Planet. Sc. Lett., 411, 121–130, 2015b.
Davies, D. R., Goes, S., Davies, J. H., Schuberth, B., Bunge, H.-P., and
Ritsema, J.: Reconciling dynamic and seismic models of Earth's lower mantle:
The dominant role of thermal heterogeneity, Earth Planet. Sc. Lett., 353, 253–269, 2012.
Domeier, M. and Torsvik, T. H.: Plate tectonics in the late Paleozoic,
Geosci. Front., 5, 303–350, 2014.
Domeier, M., Doubrovine, P. V., Torsvik, T. H., Spakman, W., and Bull, A.
L.: Global correlation of lower mantle structure and past subduction,
Geophys. Res. Lett., 43, 4945–4953, 2016.
Doubrovine, P. V., Steinberger, B., and Torsvik, T. H.: A failure to reject:
Testing the correlation between large igneous provinces and deep mantle
structures with EDF statistics, Geochem. Geophy. Geosy., 17,
1130–1163, 2016.
Doucet, L. S., Li, Z.-X., Ernst, R. E., Kirscher, U., El Dien, H. G., and
Mitchell, R. N.: Coupled supercontinent–mantle plume events evidenced by
oceanic plume record, Geology, 48, 159–163, 2020a.
Doucet, L. S., Li, Z.-X., El Dien, H. G., Pourteau, A., Murphy, J. B.,
Collins, W. J., Mattielli, N., Olierook, H. K., Spencer, C. J., and
Mitchell, R. N.: Distinct formation history for deep-mantle domains
reflected in geochemical differences, Nat. Geosci., 13, 511–515, 2020b.
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model,
Phys. Earth Planet. Int., 25, 297–356, 1981.
Ernst, R. E.: Large igneous provinces, Cambridge University Press, ISBN 9781139025300, 2014.
Ernst, R. E. and Youbi, N.: How Large Igneous Provinces affect global
climate, sometimes cause mass extinctions, and represent natural markers in
the geological record, Palaeogeog. Palaeocl.,
478, 30–52, 2017.
Ernst, R. E., Rodygin, S. A., and Grinev, O. M.: Age correlation of Large
Igneous Provinces with Devonian biotic crises, Glob. Planet. Change,
185, 103097, https://doi.org/10.1016/j.gloplacha.2019.103097, 2020.
Evans, D., Li, Z.-X., and Murphy, J.: Four-dimensional context of Earth's
supercontinents, Geol. Soc. Lond. Spec. Publ., 424,
1–14, 2016.
Flament, N.: Present-day dynamic topography and lower-mantle structure from
palaeogeographically constrained mantle flow models, Geophys. J. Int., 216, 2158–2182, 2019.
Flament, N., Bodur, Ö. F., Williams, S. E., and Merdith, A. S.: Assembly
of the basal mantle structure beneath Africa, Nature, 603, 846–851, 2022.
Flament, N., Williams, S., Muller, R. D., Gurnis, M., and Bower, D. J.:
Origin and evolution of the deep thermochemical structure beneath Eurasia,
Nat. Commun., 8, 14164, https://doi.org/10.1038/ncomms14164, 2017.
French, S. W. and Romanowicz, B. A.: Whole-mantle radially anisotropic shear
velocity structure from spectral-element waveform tomography, Geophys. J. Int., 199, 1303–1327, https://doi.org/10.1093/gji/ggu334, 2014.
Garnero, E. J. and McNamara, A. K.: Structure and dynamics of Earth's lower
mantle, Science, 320, 626–628, 2008.
Gerya, T. V., Yuen, D. A., and Maresch, W. V.: Thermomechanical modelling of
slab detachment, Earth Planet. Sc. Lett., 226, 101–116, 2004.
Glatzmaier, G. A., Coe, R. S., Hongre, L., and Roberts, P. H.: The role of
the Earth's mantle in controlling the frequency of geomagnetic reversals,
Nature, 401, 885–890, 1999.
Gurnis, M., Turner, M., Zahirovic, S., DiCaprio, L., Spasojevic, S., Muller,
R., Boyden, J., Seton, M., Manea, V., and Bower, D.: Plate tectonic
reconstructions with continuously closing plates, Comput. Geosci.,
38, 35–42, 2012.
Hassan, R., Müller, R. D., Gurnis, M., Williams, S. E., and Flament, N.:
A rapid burst in hotspot motion through the interaction of tectonics and
deep mantle flow, Nature, 533, 239–242, 2016.
Heaman, L. M., Kjarsgaard, B. A., and Creaser, R. A.: The timing of
kimberlite magmatism in North America: implications for global kimberlite
genesis and diamond exploration, Lithos, 71, 153–184, 2003.
Heyn, B. H., Conrad, C. P., and Trønnes, R. G.: Stabilizing effect of
compositional viscosity contrasts on thermochemical piles, Geophys. Res. Lett., 45, 7523–7532, 2018.
Hoffman, P. F. and Schrag, D. P.: The snowball Earth hypothesis: testing the
limits of global change, Terra Nova, 14, 129–155, 2002.
Houser, C., Masters, G., Shearer, P., and Laske, G.: Shear and compressional
velocity models of the mantle from cluster analysis of long-period
waveforms, Geophys. J. Int., 174, 195–212,
https://doi.org/10.1111/j.1365-246X.2008.03763.x, 2008.
Johansson, L., Zahirovic, S., and Müller, R. D.: The interplay between
the eruption and weathering of large igneous provinces and the deep-time
carbon cycle, Geophys. Res. Lett., 45, 5380–5389, 2018.
King, S. D.: Mantle convection, the asthenosphere, and Earth's thermal
history, in: The Interdisciplinary Earth: A Volume in Honor of Don L.
Anderson: Geological Society of America Special Paper 514 edited by:
Foulger, G. R., Lustrino, M., and King, S. D., Geological Society of America
SPE, 514–507, 2015.
Knuth, D. E.: Art of computer programming, Vol. 2, Seminumerical
algorithms, Addison-Wesley Longman Publishing Co.,
ISBN 978-0-201-89684-8,
2014.
Kocsis, Á. T. and Scotese, C. R.: Mapping paleocoastlines and
continental flooding during the Phanerozoic, Earth-Sci. Rev., 213,
103463, https://doi.org/10.1016/j.earscirev.2020.103463, 2021.
Kolmogorov, A.: Sulla determinazione empirica di una lgge di distribuzione,
Inst. Ital. Attuari, Giorn., 4, 83–91, 1933.
Koppers, A. A., Becker, T. W., Jackson, M. G., Konrad, K., Müller, R.
D., Romanowicz, B., Steinberger, B., and Whittaker, J. M.: Mantle plumes and
their role in Earth processes, Nat. Rev. Earth Environ., 2,
382–401, 2021.
Kreemer, C. and Holt, W. E.: A no-net-rotation model of present-day surface
motions, Geophys. Res. Lett., 28, 4407-4410, 2001.
Kustowski, B., Ekström, G., and Dziewoński, A. M.: Anisotropic
shear-wave velocity structure of the Earth's mantle: A global model, J. Geophys. Res., 113, B06306, https://doi.org/10.1029/2007jb005169, 2008.
Lee, C. and King, S. D.: Dynamic buckling of subducting slabs reconciles
geological and geophysical observations, Earth Planet. Sc. Lett., 312, 360–370, 2011.
Lekic, V., Cottaar, S., Dziewonski, A., and Romanowicz, B.: Cluster analysis
of global lower mantle tomography: A new class of structure and implications
for chemical heterogeneity, Earth Planet. Sc. Lett., 357/358,
68–77, https://doi.org/10.1016/j.epsl.2012.09.014, 2012.
Le Pichon, X., Şengör, A. C., and İmren, C.: Pangea and the
lower mantle, Tectonics, 38, 3479–3504, 2019.
Le Pichon, X., Jellinek, M., Lenardic, A., Şengör, A. C., and
İmren, C.: Pangea Migration, Tectonics, 40, e2020TC006585, https://doi.org/10.1029/2020TC006585, 2021.
Li, M., Zhong, S., and Olson, P.: Linking lowermost mantle structure,
core-mantle boundary heat flux and mantle plume formation, Phys.
Earth Planet. Int., 277, 10–29, 2018.
MacQueen, J.: Some methods for classification and analysis of multivariate
observations, Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, 281–297, 1967.
Maher, S., Wessel, P., Müller, R., Williams, S., and Harada, Y.:
Absolute plate motion of Africa around Hawaii-Emperor bend time, Geophys. J. Int., 201, 1743–1764, 2015.
Mao, W. and Zhong, S.: Constraints on Mantle Viscosity From
Intermediate-Wavelength Geoid Anomalies in Mantle Convection Models With
Plate Motion History, J. Geophys. Res.-Sol. Ea., 126,
e2020JB021561, https://doi.org/10.1029/2020JB021561, 2021.
Mather, B. R., Müller, R. D., Seton, M., Ruttor, S., Nebel, O., and
Mortimer, N.: Intraplate volcanism triggered by bursts in slab flux, Sci.
Adv., 6, eabd0953, https://doi.org/10.1126/sciadv.abd0953, 2020.
Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M.,
and Mueller, R. D.: Global plate boundary evolution and kinematics since the
late Paleozoic, Glob. Planet. Change, 146, 226–250, 2016.
McNamara, A. K. and Zhong, S.: Thermochemical structures within a spherical
mantle: Superplumes or piles?, J. Geophys. Res.-Sol. Ea.,
109, B07402, https://doi.org/10.1029/2003JB002847, 2004.
Mégnin, C. and Romanowicz, B.: The three-dimensional shear velocity
structure of the mantle from the inversion of body, surface and higher-mode
waveforms, Geophys. J. Int., 143, 709–728,
https://doi.org/10.1046/j.1365-246x.2000.00298.x 2000.
Merdith, A. S., Williams, S. E., Collins, A. S., Tetley, M. G., Mulder, J.
A., Blades, M. L., Young, A., Armistead, S. E., Cannon, J., and Zahirovic,
S.: Extending full-plate tectonic models into deep time: Linking the
Neoproterozoic and the Phanerozoic, Earth-Sci. Rev., 214, 103477, https://doi.org/10.1016/j.earscirev.2020.103477, 2021.
Mitchell, R. N.: True polar wander and supercontinent cycles: Implications
for lithospheric elasticity and the triaxial Earth, Am. J.
Sci., 314, 966–979, 2014.
Mitchell, R. N., Kilian, T. M., and Evans, D. A.: Supercontinent cycles and
the calculation of absolute palaeolongitude in deep time, Nature, 482,
208–211, 2012.
Mortimer, N. and Scott, J. M.: Volcanoes of Zealandia and the southwest
Pacific, New Zeal. J. Geol. Geophys., 63, 371–377, 2020.
Müller, R., Hassan, R., Gurnis, M., Flament, N., and Williams, S. E.:
Dynamic topography of passive continental margins and their hinterlands
since the Cretaceous, Gondwana Res., 53, 225–251, 2018.
Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K.
J., Wright, N. M., Shephard, G. E., Maloney, K. T., Barnett-Moore, N., and
Hosseinpour, M.: Ocean basin evolution and global-scale plate reorganization
events since Pangea breakup, Ann. Rev. Earth Planet. Sc.,
44, 107–138, 2016.
Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M.,
Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., and Liu, S.: A global
plate model including lithospheric deformation along major rifts and orogens
since the Triassic, Tectonics, 38, 1884–1907, 2019.
Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., Liu, S., and Russell, S. H.: A global plate model including lithospheric deformation along major rifts and orogens since the Triassic, Tectonics, 38, 1884–1907, https://doi.org/10.1029/2018TC005462,
2019 (code available at: https://github.com/EarthByte/citcoms, last access: 26 October 2021).
Müller, D., Flament, N., Cannon, J., Tetley, M., Williams, S. E., Cao, X., Bodur, Ö. F., Zahirovic, S., and Merdith, A.: Supplementary data – A tectonic-rules based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate-mantle system evolution, Zenodo [video], https://doi.org/10.5281/zenodo.6622194, 2022 (data set available at: https://github.com/gplates, last access: 1 February 2022).
Murphy, J. B. and Nance, R. D.: Do supercontinents introvert or extrovert?:
Sm-Nd isotope evidence, Geology, 31, 873–876, 2003.
Murphy, J. B., Nance, R. D., and Cawood, P. A.: Contrasting modes of
supercontinent formation and the conundrum of Pangea, Gondwana Res., 15,
408–420, 2009.
O'Neill, C., Müller, R. D., and Steinberger, B.: On the uncertainties in
hot spot reconstructions and the significance of moving hot spot reference
frames, Geochem. Geophy. Geosy., 6, Q04003, https://doi.org/10.1029/2004GC000784, 2005.
Olson, P. L., Coe, R. S., Driscoll, P. E., Glatzmaier, G. A., and Roberts,
P. H.: Geodynamo reversal frequency and heterogeneous core–mantle boundary
heat flow, Phys. Earth Planet. Int., 180, 66–79, 2010.
Raub, T., Kirschvink, J., and Evans, D.: True polar wander: linking deep and
shallow geodynamics to hydro-and bio-spheric hypotheses, Treatise
Geophys., 5, 565–589, 2007.
Ricard, Y., Doglioni, C., and Sabadini, R.: Differential rotation between
lithosphere and mantle: a consequence of lateral mantle viscosity
variations, J. Geophys. Res.-Sol. Ea., 96, 8407–8415,
1991.
Richards, M. A., Duncan, R. A., and Courtillot, V. E.: Flood basalts and
hot-spot tracks: plume heads and tails, Science, 246, 103–107, 1989.
Ritsema, J., Deuss, A. A., Van Heijst, H., and Woodhouse, J.: S40RTS: a
degree-40 shear-velocity model for the mantle from new Rayleigh wave
dispersion, teleseismic traveltime and normal-mode splitting function
measurements, Geophys. J. Int., 184, 1223–1236,
https://doi.org/10.1111/j.1365-246x.2010.04884.x 2011.
Rudolph, M. L. and Zhong, S.: History and dynamics of net rotation of the
mantle and lithosphere, Geochem. Geophy. Geosy., 15, 3645–3657,
2014.
Safonova, I., Litasov, K., and Maruyama, S.: Triggers and sources of
volatile-bearing plumes in the mantle transition zone, Geosci. Front.,
6, 679–685, 2015.
Schellart, W., Stegman, D., and Freeman, J.: Global trench migration
velocities and slab migration induced upper mantle volume fluxes:
Constraints to find an Earth reference frame based on minimizing viscous
dissipation, Earth-Sci. Rev., 88, 118–144, 2008.
Schellart, W. P., Freeman, J., Stegman, D. R., Moresi, L., and May, D.:
Evolution and diversity of subduction zones controlled by slab width,
Nature, 446, 308–311, 2007.
Schuberth, B. S., Bunge, H. P., and Ritsema, J.: Tomographic filtering of
high-resolution mantle circulation models: Can seismic heterogeneity be
explained by temperature alone?, Geochem. Geophy. Geosy., 10, Q05W03, https://doi.org/10.1029/2009GC002401,
2009.
Shephard, G. E., Matthews, K. J., Hosseini, K., and Domeier, M.: On the
consistency of seismically imaged lower mantle slabs, Sci. Rep., 7,
1–17, 2017.
Simmons, N. A., Forte, A. M., Boschi, L., and Grand, S. P.: GyPSuM: A joint
tomographic model of mantle density and seismic wave speeds, J.
Geophys. Res.-Sol. Ea., 115, B12310, https://doi.org/10.1029/2010JB007631, 2010.
Sobolev, S. V. and Brown, M.: Surface erosion events controlled the
evolution of plate tectonics on Earth, Nature, 570, 52–57, 2019.
Steinberger, B.: Plumes in a convecting mantle: Models and observations for
individual hotspots, J. Geophys. Res-Sol. Ea., 105,
11127–11152, 2000.
Steinberger, B. and Calderwood, A. R.: Models of large-scale viscous flow in
the Earth's mantle with constraints from mineral physics and surface
observations, Geophys. J. Int., 167, 1461–1481, 2006.
Tackley, P. J. and King, S. D.: Testing the tracer ratio method for modeling
active compositional fields in mantle convection simulations, Geochem. Geophy. Geosy., 4,
8302, https://doi.org/10.1029/2001GC000214,
2003.
Tan, E., Leng, W., Zhong, S., and Gurnis, M.: On the location of plumes and
lateral movement of thermochemical structures with high bulk modulus in the
3-D compressible mantle, Geochem. Geophy. Geosy., 12, Q07005, https://doi.org/10.1029/2011GC003665, 2011.
Tappe, S., Smart, K., Torsvik, T., Massuyeau, M., and de Wit, M.:
Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic
evolution and deep volatile cycles, Earth Planet. Sc. Lett.,
484, 1–14, 2018.
Tetley, M. G., Williams, S. E., Gurnis, M., Flament, N., and Müller, R.
D.: Constraining absolute plate motions since the Triassic, J. Geophys. Res-Sol. Ea., 124, 7231–7258, https://doi.org/10.1029/2019JB017442, 2019 (code available at: https://github.com/EarthByte/optAPM, last access: 26 October 2021).
Tkalčić, H., Young, M., Muir, J. B., Davies, D. R., and Mattesini,
M.: Strong, multi-scale heterogeneity in Earth's lowermost mantle,
Sci. Rep., 5, 1–8, 2015.
Torsvik, T. H. and Cocks, L. R. M.: The integration of palaeomagnetism, the
geological record and mantle tomography in the location of ancient
continents, Geol. Mag., 156, 242–260, 2019.
Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B., and
Gaina, C.: Global plate motion frames: toward a unified model, Rev.
Geophys., 46, RG3004, https://doi.org/10.1029/2007RG000227, 2008.
Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J., and Ashwal, L. D.: Diamonds sampled by plumes from the core–mantle boundary, Nature, 466, 352–355, 2010.
Van Der Meer, D. G., Spakman, W., Van Hinsbergen, D. J., Amaru, M. L., and
Torsvik, T. H.: Towards absolute plate motions constrained by lower-mantle
slab remnants, Nat. Geosci., 3, 36–40, 2010.
van Hinsbergen, D. J., De Groot, L. V., van Schaik, S. J., Spakman, W.,
Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A
paleolatitude calculator for paleoclimate studies, PloS one, 10, e0126946, https://doi.org/10.1371/journal.pone.0126946,
2015.
von Blanckenburg, F. and Davies, J. H.: Slab breakoff: a model for
syncollisional magmatism and tectonics in the Alps, Tectonics, 14, 120–131,
1995.
Wessel, P. and Kroenke, L. W.: Pacific absolute plate motion since 145 Ma:
An assessment of the fixed hot spot hypothesis, J. Geophys. Res-Sol. Ea., 113, B06101, https://doi.org/10.1029/2007JB005499, 2008.
Williams, S., Wright, N. M., Cannon, J., Flament, N., and Müller, R. D.:
Reconstructing seafloor age distributions in lost ocean basins, Geosci. Front., 12, 769–780, 2021.
Williams, S. E., Flament, N., Müller, R. D., and Butterworth, N.:
Absolute plate motions since 130 Ma constrained by subduction zone
kinematics, Earth Planet. Sc. Lett., 418, 66–77, 2015.
Wu, F.-Y., Lin, J.-Q., Wilde, S. A., and Yang, J.-H.: Nature and
significance of the Early Cretaceous giant igneous event in eastern China,
Earth Planet. Sc. Lett., 233, 103–119, 2005.
Yuan, Q. and Li, M.: Instability of the African large
low-shear-wave-velocity province due to its low intrinsic density, Nat. Geosci., 15, 334–339, 2022.
Zahirovic, S., Müller, R. D., Seton, M., and Flament, N.: Tectonic speed
limits from plate kinematic reconstructions, Earth Planet. Sc. Lett., 418, 40–52, 2015.
Zhang, N., Zhong, S., Leng, W., and Li, Z. X.: A model for the evolution of
the Earth's mantle structure since the Early Paleozoic, J. Geophys. Res-Sol. Ea., 115, B06401, https://doi.org/10.1029/2009JB006896, 2010.
Zhong, S. and Liu, X.: The long-wavelength mantle structure and dynamics and
implications for large-scale tectonics and volcanism in the Phanerozoic,
Gondwana Res., 29, 83–104, 2016.
Zhong, S. and Rudolph, M. L.: On the temporal evolution of long-wavelength
mantle structure of the E arth since the early P aleozoic, Geochem. Geophy. Geosy., 16, 1599–1615, 2015.
Zhong, S., Zhang, N., Li, Z.-X., and Roberts, J. H.: Supercontinent cycles,
true polar wander, and very long-wavelength mantle convection, Earth Planet. Sc. Lett., 261, 551–564, 2007.
Zhong, S., McNamara, A., Tan, E., Moresi, L., and Gurnis, M.: A benchmark
study on mantle convection in a 3-D spherical shell using CitcomS,
Geochem. Geophy. Geosy., 9, Q10017, https://doi.org/10.1029/2008GC002048, 2008.
Executive editor
This manuscript describes the oldest model of the Earth's plate mantle system (back to 1000 million years ago), which allows visualising the "beating heart" of the Earth through time, across two supercontinent cycles. The model not only appeals to the geodynamic fascination, but would also enable spatio-temporal data analysis to discover past geodynamic environments which could for example host critical mineral deposits. An accompanying animation visualises the history of subduction and deep mantle upwellings with reconstructed continents overlain.
This manuscript describes the oldest model of the Earth's plate mantle system (back to 1000...
Short summary
We have built a community model for the evolution of the Earth's plate–mantle system. Created with open-source software and an open-access plate model, it covers the last billion years, including the formation, breakup, and dispersal of two supercontinents, as well as the creation and destruction of numerous ocean basins. The model allows us to
seeinto the Earth in 4D and helps us unravel the connections between surface tectonics and the
beating heartof the Earth, its convecting mantle.
We have built a community model for the evolution of the Earth's plate–mantle system. Created...