Articles | Volume 13, issue 10
https://doi.org/10.5194/se-13-1569-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1569-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of straight-ray and curved-ray surface wave tomography approaches in near-surface studies
Mohammadkarim Karimpour
CORRESPONDING AUTHOR
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, 10129, Italy
Evert Slob
Department of Geoscience and Engineering, Delft University of Technology, Delft, 2628 CN, Netherlands
Laura Valentina Socco
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, 10129, Italy
Related authors
Sikelela Gomo, Farbod Khosro Anjom, Chiara Colombero, Mohammadkarim Karimpour, Bibi Ayesha Jogee, Musa Siphiwe Doctor Manzi, and Laura Valentina Socco
EGUsphere, https://doi.org/10.5194/egusphere-2025-2401, https://doi.org/10.5194/egusphere-2025-2401, 2025
Short summary
Short summary
Near-surface imaging plays a crucial role in mine development, safety, efficiency, and environmental risk mitigation. Challenges in deep mining often stem from complex geological conditions and anthropogenic factors, such as undocumented historical mining activities. This study presents an integrated geophysical approach that combines multiple geophysical techniques to characterize the near-surface environment and delineate potential water conduits in a deep mining context.
Sikelela Gomo, Farbod Khosro Anjom, Chiara Colombero, Mohammadkarim Karimpour, Bibi Ayesha Jogee, Musa Siphiwe Doctor Manzi, and Laura Valentina Socco
EGUsphere, https://doi.org/10.5194/egusphere-2025-2401, https://doi.org/10.5194/egusphere-2025-2401, 2025
Short summary
Short summary
Near-surface imaging plays a crucial role in mine development, safety, efficiency, and environmental risk mitigation. Challenges in deep mining often stem from complex geological conditions and anthropogenic factors, such as undocumented historical mining activities. This study presents an integrated geophysical approach that combines multiple geophysical techniques to characterize the near-surface environment and delineate potential water conduits in a deep mining context.
Farbod Khosro Anjom, Frank Adler, and Laura Valentina Socco
Solid Earth, 15, 367–386, https://doi.org/10.5194/se-15-367-2024, https://doi.org/10.5194/se-15-367-2024, 2024
Short summary
Short summary
Most surface-wave techniques focus on estimating the S-wave velocity (VS) model and consider the P-wave velocity (VP) model as prior information in the inversion step. Here, we show the application of three surface-wave methods to estimate both VS and VP models. We apply the methods to the data from a hard-rock site that were acquired through the irregular source–receiver recording technique. We compare the outcomes and performances of the methods in detail.
Chiara Colombero, Myrto Papadopoulou, Tuomas Kauti, Pietari Skyttä, Emilia Koivisto, Mikko Savolainen, and Laura Valentina Socco
Solid Earth, 13, 417–429, https://doi.org/10.5194/se-13-417-2022, https://doi.org/10.5194/se-13-417-2022, 2022
Short summary
Short summary
Passive-source surface waves may be exploited in mineral exploration for deeper investigations. We propose a semi-automatic workflow for their processing. The geological interpretation of the results obtained at a mineral site (Siilinjärvi phosphorus mine) shows large potentialities and effectiveness of the proposed workflow.
Cited articles
Auken, E. and Christiansen, A. V.: Layered and laterally constrained 2D
inversion of resistivity data, Geophysics, 69, 752–761,
https://doi.org/10.1190/1.1759461, 2004.
Barone, I., Kästle, E., Strobbia, C., and Cassiani, G.: Surface wave
tomography using 3D active-source seismic data, Geophysics, 86, EN13–EN26,
https://doi.org/10.1190/GEO2020-0068.1, 2021.
Bharadwaj, P., Mulder, W. A., Drijkoningen, G. G., and Reijnen, R.: Looking
Ahead of a Tunnel Boring Machine with 2-D SH Full Waveform Inversion,
77th EAGE Conference and Exhibition, Madrid, Spain, June 2015, 1–5,
https://doi.org/10.3997/2214-4609.201412803, 2015.
Bohlen, T.: Parallel 3-D viscoelastic finite-difference seismic modelling,
Comput. Geosci., 28, 887–899, https://doi.org/10.1016/S0098-3004(02)00006-7,
2002.
Boiero, D.: Surface wave analysis for building shear wave velocity models,
PhD thesis, Politecnico di Torino, https://www.researchgate.net/profile/Daniele-Boiero/publications (last access: 19 October 2022), 2009.
Boschi, L. and Dziewonski, A. M.: High- and low-resolution images of the
Earth's mantle: Implications of different approaches to tomographic
modelling, J. Geophys. Res, 104, 25567–25594,
https://doi.org/10.1029/1999JB900166, 1999.
Boschi, L. and Ekström, G.: New images of the Earth's upper mantle from
measurements of surface wave phase velocity anomalies, J. Geophys.
Res.-Sol. Ea., 107, 1–14, https://doi.org/10.1029/2000JB000059, 2002.
Bozdag, E. and Trampert, J.: On crustal corrections in surface wave
tomography, Geophys. J. Int., 172, 1066–1082,
https://doi.org/10.1111/j.1365-246X.2007.03690.x, 2008.
Bussat, S. and Kugler, S.: Offshore ambient-noise surface-wave tomography
above 0.1 Hz and its applications, Lead. Edge, 30, 514–524,
https://doi.org/10.1190/1.3589107, 2011.
Da Col, F., Papadopoulou, M., Koivisto, E., Sito, L., Savolainen, M., and
Socco, L. V.: Application of surface-wave tomography to mineral exploration:
a case study from Siilinjärvi, Finland, Geophys. Prospect., 68, 254–269,
https://doi.org/10.1111/1365-2478.12903, 2020.
Dunkin, J. W.: Computation of modal solutions in layerered, elastic mida at
high frequencies, Bull. Seismol. Soc. Am., 55, 335–358, 1965.
Dziewonski, A. M. and Hales, A. L.: Numerical Analysis of Dispersed Seismic
Waves, Methods in Computational Physics: Advances in Research and
Applications, 11, 39–85, https://doi.org/10.1016/B978-0-12-460811-5.50007-6,
1972.
Ekstrom, G., Tromp, J., and Larson, E. W. F.: Measurements and global models
of surface wave propagation: J. Geophys. Res., 102, 8137–8157,
https://doi.org/10.1029/96JB03729, 1997.
Fang, H., Yao, H., Zhang, H., Huang, Y., and van der Hilst, R. D.: Direct
inversion of surface wave dispersion for three-dimensional shallow crustal
structure based on ray tracing: methodology and application, Geophys. J.
Int., 201, 1251–1263, https://doi.org/10.1093/gji/ggv080, 2015.
Haskell, N.: The dispersion of surface waves on multilayered media, Bul.
Seimol. Soc. Am., 43, 17–34, https://doi.org/10.1785/BSSA0430010017, 1953.
Ikeda, T. and Tsuji, T.: Two-station continuous wavelet transform
cross-coherence analysis for surface-wave tomography using active-source
seismic data, Geophysics, 85, EN17–EN28,
https://doi.org/10.1190/geo2019-0054.1, 2020.
Kästle, E. D., El-Sharkawy, A., Boschi, L., Meier, T., Rosenberg, C.,
Bellahsen, N., Cristiano, L., and Weidle, C.: Surface wave tomography of the
Alps using ambient-noise and earthquake phase velocity measurements, J.
Geophys. Res.-Sol. Ea., 123, 1770–1792,
https://doi.org/10.1002/2017JB014698, 2018.
Khosro Anjom, F.: S-wave and P-wave velocity model estimation from surface
waves, PhD thesis, Politecnico di Torino, http://hdl.handle.net/11583/2912984 (last access: 19 October 2022), 2021.
Khosro Anjom, F., and Socco, L. V.: Improved surface wave tomography:
Imposing wavelength-based weights, Extended Abstracts, 38th GNGTS national
convention, Rome, 12–14 November 2019, 681–684, https://gngts.ogs.it/archivio/index.php/2019-xxxviii-rm (last access: 19 October 2022), 2019a.
Khosro Anjom F., Teodor, D., Comina, C., Brossier, R., Virieux, J., Socco
L. V.: Full waveform matching of VP and VS models from surface waves,
Geophys. J. Int., 218, 1873–1891,
https://doi.org/10.1093/gji/ggz279, 2019b.
Khosro Anjom, F., Browaeys, T. J., and Socco, L. V.: Multi-modal surface wave
tomography to obtain S- and P-wave velocities applied to the recordings of
UAV deployed sensors, Geophysics, 86, 399–412,
https://doi.org/10.1190/geo2020-0703.1, 2021.
Kugler, S., Bohlen, T., Forbriger, T., Bussat, S., and Klein, G.:
Scholte-wave tomography for shallow-water marine sediments, Geophys. J.
Int., 168, 551–570, https://doi.org/10.1111/j.1365-246X.2006.03233.x, 2007.
Laske, G.: Global observations of off-great-circle propagation of
long-period surface waves, Geophys. J. Int., 13, 245–259,
https://doi.org/10.1111/j.1365-246X.1995.tb06673.x, 1995.
Levander, A. R.: Fourth-order finite-difference P-SV seismograms, Geophysics,
53, 1425–1436, https://doi.org/10.1190/1.1442422, 1988.
Levshin, A. L., Barmin, M. P., Ritzwoller, M. H., and Trampert, J.:
Minor-arc and major-arc global surface wave diffraction tomography, Phys.
Earth Planet. Inter., 149, 205–223,
https://doi.org/10.1016/j.pepi.2004.10.006, 2005.
Lin, F.-C., Moschetti, M. P., and Ritzwoller, M. H.: Surface wave tomography
of the western United States from ambient seismic noise: Rayleigh and Love
wave phase velocity maps, Geophys. J. Int., 173, 281–298,
https://doi.org/10.1111/j.1365-246X.2008.03720.x, 2008.
Lin, F.-C., Ritzwoller, M. H., and Snieder, R.: Eikonal tomography: Surface
wave tomography by phase front tracking across a regional broad-band seismic
array, Geophys. J. Int., 177, 1091–1110,
https://doi.org/10.1111/j.1365-246X.2009.04105.x, 2009.
Magrini, F., Lauro, S., Kästle, E., and Boschi, L.: Surface-wave
tomography using SeisLib: a Python package for multiscale seismic imaging,
Geophys. J. Int., 231, 1011–1030, https://doi.org/10.1093/gji/ggac236,
2022.
Marquardt, D. W.: An algorithm for least squares estimation of nonlinear
parameters, Journal of the Society of Industrial Applied Mathematics, 11,
431–441, https://doi.org/10.1137/0111030, 1963.
Noble, M., Gesret, A., and Belayouni, N.: Accurate 3-D finite difference
computation of traveltimes in strongly heterogeneous media, Geophys. J.
Int., 199, 1572–1585, https://doi.org/10.1093/gji/ggu358, 2014.
Papadopoulou, M.: Surface wave methods for mineral exploration, PhD
thesis, Politecnico di Torino, http://hdl.handle.net/11583/2914550 (last access: 19 October 2022), 2021.
Park, C. B., Miller, R. D., and Xia, J.: Imaging dispersion curves of surface
waves on multi-channel record, SEG Technical Program Expanded Abstracts,
1377–1380, https://doi.org/10.1190/1.1820161, 1998.
Passeri, F.: Development of an advanced geostatistical model for shear wave
velocity profiles to manage uncertainties and variabilities in ground
response analyses, PhD thesis, Politecnico di Torino, http://hdl.handle.net/11583/2730182 (last access: 19 October 2022), 2019.
Passier, M. L., Van der Hilst, R. D., and Snieder, R. K.: Surface wave
waveform inversions for local shear-wave velocities under eastern
Australia, Geophys. Res. Lett., 24, 1291–1294,
https://doi.org/10.1029/97GL01272, 1997.
Picozzi, M., Parolai, S., Bindi, D., and Strollo, A.: Characterization of
shallow geology by high-frequency seismic noise tomography, Geophys. J.
Int., 176, 164–174, https://doi.org/10.1111/j.1365-246X.2008.03966.x, 2009.
Rawlinson, N. and Sambridge, M.: Wave front evolution in strongly
heterogeneous layered media using the fast marching method, Geophys. J.
Int., 156, 631–647, https://doi.org/10.1111/j.1365-246X.2004.02153.x, 2004.
Rector, J. W., Pfeiffe, J., Hodges, S., Kingman, J., and Sprott, E.:
Tomographic imaging of surface waves: A case study from the Phoenix Mine,
Battle Mountain, Nevada, Lead. Edge, 34, 1360–1364,
https://doi.org/10.1190/tle34111360.1, 2015.
Ritzwoller, M. H. and Levshin, A. L.: Eurasian surface wave tomography:
Group velocities, J. Geophys. Res.-Sol. Ea., 103, 4839–4878,
https://doi.org/10.1029/97JB02622, 1998.
Ritzwoller, M. H., Shapiro, N. M., Barmin, M. P., and Levshin, A. L.: Global
surface wave diffraction tomography, J. Geophys. Res., 107, 2335,
https://doi.org/10.1029/2002JB001777, 2002.
Shapiro, N. M., Ritzwoller, M. H., Molnar, P. and Levin, V.: Thinning and
flow of Tibetan crust constrained by seismic anisotropy, Science, 305,
233–236, https://doi.org/10.1126/science.1098276, 2004.
Sieminski, A., Lévêque, J.-J., and Debayle, E.: Can finite-frequency
effects be accounted for in ray theory surface wave tomography?, Geophys.
Res. Lett., 31, L24614, https://doi.org/10.1029/2004GL021402, 2004.
Simons, F. J., Zielhuis, A., and van der Hilst, R. D.: The deep structure of
the Australian continent from surface wave tomography, Develop. Geotect.,
24, 17–43, https://doi.org/10.1016/S0419-0254(99)80003-2, 1999.
Spetzler, J., Trampert, J., and Snieder, R.: Are we exceeding the limits of
the great circle approximation in global surface wave tomography?, Geophys.
Res. Lett., 28, 2341–2344, https://doi.org/10.1029/2000GL012691, 2001.
Spetzler, J., Trampert, J., and Snieder, R.: The effect of scattering in
surface wave tomography, Geophys. J. Int., 149, 755–767,
https://doi.org/10.1046/j.1365-246X.2002.01683.x, 2002.
Thomson, W. T.: Transmission of elastic waves through a stratified solid
medium, J. Appl. Geophys., 21, 89–93, https://doi.org/10.1063/1.1699629,
1950.
Trampert, J. and Spetzler, J.: Surface wave tomography: finite-frequency
effects lost in the null space, Gephys. J. Int., 164, 394–400,
https://doi.org/10.1111/j.1365-246X.2006.02864.x, 2006.
Trampert, J. and Woodhouse, J. H.: Global phase velocity maps of Love and
Rayleigh waves between 40 and 150 seconds, Gephys. J. Int., 122, 675–690,
https://doi.org/10.1111/j.1365-246X.1995.tb07019.x, 1995.
Van Heijst, H. J. and Woodhouse, J.: Global high-resolution phase velocity
distributions of overtone and fundamental-mode surface waves determined by
mode branch stripping, Geophys. J. Int., 137, 601–620,
https://doi.org/10.1046/j.1365-246x.1999.00825.x, 1999.
Virieux, J.: SH-wave propagation in heterogeneous media: velocity-stress
finite-difference method, Geophys., 51, 889–901,
https://doi.org/10.1071/EG984265a, 1986.
Woodhouse, J. H. and Dziewonski, A. M.: Mapping the upper mantle:
three-dimensional modelling of Earth structure by inversion of seismic
waveforms, J. Geophys. Res.-Sol. Ea., 89, 5953–5986,
https://doi.org/10.1029/JB089iB07p05953, 1984.
Wu, Z. and Rector, J.: Seismic-velocity inversion using surface-wave
tomography, SEG Technical Program Expanded Abstracts, 2612–2616,
https://doi.org/10.1190/segam2018-2998108.1, 2018.
Yao, H., Beghein, C., and van der Hilst, R. D.: Surface wave array
tomography in SE Tibet from ambient seismic noise and two-station
analysis – II. Crustal and upper-mantle structure, Geophys. J. Int., 173,
205–219, https://doi.org/10.1111/j.1365-246X.2007.03696.x, 2008.
Yao, H., van der Hilst, R. D., and Montagner, J.-P.: Heterogeneity and
anisotropy of the lithosphere of SE Tibet from surface wave array
tomography, J. Geophys. Res.-Sol. Ea., 115, B12,
https://doi.org/10.1029/2009JB007142, 2010.
Yoshizawa, K. and Kennett, B. L. N.: Multimode surface wave tomography for
the Australian region using a three-stage approach incorporating finite
frequency effects, J. Geophys. Res.-Sol. Ea., 109, B02310,
https://doi.org/10.1029/2002JB002254, 2004.
Zhou, Y., Dahlen, F. A., Nolet, G., and Laske, G.: Finite-frequency effects
in global surface-wave tomography, Geophys. J. Int., 163, 1087–1111,
https://doi.org/10.1111/j.1365-246X.2005.02780.x, 2005.
Short summary
Near-surface characterisation is of great importance. Surface wave tomography (SWT) is a powerful tool to model the subsurface. In this work we compare straight-ray and curved-ray SWT at near-surface scale. We apply both approaches to four datasets and compare the results in terms of the quality of the final model and the computational cost. We show that in the case of high data coverage, straight-ray SWT can produce similar results to curved-ray SWT but with less computational cost.
Near-surface characterisation is of great importance. Surface wave tomography (SWT) is a...