Articles | Volume 14, issue 9
https://doi.org/10.5194/se-14-1031-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-1031-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mineralogical and elemental geochemical characteristics of Taodonggou Group mudstone in the Taibei Sag, Turpan–Hami Basin: implication for its formation mechanism
State Key Laboratory of Oil and Gas Resources and Exploration, Beijing
102249, China
Institute of Unconventional Oil and Gas Science and Technology, China
University of Petroleum-Beijing, Beijing 102249, China
Jianying Guo
CORRESPONDING AUTHOR
CNPC Key Laboratory of Natural Gas Accumulation and
Development, Langfang 065007,
China
Yanbin Wang
College of Geosciences and Surveying Engineering,
China University of Mining and Technology-Beijing, Beijing
100083, China
Zhenxue Jiang
State Key Laboratory of Oil and Gas Resources and Exploration, Beijing
102249, China
Institute of Unconventional Oil and Gas Science and Technology, China
University of Petroleum-Beijing, Beijing 102249, China
Chengju Zhang
State Key Laboratory of Oil and Gas Resources and Exploration, Beijing
102249, China
Institute of Unconventional Oil and Gas Science and Technology, China
University of Petroleum-Beijing, Beijing 102249, China
Chuanming Li
State Key Laboratory of Oil and Gas Resources and Exploration, Beijing
102249, China
College of Geosciences, China University of Petroleum-Beijing,
Beijing 102249, China
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochemistry
Evolution of fluid redox in a fault zone of the Pic de Port Vieux thrust in the Pyrenees Axial Zone (Spain)
Mapping geochemical anomalies by accounting for the uncertainty of mineralization-related elemental associations
Rare Earth element distribution on the Fuerteventura Basal Complex (Canary Islands, Spain): a geochemical and mineralogical approach
Application of lithogeochemical and pyrite trace element data for the determination of vectors to ore in the Raja Au–Co prospect, northern Finland
Influence of basement rocks on fluid evolution during multiphase deformation: the example of the Estamariu thrust in the Pyrenean Axial Zone
Spatiotemporal history of fault–fluid interaction in the Hurricane fault, western USA
Fluid–rock interactions in the shallow Mariana forearc: carbon cycling and redox conditions
Squirt flow due to interfacial water films in hydrate bearing sediments
Delphine Charpentier, Gaétan Milesi, Pierre Labaume, Ahmed Abd Elmola, Martine Buatier, Pierre Lanari, and Manuel Muñoz
Solid Earth, 15, 1065–1086, https://doi.org/10.5194/se-15-1065-2024, https://doi.org/10.5194/se-15-1065-2024, 2024
Short summary
Short summary
Understanding the fluid circulation in fault zones is essential to characterize the thermochemical evolution of hydrothermal systems in mountain ranges. The study focused on a paleo-system of the Pyrenees. Phyllosilicates permit us to constrain the evolution of temperature and redox of fluids at the scale of the fault system. A scenario is proposed and involves the circulation of a single highly reducing hydrothermal fluid (~300 °C) that evolves due to redox reactions.
Jian Wang, Renguang Zuo, and Qinghai Liu
Solid Earth, 15, 731–746, https://doi.org/10.5194/se-15-731-2024, https://doi.org/10.5194/se-15-731-2024, 2024
Short summary
Short summary
This study improves geochemical mapping by addressing the uncertainty in defining element associations. It clusters the study area by element similarity, recognizes elemental associations for each cluster, and then detects anomalies indicating underlying geological processes. This method is applied to a region in China, confirming its effectiveness and consistency with the geology. This study can enhance geochemical mapping for mineral exploration and improve geological-process understanding.
Marc Campeny, Inmaculada Menéndez, Luis Quevedo, Jorge Yepes, Ramón Casillas, Agustina Ahijado, Jorge Méndez-Ramos, and José Mangas
Solid Earth, 15, 639–656, https://doi.org/10.5194/se-15-639-2024, https://doi.org/10.5194/se-15-639-2024, 2024
Short summary
Short summary
The Basal Complex unit on Fuerteventura island comprises magmatic rocks showing significant rare Earth element (REE) concentrations with values up to 10 300 ppm REY (REEs plus yttrium). We carried out mineralogical and geochemical analyses, but additional research is needed to fully understand their distribution due to structural complexities and environmental factors.
Sara Raič, Ferenc Molnár, Nick Cook, Hugh O'Brien, and Yann Lahaye
Solid Earth, 13, 271–299, https://doi.org/10.5194/se-13-271-2022, https://doi.org/10.5194/se-13-271-2022, 2022
Short summary
Short summary
Orogenic gold deposits in Paleoproterozoic belts in northern Finland have been explored not only for gold but because of the occurrences of economically important concentrations of base metals, especially cobalt. In this study we are testing the vectoring capacities of pyrite trace element geochemistry, combined with lithogeochemical and sulfur isotopic data in the Raja gold–cobalt prospect (northern Finland), by using multivariate statistical data analysis.
Daniel Muñoz-López, Gemma Alías, David Cruset, Irene Cantarero, Cédric M. John, and Anna Travé
Solid Earth, 11, 2257–2281, https://doi.org/10.5194/se-11-2257-2020, https://doi.org/10.5194/se-11-2257-2020, 2020
Short summary
Short summary
This study assesses the influence of basement rocks on the fluid chemistry during deformation in the Pyrenees and provides insights into the fluid regime in the NE part of the Iberian Peninsula.
Jace M. Koger and Dennis L. Newell
Solid Earth, 11, 1969–1985, https://doi.org/10.5194/se-11-1969-2020, https://doi.org/10.5194/se-11-1969-2020, 2020
Short summary
Short summary
The Hurricane fault is a major and active normal fault located in the southwestern USA. This study utilizes the geochemistry and dating of calcite veins associated with the fault to characterize ancient groundwater flow. Results show that waters moving along the fault over the last 540 000 years were a mixture of infiltrating fresh water and deep, warm salty groundwater. The formation of calcite veins may be related to ancient earthquakes, and the fault influences regional groundwater flow.
Elmar Albers, Wolfgang Bach, Frieder Klein, Catriona D. Menzies, Friedrich Lucassen, and Damon A. H. Teagle
Solid Earth, 10, 907–930, https://doi.org/10.5194/se-10-907-2019, https://doi.org/10.5194/se-10-907-2019, 2019
Short summary
Short summary
To understand the fate of carbon in subducted oceanic sediments and crust, we studied carbonate phases in rocks from the Mariana subduction zone. These show that carbon is liberated from the downgoing plate at depths less than 20 km. Some of the carbon is subsequently trapped in minerals and likely subducts to greater depths, whereas fluids carry the other part back into the ocean. Our findings imply that shallow subduction zone processes may play an important role in the deep carbon cycle.
Kathleen Sell, Beatriz Quintal, Michael Kersten, and Erik H. Saenger
Solid Earth, 9, 699–711, https://doi.org/10.5194/se-9-699-2018, https://doi.org/10.5194/se-9-699-2018, 2018
Short summary
Short summary
Sediments containing hydrates dispersed in the pore space show a characteristic seismic anomaly: a high attenuation along with increasing seismic velocities. Recent major findings from synchrotron experiments revealed the systematic presence of thin water films between quartz and gas hydrate. Our numerical studies support earlier speculation that squirt flow causes high attenuation at seismic frequencies but are based on a conceptual model different to those previously considered.
Cited articles
Algeo, T. J. and Ingall, E.: Sedimentary Corg:P ratios, paleocean
ventilation, and Phanerozoic atmospheric pO2, Palaeogeogr. Palaeocl., 256, 130–155, 2007.
Algeo, T. J. and Maynard, J. B.: Trace-element behavior and redox facies in
core shales of Upper Pennsylvanian Kansas-type cyclothems, Chem. Geol., 206,
289–318, 2004.
Allègre, C. J. and Minster, J. F.: Quantitative models of trace element
behavior in magmatic processes, Earth Planet. Sc. Lett., 38, 1–25, 1978.
Basu, A., Bickford, M. E., and Deasy, R.: Inferring tectonic provenance of
siliciclastic rocks from their chemical compositions: A dissent, Sediment.
Geol., 336, 26–35, 2016.
Bhatia, M. R.: Plate tectonics and geochemical composition of sandstones, J.
Geol., 91, 611–627, 1983.
Bhatia, M. R. and Crook, K. A. W.: Trace element characteristics of
graywackes and tectonic setting discrimination of sedimentary basin,
Contrib. Mineral. Petrol., 92, 181–193, 1986.
Cai, Y. L., Ouyang, F., Luo, X. R., Zhang, Z. L., Wen, M. L., Luo, X. N.,
and Tang, R.: Geochemical Characteristics and Constraints on Provenance,
Tectonic Setting, and Paleoweathering of Middle Jurassic Zhiluo Formation
Sandstones in the Northwest Ordos Basin, North-Central China, Minerals,
12, 603, https://doi.org/10.3390/min12050603, 2022.
Cao, J., Yang, R. F., Yin, W., Hu, G., Bian, L. Z., and Fu, X. G.: Mechanism
of Organic Matter Accumulation in Residual Bay Environments: The Early
Cretaceous Qiangtang Basin, Tibet, Energ. Fuels, 32, 1024–1037, 2018.
Cao, L., Zhang, Z. H., Zhao, J. Z., Jin, X., Li, H., Li, J. Y., and Wei, X.
D.: Discussion on the applicability of Th U ratio for evaluating the
paleoredox conditions of lacustrine basins, Int. J. Coal Geol., 248, 103868, https://doi.org/10.1016/j.coal.2021.103868,
2021.
Carroll, A., Liang, Y. H., Graham, S., Xiao, X. H., Hendrix, S., Chu, J. C.,
and McKnight, L.: Junggar basin, northwest China: trapped Late Paleozoic
Ocean, Tectonophysics, 181, 1–14, 1990.
Carroll, A., Graham, S., Hendrix, M., Ying, D., and Zhou, D.: Late Paleozoic
tectonic amalgamation of northwestern China: sedimentary record of the
northern Tarim, northwestern Turpan, and southern Junggar basins, Geol. Soc.
Am. Bull., 107, 571–594, 1995.
Chen. X., Niu, R. J., and Cheng, J. H.: The Sequence stratigraphy of Middle
Permian-Triassic in Turpan-Hami Basin, Xinjiang, Pet. Geol., 24, 494–497,
2003.
Deditius, A.: Arsenic Environmental Geochemistry, Mineralogy, and
Microbiology, Rev. Mineral. Geochem., 79, 1905–1907, 2015.
Essefi, E.: Geochemistry and mineralogy of the sebkha Oum El Khialate
evaporites mixtures, southeastern Tunisia, Resour. Geol., 71, 242–249,
2021.
Floyd, P. A. and Leveridge, B. E.: Tectonic environment of the Devonian
Gramscatho Basin, South cornwall: framework mode and geochemical evidence
from turibiditic sandstones, J. Geol. Soc., 144,
531–542, 1987.
Gehrels, G. E., Valencia, V. A., and Ruiz, J.: Enhanced precision,
accuracy,efficiency, and spatial resolution of U-Pb ages by laser
ablation-multicollector-inductively coupled plasma-massspectrometry,
Geochem. Geophy. Geosy., 9, 1–13, 2008.
Glaser, K. S., Miller, C. K., Johnson, G. M., Kleinberg, R. L., and
Pennington, W. D.: Seeking the sweet spot: Reservoir and completion quality
in organic shales, Oilfield Rev., 25, 16–29, 2014.
Greene, T. J., Carroll, A. R., Wartes, M., Graham, S. A., and Wooden, J. L.:
Integrated provenance analysis of a complex orogenic terrane: Mesozoic
uplift of the Bogda Shan and inception of the Turpan-Hami Basin, NW China,
J. Sediment. Res., 75, 251–267, 2005.
Guo, Z., Zhang, Z., Wu, C., Fang, S., and Zhang, R.: The Mesozoic and
Cenozoic exhumation history of Tianshan and comparative studies to the
junggar and Altai mountains, Acta Geol. Sin., 80, 1–15, 2006.
Hatch, J. R. and Leventhal, J. S.: Relationship between inferred redox
potential of the depositional environment and geochemistry of the Upper
Pennsylvanian (Missourian) Stark shale member of the Dennis Limestone,
Wabaunsee County, Kansas, USA, Chem. Geol., 99, 65–82, 1992.
Herkat, M. and Ladjal, A.: Paleobathymetry of foraminiferal assemblages
from the Pliocene of the Western Sahel (North-Algeria), Palaeogeogr.
Palaeocl., 374, 144–163, 2013.
Hu, F., Meng, Q., and Liu, Z.: Mineralogy and element geochemistry of oil
shales in the Lower Cretaceous Qingshankou Formation of the southern
Songliao Basin, northeast China: implications of provenance, tectonic
setting, and paleoenvironment, ACS Earth Space Chem., 5, 365–380, 2021.
Ji, H., Tao, H., Wang, Q., Qiu, Z., Ma, D., Qiu, J., and Liao P.: Early to
middle Jurassic tectonic evolution of the Bogda mountains, northwest China:
evidence from sedimentology and detrital zircon geochronology, J. Asian
Earth Sci., 153, 57–74, 2018.
Jiang, S. H., Li, S. Z., Somerville, I. D., Lei, J. P., and Yang, H. Y.:
Carboniferous-Permian tectonic evolution and sedimentation of the
Turpan-Hami Basin, NW China: Implications for the closure of the Paleo-Asian
Ocean, J. Asian Earth Sci., 113, 644–655, 2015.
Kidder, D. L. and Erwin, D. H.: Secular distribution of biogenic silica
through the phanerozoic: Comparison of silica-replaced fossils and bedded
cherts at the series level, J. Geol., 109, 509–522, 2001.
Korobkin, V. V. and Buslov, M. M.: Tectonics and geodynamics of the western
Central Asian Fold Belt (Kazakhstan Paleozoides), Russ. Geol.
Geophys., 52, 1600–1618, 2011.
Taylor, S. R. and McLennan, S. M.: The Continental Crust: Its Composition and Evolution, Blackwell Scientific Publications, Oxford, https://doi.org/10.1017/S0016756800032167, 1985.
Kroonenberg, S. B.: Effect of provenance, sorting and weathering on the
geochemistry of fluvial sands from different tectonic and climatic
environments, in: Proceedings of the 29th International Geological Congress,
Part A, Kyoto, Japan, 24 August–3 September 1992, 69, 81, Kyoto, Japan, 851052, edited by: Kumon, F. and Yu, K. M., 1992.
Lerman, A. and Baccini, P.: Lakes: Chemisty, Geology, Physics,
Springer-Verlag, New York, https://doi.org/10.1007/978-1-4757-1152-3. 1978.
Li, C. M., Liu, J. T., Ni, L. B., and Fan, S. W.: Characteristics of deep
geological structure and petroleum exploration prospect in Turpan-Hami
Basin, China Petroleum Exploration, 26, 44–57, 2021 (in Chinese with
English abstract).
Li, L., Qu, Y. Q., Meng, Q. R., and Wu, G. L.: Gravity Flow Sedimentation:
Theoretical Studies and Field Identification, Acta Sedimentol. Sin.,
29, 677–688, 2011.
Li, R. B.: Filling characteristic and research significance of Permian in
Tainan Depression of Tuha Basin, Journal of Jilin University, Earth Science
Edition, 49, 1518–1528, https://doi.org/10.13278/j.cnki.jjuese.20180243, 2019.
Li, Y. J., Sun, P. C., Liu, Z. J., Yao, S. Q., Xu, Y. B., and Liu, R.:
Geochemistry of the Permian Oil Shale in the Northern Bogda Mountain,
Junggar Basin, Northwest China: Implications for Weathering, Provenance, and
Tectonic Setting, ACS Earth Space Chem., 4, 1332–1348, 2020.
Li, W., Hu, J., Li, D., Liu, J., Sun, Y., and Liang, J.: Analysis of the
late Paleozoic and Mesozoic paleocurrents and It's constructional
significance of the northern Bogdashan, Xinjiang, Acta Sedimentol. Sin.,
25, 283–292, 2007.
Li, Y. L., Shan, X., Gelwick, K. D., Yu, X. H., Jin, L. N., Yao, Z. Q., Li,
S. L., and Yang, S. Y.: Permian mountain building in the bogda mountains of
NW China, Int. Geol. Rev., 64, 2048270, https://doi.org/10.1080/00206814.2022.2048270, 2022.
Liu, D., Zhang, C., Yao, E., Song, Y., Jiang, Z., and Luo, Q.: What
generated the Late Permian to Triassic unconformities in the southern
Junggar Basin and western Turpan Basin; tectonic uplift, or increasing
aridity?, Palaeogeogr. Palaeocl., 468, 1–17, 2017.
Liu, D., Kong, X., Zhang, C., Wang, J., Yang, D., Liu, X., Wang, X., and
Song, Y.: Provenance and geochemistry of Lower to Middle Permian strata in
the southern Junggar and Turpan basins: a terrestrial record from
mid-latitude NE Pangea,
Palaeogeogr. Palaeocl., 495, 259–277, 2018.
Liu, G. and Zhou, D.: Application of microelements analysis in identifying
sedimentary environment-taking Qianjiang Formation in the Jiang Han Basin as
a example, Pet. Geo. Exp., 29, 307–311, 2007 (in Chinese with English
abstract).
Maravelis, A. G., Offler, R., Pantopoulos, G., and Collins, W. J.:
Provenance and tectonic setting of the Early Permian sedimentary succession
in the southern edge of the Sydney Basin, eastern Australia, Geol. J.,
56, 2258–2276, 2021.
McLennan, S. M., Taylor, S. R., and Kröner, A.: Geochemical evolution of
Archean shales from South Africa I: The Swaziland and Ponggola Supergroups,
Precambrian Res., 22, 93–124, 1983.
McLennan, S. M., Hemming, S., McDaniel, D. K., and Hanson, G. N.: Geochemical
approaches to sedimentation, provenance, and tectonics, Spec. Pap. Geol.
Soc. Am., 284, 21–40, 1993.
Mei, X., Li, X. J., Mi, P. P., Zhao, L., Wang, Z. B., Zhong, H. X., Yang, H.,
Huang, X. T., He, M. Y., Xiong, W., and Zhang, Y.: Distribution regularity and
sedimentary differentiation patterns of China seas surface sediments,
Geol. China, 47, 1447–1462, 2020 (in Chinese with English abstract).
Miao, H., Wang, Y. B., Zhao, S. H., Guo, J. Y., Ni, X. M., Gong, X, Zhang,
Y. J., and Li, J. H.: Geochemistry and Organic Petrology of Middle Per-mian
Source Rocks in Taibei Sag, Turpan-Hami Basin, China: Implication for
Organic Matter Enrichment, ACS Omega, 6, 31578–31594, 2021.
Miao, H., Wang, Y. B., Guo, J. Y., Fu, Y., and Li, J. H.: Weathering
correction and hydrocarbon generation and expulsion
potential of Taodonggou Group source rocks in Taibei Sag in Turpan-Hami
Basin, Petrol. Geol. Oilfield Dev. Daq., 42, 22–32,
2023.
Miao, H., Wang, Y. B., Guo, J. Y., Han, W. L., and Gong, X.: Evaluation of
Middle Permian source rocks of the Taodonggou Group in the Turpan Hami
Basin, Geophys. Prospect. Petrol., 61, 733–742, 2022a (in
Chinese with English abstract).
Miao, H., Wang, Y. B., He, C., Li, J. H., Zhang, W., Zhang, Y. J., and Gong,
X.: Fault development characteristics and reservoir control in Chengbei
fault step zone,Bohai Bay Basin, Lithol. Reserv., 34, 105–115,
2022b (in Chinese with an English abstract).
Miao, H., Wang, Y. B., Ma, Z. T., Guo, J. Y., and Zhang, Y. J.: Generalized
Deltalog R model with spontaneous potential and its application in
predicting total organ carbon content, J. Min. Sci.
Technol., 7, 417–426, 2022c (in Chinese with English abstract).
Miao, J. Y., Zhou, L. F., Deng, K., Li, J. F., Han, Z. Y., and Bu, Z. Q.:
Organic Matters from Middle Permain Source rocks of Northern Xinjiang and
Their Relationships with Sedimentary environments, Geochemica, 6, 551–560,
2004 (in Chinese with English abstract).
Nesbitt, H. W. and Young, G. M.: Prediction of some weathering trends of
plutonic and volcanic rocks based on thermodynamic and kinetic
considerations, Geochim. Cosmochim. Ac., 48, 1523–1534, 1984.
Novikov, I. S.: Reconstructing the stages of orogeny around the Junggar
basin from the lithostratigraphy of Late Paleozoic, Mesozoic, and Cenozoic
sediments, Russ. Geol. Geophys., 54, 138–152, 2013.
Obrist-Farner, J., Yang, W., and Hu, X. F.: Nonmarine time-stratigraphy in a
rift setting: an example from the Mid-Permian lower Quanzijie low-order
cycle Bogda Mountains, NW China, J. Palaeogeogr., 4, 27–51, 2015.
Pinto, L., Munoz, C., Nalpas, T., and Charrier, R.: Role of sedimentation
during basin inversion in analogue modelling, J. Struct. Geol.,
32, 554–565, 2010.
Rollinson, H. R.: Using Geochemical Data: Evaluation, Presentation,
Interpretation, Longman Scientific Technical, New York, https://doi.org/10.4324/9781315845548, 1993.
Rosenthal, Y., Lam, P., Boyle, E. A., and Thomson, J.: Authigenic cadmium
enrichments in suboxic sediments: precipitation and postdepositional
mobility – sciencedirect, Earth Planet. Sc. Lett., 132,
99–111, 1995.
Roser, B. P. and Korsch, R. J.: Provenance Signatures of Sandstone-mudstone
suites determined using discriminant functiom analysis of major-element
data, Chem. Geol., 67, 119–139, 1988.
Ross, D. J. K. and Bustin, R. M.: Investigating the use of sedimentary
geochemical proxies for paleoenvironment interpretation of thermally mature
organic-rich strata: Examples from the Devonian–Mississippian shales,
Western Can. Sediment. Basin Chem. Geol., 260, 1–19, 2009.
Schoepfer, S. D., Shen, J., Wei, H. Y., Tyson, R. V., Ingall, E., and Algeo,
T. J.: Total organic carbon, organic phosphorus, and biogenic barium fluxes
as proxies for paleomarine productivity, Earth Sci. Rev., 149, 23–52, 2015.
Shao, L., Li, W. H., and Yuan, M. S.: Characteristic of sandstone and its
tectonic implications of the Turpan Basin, Acta Sediment. Sin.,
17, 435–441, 1999.
Shao, L., Stattegger, K., and Garbe-Schoenberg, C.: Sandstone petrology and
geochemistry of the Turpan Basin (NW China): implications for the tectonic
evolution of a Continental Basin, J. Sediment. Res., 71,
37–49, 2001 (in Chinese with English abstract).
Shi, J., Zou, Y. R., Cai, Y. L., Zhan, Z. W., Sun, J. N., Liang, T., and
Peng, P. A.: Organic matter enrichment of the Chang 7 member in the Ordos
Basin: Insights from chemometrics and element geochemistry, Mar. Petrol.
Geol., 134, 105306, https://doi.org/10.1016/j.marpetgeo.2021.105404, 2021.
Shi, Y. Q, Ji, H. C., Yu, J. W, Xiang, P. F., Yang, Z. B., and Liu, D. D.:
Provenance and sedimentary evolution from the Middle Permian to Early
Triassic around the Bogda Mountain, NW China: A tectonic inversion
responding to the consolidation of Pangea, Mar. Pet. Geol., 114, 104169, https://doi.org/10.1016/j.marpetgeo.2021.105404,
2020.
Shu, L., Wang, B., Zhu, W., Guo, Z., Charvet, J., and Zhang, Y.: Timing of
initiation of extension in the Tianshan, based on structural, geochemical
and geochronological analyses of bimodal volcanism and olistostrome in the
Bogda Shan (NW China), Int. J. Earth Sci., 100, 1647–1663, 2011.
Song, J., Bao, Z., Zhao, X. M., Gao, Y. S., Song, X. M., Zhu, Y. Z., Deng,
J., Liu, W., Wang, Z. C., Ming, C. D., Meng, Q. K., Zhang, L., Mao, S. W.,
Zhang, Y. L., Yu, X., and Wei, M. Y.: Sedimentology and geochemistry of
Middle–Upper Permian in northwestern Turpan–Hami Basin, China: Implication
for depositional environments and petroleum geology, Energ. Explor.
Exploit., 36, 910–941, 2018.
Sun, G. and Liu, Y.: The preliminary analysis of the uplift time of Bogda
Mountain, Xinjiang, Northwest China, Acta Sedimentol. Sin., 27, 487–491,
2009.
Tang, W., Zhang, Z., Li, J., Li, K., Chen, Y., and Guo, Z.: Late Paleozoic
to Jurassic tectonic evolution of the Bogda area (northwest China): evidence
from detrital zircon U–Pb geochronology, Tectonophysics, 626, 144–156,
2014.
Taylor, S. R. and Mclennan, S. M.: The continental crust: Its composition
and evolution, Blackwell Science Publications, Oxford, https://doi.org/10.1017/S0016756800032167, 1985.
Thorpe, C. L., Law, G. T. W., Boothman, C., Lloyd, J. R., Burke, I. T., and
Morris, K.: The Synergistic Effects of High Nitrate Concentrations on
Sediment Bioreduction, Geomicrobiol. J., 29, 484–493, 2012.
Tian, J. Q., Liu, J. Z., Zhang, Z. B., and Cong, F. Y.: Hydrocarbon-generating
potential, depositional environments, and organisms of the Middle Permian
Tarlong Formation in the Turpan-Hami Basin, northwestern China, GSA Bull.,
129, 1252–1265, 2017.
Tribovillard, N. P., Desprairies, A., Lallier?verges, E., Bertrand, P.,
Moureau, N., Ramdani, A., and Ramanampiso, L.: Geochemical study of
organic-matter rich cycles from the Kimmeridge Clay Formation of Yorkshire
(UK): productivity versus anoxia, Palaeogeogr. Palaeocl., 108, 165–181, 1994.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals
as paleoredox and paleoproductivity proxies: an update, Chem. Geol.,
232, 12–32, 2006.
Tribovillard, N., Algeo, T. J., Baudin, F., and Riboulleau, A.: Analysis of
marine environmental conditions based on molybdenum–uranium
covariation – applications to Mesozoic paleoceanography, Chem. Geol.,
324, 46–58, 2012.
Wartes, M. A., Carroll, A. R., and Greene, T. J.: Permian sedimentary record
of the Turpan-Hami basin and adjacent regions, northwest China: Constraints
on postamalgamation tectonic evolution, Geol. Soc. Am.
Bull., 114, 131–152, 2002.
Wang, A., Wang, Z., Liu, J., Xu, N., and Li, H.: The Sr Ba ratio response to
salinity in clastic sediments of the Yangtze River Delta, Chem. Geol., 559,
119923, https://doi.org/10.1016/j.chemgeo.2020.119923, 2021.
Wang, J., Cao, Y. C., Wang, X. T., Liu, K. Y., Wang, Z. K., and Xu, Q. S.:
Sedimentological constraints on the initial uplift of the West Bogda
Mountains in Mid-Permian, Sci. Rep., 8, 1453, https://doi.org/10.1038/s41598-018-19856-3, 2018a.
Wang, J., Wu, C., Li, Z., Zhu, W., Zhou, T., Wu, J., and Wang, J.: The
tectonic evolution of the Bogda region from Late Carboniferous to Triassic
time: evidence from detrital zircon U–Pb geochronology and sandstone
petrography, Geol. Mag., 155, 1063–1088, 2018b.
Wang, J., Wu, C., Zhou, T., Zhu, W., Zhou, Y., Jiang, X., and Yang, D.:
Source-to-Sink analysis of a transtensional rift Basin from syn-rift to
uplift stages, J. Sediment. Res., 89, 335–352, 2019.
Wang, J. L., Wu, C. D., Zhou, T. Q., Zhu, W., Li, X. Y., and Zhang, T.:
Source and sink evolution of a Permian–Triassic rift–drift basin in the
southern Central Asian Orogenic Belt: Perspectives on sedimentary
geochemistry and heavy mineral analysis, J. Asian Earth Sci.,
181, 103905, https://doi.org/10.1016/j.jseaes.2019.103905, 2019.
Wang, L.: Sediment flux and mechanism for the uplifting of the mountain
system around the Junggar inland basin Sediment, Geol. Tethyan Geol., 16,
39–46, 1996.
Wang, Y.: Mixed Sedimentary Characteristics and Pattern of the Fan Delta in
the Middle Permian Taerlanggou Profile, Xinjiang Province Acta
Sediment. Sin., 37, 922–933, 2019 (in Chinese with English
abstract).
Wang, Z. W., Yu, F., Wang, J., Fu, X. G., Chen, W. B., Zeng, S. Q., and
Song, C. Y.: Palaeoenvironment evolution and organic matter accumulation of
the Upper Triassic mudstone from the eastern Qiangtang Basin (Tibet),
eastern Tethys, Mar. Petrol. Geol., 130, 105113, https://doi.org/10.1016/j.marpetgeo.2021.105113, 2021.
Wronkiewicz, D. J. and Condie, K. C.: Geochemistry of archean shales from
the witwatersrand supergroup, south Africa: Source-area weathering and
provenance, Geochim. Cosmochim. Ac., 51, 2401–2416, 1987.
Wei, H., Chen, D. Z., Wang, J. G., Yu, H., and Tucker, M. E.: Organic
accumulation in the lower Chihsia Formation (Middle Permian) of South China:
Constraints from pyrite morphology and multiple geochemical proxies,
Palaeogeogr. Palaeocl., 353, 73–86, 2012.
Wei, X. X.: Middle-Late Permian fossil woods from Northern Tuha Basin:
Implications for Palaeoclimate, MS thesis, Wuhan, China university of
Geosciences, 2015 (in Chinese with English abstract).
Wu, C., Li, H. W., Sheng, S. Z., Chen, T., Shi, X. F., and Jiang, M. L.:
Characteristics and main controlling factors of hydrocarbon accumulation of
Permian-Triassic in Lukeqin structural zone, Tuha Basin, China Petrol.
Explor., 26, 137–148, 2021 (in Chinese with English abstract).
Xiong, X. H. and Xiao, J. F.: Geochemical Indicators of Sedimentary
Environments – A Summary, Earth Environ., 39, 405–414, 2011 (in
Chinese with English abstract).
Xu, C., Shan, X. L., Lin, H. M., Hao, G. L., Liu, P., Wang, X. D., Shen, M.
R., Rexiti, Y., Li, K., Li, Z. S., Wang, X. M., Du, X. D., Zhang, Z. W., Jia,
P. M., and He, W. T.: The formation of early Eocene organic-rich mudstone in
the western Pearl River Mouth Basin, South China: Insight from paleoclimate
and hydrothermal activity, Int. J. Coal Geol., 253,
103957, https://doi.org/10.1016/j.coal.2022.103957, 2022.
Xu, H. Y.: Characteristics of Permian Dark Fine-Grained Sedimentary rocks and
their shale oil and gas Sigificance in the Northern Margin of Turpan-Hami
Basin, MS thesis, Xi'an: Chang'an University, 2022 (in Chinese with English
abstract).
Yang, W., Feng, Q., Liu, Y. Q., Tabor, N., Miggins, D., Crowley, J. L., Lin,
J. Y., and Thomas, S.: Depositional environments and cyclo- and
chronostratigraphy of uppermost Carboniferous–Lower Triassic
fluvial–lacustrine deposits, southern Bogda Mountains, NW China – A
terrestrial paleoclimatic record of mid-latitude NE Pangea, Glob.
Planet. Change, 73, 15–113, 2010.
Yang, Y., Song, C., and He, S.: Jurassic tectonostratigraphic evolution of
the Junggar basin, NW China: a record of Mesozoic intraplate deformation in
Central Asia, Tectonics, 34, 86–115, 2015.
You, J., Liu, Y., Zhou, D., Zheng, Q., Vasichenko, K., and Chen, Z.:
Activity of hydrothermal fluid at the bottom of a lake and its influence on
the development of high-quality source rocks: Triassic Yanchang Formation,
southern Ordos Basin, China, Austr. J. Earth Sci., 67,
115–128, 2019.
Yu, Y., Cai, H. L., Yin, T. J., Zhang, X. Q., Xu, H., Huang, Y. R., and Cao,
T. T.: Sedimentary Characteristics and Depositional Model of Lacustrine
Gravity Flow Deposits: A case study of the Cretaceous Pointe Indienne
Formation of Block A, Lower Congo Basin, Acta Sediment. Sin.,
40, 34–46, 2022.
Zhang, C., He, D., Wu, X., Shi, X., Luo, J., Wang, B., Yang, G, Guan, S.,
and Zhao, X.: Formation and evolution of multicycle superimposed basins in
Junggar Basin, China Petrol. Exp., 11, 47–58, 2006.
Zhang, K., Song, Y., Jiang, S., Jiang, Z. X., Jia, C. Z., Huang, Y. Z., Wen,
M., Liu, W. W., Xie, X. L., Liu, T. L., Wang, P. F., Shan, C. A., and Wu, Y.
H.: Mechanism analysis of organic matter enrichment in different sedimentary
backgrounds: A case study of the Lower Cambrian and the Upper
Ordovician-Lower Silurian, in Yangtze region, Mar. Petrol. Geol., 99,
488–497, 2019.
Zhang, S., Liu, C., Bai, J., Wang, J., Ma, M., Guan, Y., and Peng, H.:
Provenance variability of the Triassic strata in the Turpan-Hami basin:
detrital zircon record of Indosinian tectonic reactivation in eastern
Tianshan, Acta Geol. Sin., 93, 1850–1868, 2019.
Zhang, S. C., Zhang, B. M., Bian, L. C., Jing, Z. J., Wang, D. R., Zhang, X.
Y., Gao, Z. Y., and Chen, J. F.: Development constraints of marine source
rocks in China, Earth Sci. Front., 12, 39–48, 2005 (in Chinese with
English abstract).
Zhao, B. S., Li, R. X., Qin, X. L., Wang, N., Zhou, W., Khaled, A., Zhao,
D., Zhang, Y. N., Wu, X. L., and Liu, Q.: Geochemical characteristics and
mechanism of organic matter accumulation of marine-continental transitional
shale of the lower permian Shanxi Formation, southeastern Ordos Basin, north
China, J. Petrol. Sci. Eng., 205, 108815, https://doi.org/10.1016/j.petrol.2021.108815, 2021.
Zhao, R., Zhang, J. Y., Zhou, C. M., Zhang, Z. J., Chen, S., Stockli, D.F.,
Olariu, C., Steel, R., and Wang, H.: Tectonic evolution of
Tianshan-Bogda-Kelameili mountains, clastic wedge basin infill and
chronostratigraphic divisions in the source-to-sink systems of
Permian-Jurassic, southern Junggar Basin, Mar. Petrol. Geol., 114, 104200, https://doi.org/10.1016/j.marpetgeo.2019.104200,
2020.
Zhu, X., Wang, B, Chen, Y., and Liu, H. S.: Constraining the
Intracontinental Tectonics of the SW Central Asian Orogenic Belt by the
Early Permian Paleomagnetic Pole for the Turfan-Hami Block, J.
Geophys. Res.-Sol. Ea., 124, 12366–12387, 2019.
Short summary
The Taodonggou Group mudstone was deposited in a warm, humid, and hot paleoclimate with strong weathering. The parent rocks of the Taodonggou Group mudstone are felsic volcanic rocks and andesites, with weak sedimentary sorting and recycling and with well-preserved source information. The Taodonggou Group mudstone was deposited in dyoxic fresh water–brackish water in intermediate-depth or deep lakes with stable inputs of terrigenous debris but at slower deposition rates.
The Taodonggou Group mudstone was deposited in a warm, humid, and hot paleoclimate with strong...