Articles | Volume 14, issue 3
https://doi.org/10.5194/se-14-333-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-333-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Münsterdorf sinkhole cluster: void origin and mechanical failure
Georg Kaufmann
CORRESPONDING AUTHOR
Institute of Geological Sciences, Freie Universität Berlin, Malteserstr. 74–100, Haus D, 12249 Berlin, Germany
Douchko Romanov
Institute of Geological Sciences, Freie Universität Berlin, Malteserstr. 74–100, Haus D, 12249 Berlin, Germany
Ulrike Werban
Department Monitoring- und Erkundungstechnologien, Helmholtz-Zentrum für Umweltforschung – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
Thomas Vienken
Department Monitoring- und Erkundungstechnologien, Helmholtz-Zentrum für Umweltforschung – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
Geothermal Energy, Weihenstephan-Triesdorf University of Applied Sciences, TU Munich Campus Straubing for Biotechnology and Sustainability, 94315 Straubing, Germany
Related authors
Georg Kaufmann, Franci Gabrovšek, and Douchko Romanov
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-372, https://doi.org/10.5194/hess-2016-372, 2016
Revised manuscript not accepted
Peter Jung, Götz Hornbruch, Andreas Dahmke, Peter Dietrich, and Ulrike Werban
EGUsphere, https://doi.org/10.5194/egusphere-2024-257, https://doi.org/10.5194/egusphere-2024-257, 2024
Short summary
Short summary
We demonstrate the feasibility of imaging vertical freezing boundaries using borehole-GPR in an experimental geological latent heat storage, where a part of a shallow quaternary aquifer is frozen. To get insight on the current thermal state in the subsurface the dimension of the frozen volume is assessed. We show, that a combination of crosshole and reflection measurements enables to image the ice body with high accuracy in the, for GPR, challenging environment of saturated sediments.
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086, https://doi.org/10.5194/hess-25-6067-2021, https://doi.org/10.5194/hess-25-6067-2021, 2021
Short summary
Short summary
Export of dissolved organic carbon (DOC) from riparian zones (RZs) is an important yet poorly understood component of the catchment carbon budget. This study chemically and spatially classifies DOC source zones within a RZ of a small catchment to assess DOC export patterns. Results highlight that DOC export from only a small fraction of the RZ with distinct DOC composition dominates overall DOC export. The application of a spatial, topographic proxy can be used to improve DOC export models.
Edoardo Martini, Matteo Bauckholt, Simon Kögler, Manuel Kreck, Kurt Roth, Ulrike Werban, Ute Wollschläger, and Steffen Zacharias
Earth Syst. Sci. Data, 13, 2529–2539, https://doi.org/10.5194/essd-13-2529-2021, https://doi.org/10.5194/essd-13-2529-2021, 2021
Short summary
Short summary
We present the in situ data available from the soil monitoring network
STH-net, recently implemented at the Schäfertal Hillslope site (Germany). The STH-net provides data (soil water content, soil temperature, water level, and meteorological variables – measured at a 10 min interval since 1 January 2019) for developing and testing modelling approaches in the context of vadose zone hydrology at spatial scales ranging from the pedon to the hillslope.
Monja Ellinger, Ines Merbach, Ulrike Werban, and Mareike Ließ
SOIL, 5, 275–288, https://doi.org/10.5194/soil-5-275-2019, https://doi.org/10.5194/soil-5-275-2019, 2019
Short summary
Short summary
Vis–NIR spectrometry is often applied to capture soil organic carbon (SOC). This study addresses the impact of the involved data and modelling aspects on SOC precision with a focus on the propagation of input data uncertainties. It emphasizes the necessity of transparent documentation of the measurement protocol and the model building and validation procedure. Particularly, when Vis–NIR spectrometry is used for soil monitoring, the aspect of uncertainty propagation becomes essential.
Edoardo Martini, Ulrike Werban, Steffen Zacharias, Marco Pohle, Peter Dietrich, and Ute Wollschläger
Hydrol. Earth Syst. Sci., 21, 495–513, https://doi.org/10.5194/hess-21-495-2017, https://doi.org/10.5194/hess-21-495-2017, 2017
Short summary
Short summary
With a process-based interpretation of electromagnetic induction measurements, we discussed the potential and limitations of such a method for soil moisture mapping. Results will help clarify the complex and time-varying effect of stable soil properties and dynamic state variables on the physical parameters measured, with implications for future studies. We highlighted the importance of time-series data and the need for a multidisciplinary approach for proper interpretation.
Georg Kaufmann, Franci Gabrovšek, and Douchko Romanov
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-372, https://doi.org/10.5194/hess-2016-372, 2016
Revised manuscript not accepted
Related subject area
Subject area: The evolving Earth surface | Editorial team: Stratigraphy, sedimentology, geomorphology, morphotectonics, and palaeontology | Discipline: Geomorphology
Effect of structural setting of source volume on rock avalanche mobility and deposit morphology
Zhao Duan, Yan-Bin Wu, Qing Zhang, Zhen-Yan Li, Lin Yuan, Kai Wang, and Yang Liu
Solid Earth, 13, 1631–1647, https://doi.org/10.5194/se-13-1631-2022, https://doi.org/10.5194/se-13-1631-2022, 2022
Short summary
Short summary
We studied the mobility and sedimentary characteristics of rock avalanches influenced by initial discontinuity sets with experimental methods. In the experiments, we set different initial configurations of blocks. The results revealed that the mobility and surface structures of the mass flows differed significantly. In the mass deposits, the block orientations were affected by their initial configurations and the motion processes of the mass flows.
Cited articles
Aarhus GeoSoftware: Res2DInv DC/IP processing and inversion software, Aarhus GeoSoftware [software], https://www.aarhusgeosoftware.dk/res2dinv (last access: 27 February 2023), 2022. a
Ahrens, J., Geveci, B., and Law, C.:
ParaView: An End-User Tool for Large Data Visualization,
in: Visualisation Handbook, edited by:
Hansen, C. D. and Johnson, C. R.,
Elsevier, 717–731, ISBN-13 978-0123875822, 2005. a
Atekwana, E., Atekwana, E., Rowe, R., Werkema Jr., D., and Legall, F.: The
relationship of total dissolved solids measurements to bulk electrical
conductivity in an aquifer contaminated with hydrocarbon, J. Applied
Geophys., 56, 281–294, https://doi.org/10.1016/j.jappgeo.2004.08.003, 2004. a
Ayachit, U.: The ParaView Guide: A Parallel Visualization Application,
Kitware, 276 pp., ISBN-13 978-1930934290, 2015. a
Blakely, R., Beeson, M., Cruikshank, K., Wells, R., Johnson, A., and Walsh, K.:
Gravity Study through the Tualatin Mountains, Oregon: Understanding Crustal Structure and Earthquake Hazards in the Portland Urban Area,
Bull. Seis. Soc. Am., 94, 1402–1409, 2004. a
Bowles, J.: Foundation analysis and design, fifth edn., McGraw-Hill, ISBN 0-07-912247-7,
1997. a
Buhmann, D. and Dreybrodt, W.: The kinetics of calcite dissolution and
precipitation in geologically relevant situations of karst areas. 1. Open
system, Chem. Geol., 48, 189–211, 1985a. a
Buhmann, D. and Dreybrodt, W.: The kinetics of calcite dissolution and
precipitation in geologically relevant situations of karst areas. 2. Closed
system, Chem. Geol., 53, 109–124, 1985b. a
Christy, C. D., Christy, T. M., and Wittig, V.: A Percussion Probing Tool for
the Direct Sensing of Soil Conductivity, Technical Paper 94-100, Geoprobe
Systems, https://geoprobe.com/sites/default/files/pdfs/conductivity_paper_0_0_0.pdf (last access: 27 February 2023), 1994. a
Cundall, P. A. and Strack, O. D. L.: A discrete numerical model for granular
assemblies, Géotechnique, 29, 47–65, https://doi.org/10.1680/geot.1979.29.1.47,
1979. a
De Waele, J., Gutierrez, F., Parise, M., and Plan, L.: Geomorphology and
natural hazards in karst areas: a review, Geomorphology, 134, 1–8, https://doi.org/10.1016/j.geomorph.2011.08.001,
2011. a
Göthling, S., Henrich, V., Klein, E., Kling, C., Muhrbeck, M., Schiperski,
F., Tsami, S., and Wilke, H.: Interdisziplinäre Projektanalyse im
Kreide-Tagebau bei Lägerdorf, Report, TU Berlin, 2010. a
Grube, A. and Rickert, B.: Karstification of the Elmshorn salt diapir (SW
Schleswig-Holstein, Germany), Z. Dt. Ges. Geowiss., 169, 547–566, 2019. a
Grube, A., Grube, F., Rickert, B., and Strahl, J.: Eemian fossil caves and
other karst structures in Cretaceous chalk and succeeding Quaternary
sediments covering the salt structure Krempe-Lägerdorf (SW
Schleswig-Holstein, North Germany), Z. Dt. Ges. Geowiss., 168, 263–284,
2017. a
Grube, F.: Tektonische Untersuchungen in der Oberkreide von Laegerdorf
(Holstein), Mitteilungen aus dem Mineralogisch-Geologischen Institut in
Hamburg, 24, 32 pp., 1955. a
Gutiérrez, F., Guerrero, J., and Lucha, P.: A genetic classification of
sinkholes illustrated from evaporite paleokarst exposures in Spain, Env.
Geol., 53, 993–1006, 2008a. a
Gutiérrez, F., Johnsson, K. S., and Cooper, H. J.: Evaporite karst
processes, landforms, and environmental problems, Env. Geol., 53, 935–936,
2008b. a
Gutiérrez, F., Parise, M., De Waele, J., and Jourde, H.: A review on
natural and human-induced geohazards and impacts in karst, Earth sci.
Rev., 138, 61–88, 2014. a
Harland, M.: Radiomagnetotellurische Messungen zur Erdfallgefährdung in
Münsterdorf (Kreis Steinburg, Schleswig-Holstein), Master's
thesis, Universität zu Köln, 2010. a
Iwanoff, A.: Environmental impacts of deep opencast limestone mines in
Lägerdorf, Northern Germany, Mine Water Environ., 17, 52–61,
1998. a
Kaufmann, G.: Geophysical mapping of solution and collapse sinkholes, J. Appl.
Geophys., 111, 271–288, 2014. a
Kaufmann, G. and Romanov, D.: Structure and evolution of collapse sinkholes;
Combined interpretation from physico-chemical modelling and geophysical field
work, J. Hydrol., 540, 688–698, https://doi.org/10.1016/j.jhydrol.2016.06.050, 2016. a
Kirsch, R. (Ed.): Groundwater Geophysics: A Tool for Hydrogeology, 2nd edn., Springer, ISBN 978-3-642-10005-5, 2009. a
Kirsch, R. and Werner, G.: Ergebnisse der Bohrarbeiten und
Rammkernsondierungen auf dem Erdfallgelände Münsterdorf,
November–Dezember 2007, Internal report, Landesamt für Bergbau, Energie und Geologie, Hannover, 20 pp., 2008. a
Kjekstad, O., Lunne, T., and Clausen, J.: Comparison between in situ cone
resistance and laboratory strength for overconsolidated north sea clays, Mar.
Geotech., 3, 23–36, https://doi.org/10.1080/10641197809379792, 1978. a
Köstler, A. and Ehrmann, W.: Fault patterns in the calcareous overburden of a
salt diapir: Laegerdorf, NW Germany, N. Jb. Geol. Paläont. Mh., H9,
555–569, 1986. a
Lloyd, J.W.; Heathcote, J.: Natural Inorganic Hydrochemistry in Relation to
Groundwater, Clarendon Press, Oxford, England, 302 pp., ISBN-13 978-0198544227, 1985. a
Loke, M.: RES2DMOD ver. 3.03 Rapid 2D resistivity and I.P. forward modeling
using the finite-difference and finite-element methods, Tech. Rep.,
Geotomosoft Solutions, Malaysia, 2016. a
Lollino, P., Martimucci, V., and Parise, M.: Geological survey and numerical
modeling of the potential failure mechanisms of underground caves, Geosystem
Engineering, 16, 100–112, 2013. a
Lunne, T. and Kleven, A.: Role of CPT in North Sea Foundation Engineering,
pp. 49–75, Symposium on Cone Penetration Engineering Division, ASCE, 1981. a
McCall, W.: Application of the Geoprobe© HPT Logging System for
Geo-Environmental Investigation, Tech. Rep., Technical Bulletin No. MK3184, https://geoprobe.com/sites/default/files/storage/pdfs/mk3184_application_of_hpt_for_geo-environmental_investigations_0_0.pdf (last access: 27 February 2023),
2011. a
Messerklinger, S.: Formation mechanism of large subsidence sinkholes in the
Lar valley in Iran, Quat. J. Eng. Geol. Hydrogeol., 47, 237–250, 2014. a
Olsen, C., Christensen, H., and Fabricius, I.: Static and dynamic Young's
moduli of chalk from the North Sea, Geophysics, 73, E41–E50, 2008. a
Panno, S., Kelly, W., Angel, J., and Luman, D.: Hydrogeologic and topographic
controls on evolution of karst features in Illinous' sinkhole plain,
Carbonates Evaporates, 28, 13–21, 2013. a
Parise, M.: Sinkholes, in: Encyclopedia of Caves, edited by:
White, W. B., Culver, D. C., and Pipan, T.A, Academic Press, 934–942,
ISBN 9780128141243, 2019. a
Parise, M.: Sinkholes, Subsidence and Related Mass Movements, in:
Treatise on Geomorphology, edited by: Schroder, J. J. F.,
Academic Press, 200–220,
https://doi.org/10.1016/B978-0-12-818234-5.00029-8,
2022. a
Parise, M. and Gunn, J.: Natural and anthropogenic hazards in karst areas:
Recognition, Analysis and Mitigation, Special Publications 279, Geological
Society, London, ISBN-13 978-1862392243, 2007. a
Parise, M. and Lollino, P.: A preliminary analysis of failure mechanisms in
karst and man-made underground caves in Southern Italy, Geomorphology, 134, 132–143, 2011. a
Reddy, J. N.: Theory and analysis of elastic plates and shells, 2nd edn., CRC Press,
Taylor and Francis, ISBN-13 978-0849384158, https://doi.org/10.1201/9780849384165, 2006. a
Robertson, P.: Cone penetration test (CPT)-based soil behaviour type (SBT)
classification system – an update, Can. Geotech. J., 53, 1910–1927,
https://doi.org/10.1139/cgj-2016-0044, 2016. a
Rogiers, B., Vienken, T., Gedeon, M., Batelaan, O., Mallants, D., Huysmans, M.,
and Dassargues, A.: Multi-scale aquifer characterization and groundwater flow
model parameterization using direct push technologies, Environ. Earth
Sci., 72, 1303–1324, 2014. a
Romanov, D., Kaufmann, G., and Al-Halbouni, D.: Basic processes and factors
determining the evolution of collapse sinkholes – a sensitivity study,
Eng. Geol., 270, 105589, https://doi.org/10.1016/j.enggeo.2020.105589,
2020. a
Scholtés, L. and Donzè, F.: Modelling progressive failure in fractured rock
masses using a 3D discrete element method, Int. J. Rock Mech. Min. Sci,,
52, 18–30, 2012. a
Scholtés, L. and Donzè, F.: A DEM model for soft and hard rocks: Role of
grain interlocking on strength, J. Mech. Phys. Solids, 61, 352–369, 2013. a
Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Durie, J., Dyc,
N., Eliáš, J., Er, B., Eulitz, A., Gladky, A., Guo, N., Jakob, C.,
Kneib, F., Kozicki, J., Marzougui, D., Maurin, R., Modenese, C., Scholtès,
L., Sibille, L., Stránský, J., Sweijen, T., Thoeni, K., and Yuan, C.:
Yade Documentation, 2nd edn., The Yade Project, Zenodo [software], https://doi.org/10.5281/zenodo.5705394
2020. a
Stüwe, K.: Geodynamics of the Lithosphere: An Introduction, 2nd
edn., Springer, ISBN-13 978-3-540-71236-7, https://doi.org/10.1007/978-3-540-71237-4, 2007. a
Topp, G., Davis, J., and Annan, P.: Electromagnetic Determination of Soil Water
Content: Measurements in Coaxial Transmission Lines, Water Resour.
Res., 16, 574–582, https://doi.org/10.1029/WR016i003p00574, 1980. a
Vienken, T., Leven, C., and Dietrich, P.: Use of CPT and other direct push
methods for (hydro-) stratigraphic aquifer characterization – a field study,
Can. Geotech. J., 49, 197–206, 2012. a
Vienken, T., Reboulet, E., Leven, C., Kreck, M., Zschornack, L., and Dietrich,
P.: Field comparison of selected methods for vertical soil water content
profiling, J. Hydrology, 501, 205–212, 2013. a
Waltham, A. and Fookes, P.: Engineering classification of karst ground
conditions, Q. J. Eng. Geol. Hydroge., 36,
101–118, 2003. a
Waltham, T., Bell, F., and Culshaw, M.: Sinkholes and Subsidence: Karst and
Cavernous Rocks in Engineering and Construction, 1st edn., Springer, 384 pp., ISBN13 978-3-642-05851-6,
https://doi.org/10.1007/b138363,
2005. a, b
Wessel, P. and Smith, W. H. F.: New, improved version of Generic Mapping Tools
released, EOS, 79, 47, https://doi.org/10.1029/98EO00426, 1998. a
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., and Wobbe, F.: Generic
Mapping Tools: Improved version released, EOS, 94, 409–410, https://doi.org/10.1002/2013EO450001,
2013. a
Williams, P.: Dolines, in:
Encyclopedia of caves and karst science, 2nd edn.,
edited by: Gunn, J.,
Fitzroy Dearborn Publ.,
628–642, 2004. a
YADE: YADE package, https://yade-dem.org, last access: 27 February 2023. a
Short summary
We discuss collapse sinkholes occuring since 2004 on the sports field of Münsterdorf, a village north of Hamburg. The sinkholes, 2–5 m in size and about 3–5 m deep, develop in peri-glacial sand, with a likely origin in the Cretaceous chalk, present at about 20 m depth. The area has been analyzed with geophysical and direct-push-based methods, from which material properties of the subsurface have been derived. The properties have been used for mechanical models, predicting the subsidence.
We discuss collapse sinkholes occuring since 2004 on the sports field of Münsterdorf, a village...