Articles | Volume 14, issue 8
https://doi.org/10.5194/se-14-937-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-937-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Numerical modeling of stresses and deformation in the Zagros–Iranian Plateau region
Srishti Singh
CSIR – National Geophysical Research Institute, Hyderabad, 500007, India
CSIR – National Geophysical Research Institute, Hyderabad, 500007, India
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Reflection tomography by depth warping: a case study across the Java trench
Impact of Timanian thrust systems on the late Neoproterozoic–Phanerozoic tectonic evolution of the Barents Sea and Svalbard
Forearc density structure of the overriding plate in the northern area of the giant 1960 Valdivia earthquake
Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard
Multi-scale analysis and modelling of aeromagnetic data over the Bétaré-Oya area in eastern Cameroon, for structural evidence investigations
Mantle flow below the central and greater Alpine region: insights from SKS anisotropy analysis at AlpArray and permanent stations
A Python framework for efficient use of pre-computed Green's functions in seismological and other physical forward and inverse source problems
Seismic attenuation and dispersion in poroelastic media with fractures of variable aperture distributions
Structural expression of a fading rift front: a case study from the Oligo-Miocene Irbid rift of northwest Arabia
Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network
Yueyang Xia, Dirk Klaeschen, Heidrun Kopp, and Michael Schnabel
Solid Earth, 13, 367–392, https://doi.org/10.5194/se-13-367-2022, https://doi.org/10.5194/se-13-367-2022, 2022
Short summary
Short summary
Geological interpretations based on seismic depth images depend on an accurate subsurface velocity model. Reflection tomography is one method to iteratively update a velocity model based on depth error analysis. We used a warping method to estimate closely spaced data-driven depth error displacement fields. The application to a multichannel seismic line across the Sunda subduction zone illustrates the approach which leads to more accurate images of complex geological structures.
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022, https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Short summary
The present study shows evidence of fault systems (large cracks in the Earth's crust) hundreds to thousands of kilometers long and several kilometers thick extending from northwestern Russia to the northern Norwegian Barents Sea and the Svalbard Archipelago using seismic, magnetic, and gravimetric data. The study suggests that the crust in Svalbard and the Barents Sea was already attached to Norway and Russia at ca. 650–550 Ma, thus challenging existing models.
Andrei Maksymowicz, Daniela Montecinos-Cuadros, Daniel Díaz, María José Segovia, and Tomás Reyes
Solid Earth, 13, 117–136, https://doi.org/10.5194/se-13-117-2022, https://doi.org/10.5194/se-13-117-2022, 2022
Short summary
Short summary
This work analyses the density structure of the continental forearc in the northern segment of the 1960 Mw 9.6 Valdivia earthquake. Results show a segmentation of the continental wedge along and perpendicular to the margin. The extension of the less rigid basement units conforming the marine wedge and Coastal Cordillera domain could modify the process of stress loading during the interseismic periods. This analysis highlights the role of the overriding plate on the seismotectonic process.
Jean-Baptiste P. Koehl
Solid Earth, 12, 1025–1049, https://doi.org/10.5194/se-12-1025-2021, https://doi.org/10.5194/se-12-1025-2021, 2021
Short summary
Short summary
By using seismic data and fieldwork, this contribution shows that soft, coal-rich sedimentary rocks absorbed most of early Cenozoic, Eurekan, contractional deformation in central Spitsbergen, thus suggesting that no contractional deformation event is needed in the Late Devonian to explain the deformation differences among late Paleozoic sedimentary rocks. It also shows that the Billefjorden Fault Zone, a major crack in the Earth's crust in Svalbard, is probably segmented.
Christian Emile Nyaban, Théophile Ndougsa-Mbarga, Marcelin Bikoro-Bi-Alou, Stella Amina Manekeng Tadjouteu, and Stephane Patrick Assembe
Solid Earth, 12, 785–800, https://doi.org/10.5194/se-12-785-2021, https://doi.org/10.5194/se-12-785-2021, 2021
Short summary
Short summary
A multi-scale analysis of aeromagnetic data combining tilt derivative, Euler deconvolution, upward continuation, and 2.75D modelling was applied over Cameroon between the latitudes 5°30'–6° N and the longitudes 13°30'–14°45' E. Major families of faults oriented ENE–WSW, E–W, NW–SE, and N–S with a NE–SW prevalence were mapped. Depths of interpreted faults range from 1000 to 3400 m, mylonitic veins were identified, and 2.75D modelling revealed fault depths greater than 1200 m.
Laura Petrescu, Silvia Pondrelli, Simone Salimbeni, Manuele Faccenda, and the AlpArray Working Group
Solid Earth, 11, 1275–1290, https://doi.org/10.5194/se-11-1275-2020, https://doi.org/10.5194/se-11-1275-2020, 2020
Short summary
Short summary
To place constraints on the mantle deformation beneath the Central Alps and the greater Alpine region, we analysed the appropriate seismic signal recorded by more than 100 stations, belonging to AlpArray and to other permanent networks. We took a picture of the imprinting that Alpine orogen history and related subductions left at depth, with a mainly orogen-parallel mantle deformation from Western Alps to Eastern Alps, but also N to S from the Po Plain to the Rhine Graben.
Sebastian Heimann, Hannes Vasyura-Bathke, Henriette Sudhaus, Marius Paul Isken, Marius Kriegerowski, Andreas Steinberg, and Torsten Dahm
Solid Earth, 10, 1921–1935, https://doi.org/10.5194/se-10-1921-2019, https://doi.org/10.5194/se-10-1921-2019, 2019
Short summary
Short summary
We present an open-source software framework for fast and flexible forward modelling of seismic and acoustic wave phenomena and elastic deformation. It supports a wide range of applications across volcanology, seismology, and geodesy to study earthquakes, volcanic processes, landslides, explosions, mine collapses, ground shaking, and aseismic faulting. The framework stimulates reproducible research and open science through the exchange of pre-calculated Green's functions on an open platform.
Simón Lissa, Nicolás D. Barbosa, J. Germán Rubino, and Beatriz Quintal
Solid Earth, 10, 1321–1336, https://doi.org/10.5194/se-10-1321-2019, https://doi.org/10.5194/se-10-1321-2019, 2019
Short summary
Short summary
We quantify the effects that 3-D fractures with realistic distributions of aperture have on seismic wave attenuation and velocity dispersion. Attenuation and dispersion are caused by fluid pressure diffusion between the fractures and the porous background. We show that (i) both an increase in the density of contact areas and a decrease in their correlation length reduce attenuation and (ii) a simple planar fracture can be used to emulate the seismic response of realistic fracture models.
Reli Wald, Amit Segev, Zvi Ben-Avraham, and Uri Schattner
Solid Earth, 10, 225–250, https://doi.org/10.5194/se-10-225-2019, https://doi.org/10.5194/se-10-225-2019, 2019
Short summary
Short summary
Plate-scale rifting is frequently expressed by the subsidence of structural basins along an axis, but postdating tectonic and magmatic activity mostly obscures them. A 3-D subsurface imaging and facies analysis down to 1 km reveals uniquely preserved Galilean basins subsiding along a failing rift front in two main stages. Rifting within a large releasing jog (20–9 Ma), followed by localized grabenization off the Dead Sea fault plate boundary (9–5 Ma), prevents them from dying out peacefully.
Dietrich Lange, Frederik Tilmann, Tim Henstock, Andreas Rietbrock, Danny Natawidjaja, and Heidrun Kopp
Solid Earth, 9, 1035–1049, https://doi.org/10.5194/se-9-1035-2018, https://doi.org/10.5194/se-9-1035-2018, 2018
Short summary
Cited articles
Allen, M., Ghassemi, M., Shahrabi, M., and Qorashi, M.: Accommodation of late
Cenozoic oblique shortening in the Alborz range, northern Iran, J. Struct. Geol., 25, 659–672, 2003. a
Allen, M. B. and Armstrong, H. A.: Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling, Palaeogeogr. Palaeocl. Palaeoecol., 265, 52–58, 2008. a
Allen, M. B., Kheirkhah, M., Emami, M. H., and Jones, S. J.: Right-lateral
shear across Iran and kinematic change in the Arabia–Eurasia collision
zone, Geophys. J. Int., 184, 555–574, 2011. a
ArRajehi, A., McClusky, S., Reilinger, R., Daoud, M., Alchalbi, A., Ergintav,
S., Gomez, F., Sholan, J., Bou-Rabee, F., Ogubazghi, G., Haileab, B., Fisseha, S., Asfaw, L., Mahmoud, S., Rayan, A., Bendik, R., and Kogan, L.: Geodetic constraints on present-day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting, Tectonics, 29, TC3011, https://doi.org/10.1029/2009TC002482, 2010. a
Authemayou, C., Bellier, O., Chardon, D., Malekzade, Z., and Abassi, M.: Role
of the Kazerun fault system in active deformation of the Zagros fold-and-thrust belt (Iran), Comptes Rendus Geoscience, 337, 539–545, 2005. a
Baniadam, F., Shabanian, E., and Bellier, O.: The kinematics of the Dasht-e
Bayaz earthquake fault during Pliocene-Quaternary: implications for the
tectonics of eastern Central Iran, Tectonophysics, 772, 228218, https://doi.org/10.1016/j.tecto.2019.228218, 2019. a
Bassin, C., Laske, G., and Masters, G.: The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans. AGU, 81, F897, http://igppweb.ucsd.edu/~gabi/rem.html (last access: March 2022), 2000 a
Becker, T. W., O'Neill, C., and Steinberger, B.: HC, a global mantle circulation solver, GitHub [code], https://github.com/geodynamics/hc, 2009.
Berberian, M.: Master “blind” thrust faults hidden under the Zagros folds:
active basement tectonics and surface morphotectonics, Tectonophysics, 241,
193–224, 1995. a
Berberian, M. and King, G.: Towards a paleogeography and tectonic evolution of Iran, Can. J. Earth Sci., 18, 210–265, 1981. a
Bird, P.: Testing hypotheses on plate-driving mechanisms with global
lithosphere models including topography, thermal structure, and faults, J. Geophys. Res.-Solid, 103, 10115–10129, 1998. a
Coblentz, D. D. and Sandiford, M.: Tectonic stresses in the African plate:
Constraints on the ambient lithospheric stress state, Geology, 22, 831–834,
1994. a
Debayle, E., Dubuffet, F., and Durand, S.: An automatically updated S-wave
model of the upper mantle and the depth extent of azimuthal anisotropy, Geophys. Res. Lett., 43, 674–682, 2016. a
DeMets, C., Gordon, R. G., Argus, D., and Stein, S.: Current plate motions,
Geophys. J. Int., 101, 425–478, 1990. a
Dyksterhuis, S. and Müller, R.: Cause and evolution of intraplate orogeny
in Australia, Geology, 36, 495–498, 2008. a
Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A., and Priestley,
K.: Relocation and assessment of seismicity in the Iran region, Geophys. J. Int., 167, 761–778, 2006. a
Falcon, N. L.: Southern Iran: Zagros Mountains, Geol. Soc. Lond. Spec. Publ., 4, 199–211, 1974. a
Flesch, L. M., Holt, W. E., Haines, A. J., Wen, L., and Shen-Tu, B.: The
dynamics of western North America: stress magnitudes and the relative role of
gravitational potential energy, plate interaction at the boundary and basal
tractions, Geophys. J. Int., 169, 866–896, 2007. a
Gao, Y., Chen, L., Talebian, M., Wu, Z., Wang, X., Lan, H., Ai, Y., Jiang, M., Hou, G., Khatib, M. M., Xiao, W., and Zhu, R.: Nature and structural heterogeneities of the lithosphere control the continental deformation in the northeastern and eastern Iranian plateau as revealed by shear-wave splitting observations, Earth Planet. Sc. Lett., 578, 117284, https://doi.org/10.1016/j.epsl.2021.117284, 2022. a
Ghorbani Rostam, G., Pakzad, M., Mirzaei, N., and Sakhaei, S. R.: Analysis of
the stress field and strain rate in Zagros-Makran transition zone, J. Seismol., 22, 287–301, 2018. a
Ghosh, A. and Holt, W. E.: Plate motions and stresses from global dynamic
models, Science, 335, 838–843, 2012. a
Ghosh, A., Becker, T. W., and Humphreys, E. D.: Dynamics of the North American continent, Geophys. J. Int., 194, 651–669, 2013a. a
Hager, B. H. and O'Connell, R. J.: A simple global model of plate dynamics and mantle convection, J. Geophys. Res., 86, 4843–4867, 1981. a
Heidbach, O., Reinecker, J., Tingay, M., Müller, B., Sperner, B., Fuchs,
K., and Wenzel, F.: Plate boundary forces are not enough: Second-and
third-order stress patterns highlighted in the World Stress Map database,
Tectonics, 26, TC6014, https://doi.org/10.1029/2007TC002133, 2007. a
Hirschberg, H. P., Lamb, S., and Savage, M. K.: Strength of an obliquely
convergent plate boundary: lithospheric stress magnitudes and viscosity in
New Zealand, Geophys. J. Int., 216, 1005–1024, 2018. a
Hollingsworth, J., Fattahi, M., Walker, R., Talebian, M., Bahroudi, A.,
Bolourchi, M. J., Jackson, J., and Copley, A.: Oroclinal bending, distributed
thrust and strike-slip faulting, and the accommodation of Arabia–Eurasia
convergence in NE Iran since the Oligocene, Geophys. J. Int., 181, 1214–1246, 2010. a
Jay, C. N., Flesch, L. M., and Bendick, R. O.: Kinematics and dynamics of the
Pamir, Central Asia: Quantifying the roles of continental subduction in force
balance, J. Geophys. Res.-Solid, 123, 8161–8179, 2018. a
Kaviani, A., Hatzfeld, D., Paul, A., Tatar, M., and Priestley, K.: Shear-wave
splitting, lithospheric anisotropy, and mantle deformation beneath the
Arabia–Eurasia collision zone in Iran, Earth Planet. Sc. Lett., 286, 371–378, 2009. a
Khorrami, F., Vernant, P., Masson, F., Nilfouroushan, F., Mousavi, Z., Nankali, H., Saadat, S. A., Walpersdorf, A., Hosseini, S., Tavakoli, P., Aghamohammadi, A., and Alijanzade, M.: An up-to-date crustal deformation map of Iran using integrated campaign-mode and permanent GPS velocities, Geophys. J. Int., 217, 832–843, 2019. a, b, c, d, e, f, g, h, i, j, k
Koptev, A. and Ershov, A.: The role of the gravitational potential of the
lithosphere in the formation of a global stress field, Izvestiya, Phys. Solid Earth, 46, 1080–1094, 2010. a
Koshnaw, R. I., Stockli, D. F., and Schlunegger, F.: Timing of the
Arabia-Eurasia continental collision – Evidence from detrital zircon U-Pb
geochronology of the Red Bed Series strata of the northwest Zagros hinterland, Kurdistan region of Iraq, Geology, 47, 47–50, 2019. a
Kustowski, B., Ekström, G., and Dziewoński, A.: Anisotropic shear-wave velocity structure of the Earth's mantle: A global model, J. Geophys. Res.-Solid, 113, B06306, https://doi.org/10.1029/2007JB005169, 2008a. a
Kustowski, B., Ekström, G., and Dziewoński, A.: The shear-wave velocity structure in the upper mantle beneath Eurasia, Geophys. J. Int., 174, 978–992, 2008b. a
Laske, G., Masters, G., Ma, Z., and Pasyanos, M.: Update on CRUST1.0 – A
1-degree global model of Earth's crust, Geophys. Res. Abstr., 15, Abstract EGU2013-2658, 2013. a
Le Dortz, K., Meyer, B., Sébrier, M., Nazari, H., Braucher, R., Fattahi,
M., Benedetti, L., Foroutan, M., Siame, L., Bourlès, D., Talebian, M., Bateman, M. D., and Ghoraishi, M.: Holocene right-slip rate determined by cosmogenic and OSL dating on the Anar fault, Central Iran, Geophys. J. Int., 179, 700–710, 2009. a
Lithgow-Bertelloni, C. and Guynn, J. H.: Origin of the lithospheric stress
field, J. Geophys. Res.-Solid, 109, B01408, https://doi.org/10.1029/2003JB002467, 2004. a
Masson, F., Anvari, M., Djamour, Y., Walpersdorf, A., Tavakoli, F., Daignieres, M., Nankali, H., and Van Gorp, S.: Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the
present-day deformation pattern within NE Iran, Geophys. J. Int., 170, 436–440, 2007. a, b
McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev,
I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksöz, M. N., and Veis, G.: Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res.-Solid, 105, 5695–5719, 2000. a
McQuarrie, N., Stock, J., Verdel, C., and Wernicke, B.: Cenozoic evolution of
Neotethys and implications for the causes of plate motions, Geophys. Res. Lett., 30, 2036, https://doi.org/10.1029/2003GL017992, 2003. a
Md, S. I. and Ryuichi, S.: Neotectonic stress field and deformation pattern
within the Zagros and its adjoining area: An approach from finite element
modeling, J. Geol. Mining Res., 2, 170–182, 2010. a
Mégnin, C. and Romanowicz, B.: The three-dimensional shear velocity
structure of the mantle from the inversion of body, surface and higher-mode
waveforms, Geophys. J. Int., 143, 709–728, 2000. a
Mohajjel, M. and Fergusson, C. L.: Dextral transpression in Late Cretaceous
continental collision, Sanandaj–Sirjan zone, western Iran, J. Struct. Geol., 22, 1125–1139, 2000. a
Mokhoori, A. N., Rahimi, B., and Moayyed, M.: Active tectonic stress field
analysis in NW Iran-SE Turkey using earthquake focalmechanism data, Turk. J. Earth Sci., 30, 235–246, 2021. a
Navabpour, P., Angelier, J., and Barrier, E.: Stress state reconstruction of
oblique collision and evolution of deformation partitioning in W-Zagros
(Iran, Kermanshah), Geophys. J. Int., 175, 755–782, 2008. a
Nouri, A., Rahimi, B., Vavryčuk, V., and Ghaemi, F.: Spatially varying
crustal stress along the Zagros seismic belt inferred from earthquake focal
mechanisms, Tectonophysics, 846, 229653, https://doi.org/10.1016/j.tecto.2022.229653, 2023. a
Pasyanos, M. E., Masters, G., Laske, G., and Ma, Z.: LITHO1.0: An updated
crust and lithospheric model of the Earth, J. Geophys. Res.-Solid, 119, 2153–2173, 2014. a
Rashidi, A., Kianimehr, H., Yamini-Fard, F., Tatar, M., and Zafarani, H.:
Present Stress Map and Deformation Distribution in the NE Lut Block, Eastern
Iran: Insights from Seismic and Geodetic Strain and Moment Rates, Pure Appl. Geophys., 179, 1887–1917, 2022. a
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak,
R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M.,
Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus,
A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V.,
Gomez, F., Al-Ghazzi, R., and Karamm, G.: GPS constraints on continental
deformation in the Africa-Arabia-Eurasia continental collision zone and
implications for the dynamics of plate interactions, J. Geophys. Res.-Solid, 111, B05411, https://doi.org/10.1029/2005JB004051, 2006. a, b, c
Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., and Vernant, P.:
Geodetic constraints on the tectonic evolution of the Aegean region and
strain accumulation along the Hellenic subduction zone, Tectonophysics, 488,
22–30, 2010. a
Richardson, R. M., Solomon, S. C., and Sleep, N. H.: Intraplate stress as an
indicator of plate tectonic driving forces, J. Geophys. Res., 81, 1847–1856, 1976. a
Ritsema, J., Deuss, A. A., Van Heijst, H. J., and Woodhouse, J. H.: S40RTS: a
degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function
measurements, Geophys. J. Int., 184, 1223–1236, 2011. a
Robert, A. M., Fernàndez, M., Jiménez-Munt, I., and Vergés, J.:
Lithospheric structure in Central Eurasia derived from elevation, geoid
anomaly and thermal analysis, Geol. Soc. Lond. Spec. Publ., 427, 271–293, 2017. a
SAGE: Data Services Products: EMC-EarthModels, SAGE [data set], http://ds.iris.edu/ds/products/emc-earthmodels/, last access: March 2022.
Sarkarinejad, K., Pash, R. R., Motamedi, H., and Yazdani, M.: Deformation and
kinematic evolution of the subsurface structures: Zagros foreland
fold-and-thrust belt, northern Dezful Embayment, Iran, Int. J. Earth Sci., 107, 1287–1304, 2018. a
Sattarzadeh, Y., Cosgrove, J. W., and Vita-Finzi, C.: The geometry of
structures in the Zagros cover rocks and its neotectonic implications, Geol. Soc. Lond. Spec. Publ., 195, 205–217, 2002. a
Singh, A., Eken, T., Mohanty, D. D., Saikia, D., Singh, C., and Kumar, M. R.:
Significant seismic anisotropy beneath southern Tibet inferred from splitting
of direct S-waves, Phys. Earth Planet. Inter., 250, 1–11, 2016. a
Singh, S. and Ghosh, A.: Surface motions and continental deformation in the
Indian plate and the India-Eurasia collision zone, J. Geophys. Res.-Solid, 124, 12141–12170, https://doi.org/10.1029/2018JB017289, 2019. a, b, c, d
Sobouti, F. and Arkani-Hamed, J.: Numerical modelling of the deformation of the Iranian plateau, Geophys. J. Int., 126, 805–818, 1996. a
Sol, S., Meltzer, A., Burgmann, R., Van der Hilst, R., King, R., Chen, Z.,
Koons, P., Lev, E., Liu, Y., Zeitler, P., Zhang, X., Zhang, J., and Zurek, B.: Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy, Geology, 35, 563–566, 2007. a
Steinberger, B. and Holme, R.: Mantle flow models with core-mantle boundary
constraints and chemical heterogeneities in the lowermost mantle, J. Geophys. Res.-Solid, 113, B05403, https://doi.org/10.1029/2007JB005080, 2008. a
Tatar, M. and Hatzfeld, D.: Microseismic evidence of slip partitioning for the Rudbar-Tarom earthquake (Ms 7.7) of 1990 June 20 in NW Iran, Geophys. J. Int., 176, 529–541, 2009. a
Tunini, L., Jiménez-Munt, I., Fernandez, M., Vergés, J.,
Villaseñor, A., Melchiorre, M., and Afonso, J. C.: Geophysical-petrological model of the crust and upper mantle in the
India-Eurasia collision zone, Tectonics, 35, 1642–1669, 2016. a
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M., Vigny, C., Masson,
F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., and Chéry, J.: Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman, Geophys. J. Int., 157, 381–398, 2004. a, b, c, d, e, f
Vincent, S. J., Allen, M. B., Ismail-Zadeh, A. D., Flecker, R., Foland, K. A., and Simmons, M. D.: Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region, Geol. Soc. Am. Bull., 117, 1513–1533, 2005. a
Walker, R. T.: A remote sensing study of active folding and faulting in
southern Kerman province, SE Iran, J. Struct. Geol., 28, 654–668, 2006. a
Walpersdorf, A., Manighetti, I., Mousavi, Z., Tavakoli, F., Vergnolle, M.,
Jadidi, A., Hatzfeld, D., Aghamohammadi, A., Bigot, A., Djamour, Y., Nankali, H., and Sedighi, M.: Present-day kinematics and fault slip rates in eastern Iran, derived from 11 years of GPS data, J. Geophys. Res.-Solid, 119, 1359–1383, 2014. a, b
Yadav, R. and Tiwari, V.: Numerical simulation of present day tectonic stress
across the Indian subcontinent, Int. J. Earth Sci., 107, 2449–2462, 2018. a
Yaghoubi, A., Mahbaz, S., Dusseault, M. B., and Leonenko, Y.: Seismicity and
the state of stress in the Dezful embayment, Zagros fold and thrust belt,
Geosciences, 11, 254, https://doi.org/10.3390/geosciences11060254, 2021. a
Yang, Y., Liang, C., Fang, L., Su, J., and Hua, Q.: A comprehensive analysis on the stress field and seismic anisotropy in eastern Tibet, Tectonics, 37,
1648–1657, 2018. a
Zoback, M. L.: First-and second-order patterns of stress in the lithosphere:
The World Stress Map Project, J. Geophys. Res.-Solid, 97, 11703–11728, 1992. a
Short summary
We use numerical models to study the stresses arising from gravitational potential energy (GPE) variations and shear tractions associated with mantle convection in the Zagros–Iran region. The joint models predicted consistent deviatoric stresses that can explain most of the deformation indicators. Stresses associated with mantle convection are found to be higher than those from GPE, thus indicating the deformation in this region may primarily be caused by the mantle, except in eastern Iran.
We use numerical models to study the stresses arising from gravitational potential energy (GPE)...