Articles | Volume 15, issue 8
https://doi.org/10.5194/se-15-1065-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-1065-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evolution of fluid redox in a fault zone of the Pic de Port Vieux thrust in the Pyrenees Axial Zone (Spain)
Delphine Charpentier
CORRESPONDING AUTHOR
Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, 25000 Besançon, France
Gaétan Milesi
GeoRessources, CNRS, Université de Lorraine, LabCom CREGU, 54506 Vandœuvre-lès-Nancy, France
Pierre Labaume
Géosciences Montpellier, CNRS, Université de Montpellier, 34095 Montpellier, France
Ahmed Abd Elmola
The James Hutton Institute, Environmental and Biochemical Sciences Group, Aberdeen, AB15 8QH, United Kingdom
Martine Buatier
Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, 25000 Besançon, France
Pierre Lanari
Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland
Manuel Muñoz
Géosciences Montpellier, CNRS, Université de Montpellier, 34095 Montpellier, France
Related authors
Pierre Nevers, Julien Bouchez, Jérôme Gaillardet, Christophe Thomazo, Delphine Charpentier, Laëticia Faure, and Catherine Bertrand
Earth Surf. Dynam., 9, 487–504, https://doi.org/10.5194/esurf-9-487-2021, https://doi.org/10.5194/esurf-9-487-2021, 2021
Marie Gerardin, Gaétan Milesi, Julien Mercadier, Michel Cathelineau, and Danièle Bartier
Geosci. Instrum. Method. Data Syst., 13, 309–323, https://doi.org/10.5194/gi-13-309-2024, https://doi.org/10.5194/gi-13-309-2024, 2024
Short summary
Short summary
Clay minerals are helpful markers of low-temperature geological processes. The combination of their characterization with geochronology is a powerful tool to constrain physical and chemical processes, improving our understanding of the evolution of the Earth system. This paper aims to present the platform along with the associated methods developed at the GeoRessources laboratory (University of Lorraine) to separate and characterize clay minerals and date illites using the K–Ar method.
Alban Cheviet, Martine Buatier, Flavien Choulet, Christophe Galerne, Armelle Riboulleau, Ivano Aiello, Kathleen M. Marsaglia, and Tobias W. Höfig
Eur. J. Mineral., 35, 987–1007, https://doi.org/10.5194/ejm-35-987-2023, https://doi.org/10.5194/ejm-35-987-2023, 2023
Short summary
Short summary
The present study is based on sample chemical and mineralogical analyses of oceanic sediment and rock that were collected in the Guaymas Basin during IODP Expedition 385. The contact aureoles are not only affected by maturation of organic matter and dehydration reaction, but mineralogical reactions concern all sediment components (silicates, sulfides, carbonates, organic matter) and can be the result of the combination of different stages of alteration during and after the sill emplacement.
Pierre Nevers, Julien Bouchez, Jérôme Gaillardet, Christophe Thomazo, Delphine Charpentier, Laëticia Faure, and Catherine Bertrand
Earth Surf. Dynam., 9, 487–504, https://doi.org/10.5194/esurf-9-487-2021, https://doi.org/10.5194/esurf-9-487-2021, 2021
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochemistry
Mapping geochemical anomalies by accounting for the uncertainty of mineralization-related elemental associations
Rare Earth element distribution on the Fuerteventura Basal Complex (Canary Islands, Spain): a geochemical and mineralogical approach
Mineralogical and elemental geochemical characteristics of Taodonggou Group mudstone in the Taibei Sag, Turpan–Hami Basin: implication for its formation mechanism
Application of lithogeochemical and pyrite trace element data for the determination of vectors to ore in the Raja Au–Co prospect, northern Finland
Influence of basement rocks on fluid evolution during multiphase deformation: the example of the Estamariu thrust in the Pyrenean Axial Zone
Spatiotemporal history of fault–fluid interaction in the Hurricane fault, western USA
Fluid–rock interactions in the shallow Mariana forearc: carbon cycling and redox conditions
Squirt flow due to interfacial water films in hydrate bearing sediments
Jian Wang, Renguang Zuo, and Qinghai Liu
Solid Earth, 15, 731–746, https://doi.org/10.5194/se-15-731-2024, https://doi.org/10.5194/se-15-731-2024, 2024
Short summary
Short summary
This study improves geochemical mapping by addressing the uncertainty in defining element associations. It clusters the study area by element similarity, recognizes elemental associations for each cluster, and then detects anomalies indicating underlying geological processes. This method is applied to a region in China, confirming its effectiveness and consistency with the geology. This study can enhance geochemical mapping for mineral exploration and improve geological-process understanding.
Marc Campeny, Inmaculada Menéndez, Luis Quevedo, Jorge Yepes, Ramón Casillas, Agustina Ahijado, Jorge Méndez-Ramos, and José Mangas
Solid Earth, 15, 639–656, https://doi.org/10.5194/se-15-639-2024, https://doi.org/10.5194/se-15-639-2024, 2024
Short summary
Short summary
The Basal Complex unit on Fuerteventura island comprises magmatic rocks showing significant rare Earth element (REE) concentrations with values up to 10 300 ppm REY (REEs plus yttrium). We carried out mineralogical and geochemical analyses, but additional research is needed to fully understand their distribution due to structural complexities and environmental factors.
Huan Miao, Jianying Guo, Yanbin Wang, Zhenxue Jiang, Chengju Zhang, and Chuanming Li
Solid Earth, 14, 1031–1052, https://doi.org/10.5194/se-14-1031-2023, https://doi.org/10.5194/se-14-1031-2023, 2023
Short summary
Short summary
The Taodonggou Group mudstone was deposited in a warm, humid, and hot paleoclimate with strong weathering. The parent rocks of the Taodonggou Group mudstone are felsic volcanic rocks and andesites, with weak sedimentary sorting and recycling and with well-preserved source information. The Taodonggou Group mudstone was deposited in dyoxic fresh water–brackish water in intermediate-depth or deep lakes with stable inputs of terrigenous debris but at slower deposition rates.
Sara Raič, Ferenc Molnár, Nick Cook, Hugh O'Brien, and Yann Lahaye
Solid Earth, 13, 271–299, https://doi.org/10.5194/se-13-271-2022, https://doi.org/10.5194/se-13-271-2022, 2022
Short summary
Short summary
Orogenic gold deposits in Paleoproterozoic belts in northern Finland have been explored not only for gold but because of the occurrences of economically important concentrations of base metals, especially cobalt. In this study we are testing the vectoring capacities of pyrite trace element geochemistry, combined with lithogeochemical and sulfur isotopic data in the Raja gold–cobalt prospect (northern Finland), by using multivariate statistical data analysis.
Daniel Muñoz-López, Gemma Alías, David Cruset, Irene Cantarero, Cédric M. John, and Anna Travé
Solid Earth, 11, 2257–2281, https://doi.org/10.5194/se-11-2257-2020, https://doi.org/10.5194/se-11-2257-2020, 2020
Short summary
Short summary
This study assesses the influence of basement rocks on the fluid chemistry during deformation in the Pyrenees and provides insights into the fluid regime in the NE part of the Iberian Peninsula.
Jace M. Koger and Dennis L. Newell
Solid Earth, 11, 1969–1985, https://doi.org/10.5194/se-11-1969-2020, https://doi.org/10.5194/se-11-1969-2020, 2020
Short summary
Short summary
The Hurricane fault is a major and active normal fault located in the southwestern USA. This study utilizes the geochemistry and dating of calcite veins associated with the fault to characterize ancient groundwater flow. Results show that waters moving along the fault over the last 540 000 years were a mixture of infiltrating fresh water and deep, warm salty groundwater. The formation of calcite veins may be related to ancient earthquakes, and the fault influences regional groundwater flow.
Elmar Albers, Wolfgang Bach, Frieder Klein, Catriona D. Menzies, Friedrich Lucassen, and Damon A. H. Teagle
Solid Earth, 10, 907–930, https://doi.org/10.5194/se-10-907-2019, https://doi.org/10.5194/se-10-907-2019, 2019
Short summary
Short summary
To understand the fate of carbon in subducted oceanic sediments and crust, we studied carbonate phases in rocks from the Mariana subduction zone. These show that carbon is liberated from the downgoing plate at depths less than 20 km. Some of the carbon is subsequently trapped in minerals and likely subducts to greater depths, whereas fluids carry the other part back into the ocean. Our findings imply that shallow subduction zone processes may play an important role in the deep carbon cycle.
Kathleen Sell, Beatriz Quintal, Michael Kersten, and Erik H. Saenger
Solid Earth, 9, 699–711, https://doi.org/10.5194/se-9-699-2018, https://doi.org/10.5194/se-9-699-2018, 2018
Short summary
Short summary
Sediments containing hydrates dispersed in the pore space show a characteristic seismic anomaly: a high attenuation along with increasing seismic velocities. Recent major findings from synchrotron experiments revealed the systematic presence of thin water films between quartz and gas hydrate. Our numerical studies support earlier speculation that squirt flow causes high attenuation at seismic frequencies but are based on a conceptual model different to those previously considered.
Cited articles
Abd Elmola, A., Charpentier, D., Buatier, M., Lanari, P., and Monié P.: Textural-chemical changes and deformation conditions registered by phyllosilicates in a fault zone (Pic de Port Vieux thrust, Pyrenees), Appl. Clay Sci., 144, 88–103, 2017.
Abd Elmola, A., Buatier, M., Monié, P., Labaume, P., Trap, P., and Charpentier, D.: 40Ar/39Ar muscovite dating of thrust activity: a case study from the Axial Zone of the Pyrenees, Tectonophysics, 745, 412–429, 2018.
Airaghi, L., Bellahsen, N., Dubacq, B., Chew, D., Rosenberg, C., Janots, E., Waldner, M., and Magnin, V.: Pre-orogenic upper crustal softening by lower greenschist facies metamorphic reactions in granites of the central Pyrenees, J. Metamorph. Geol., 38, 183–204, 2020.
Baker, E. T., Lavelle, J. W., Feely, R. A., Massoth, G. J., Walker, S. L., and Lupton, J. E.: Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge, J. Geophys. Res.-Sol. Ea., 94, 9237–9250, https://doi.org/10.1029/JB094iB07p09237, 1989.
Barnes, P. M., Wallace, L. M., Saffer, D. M., and IODP Expedition 372 Scientists: Slow slip source characterized by lithological and geometric heterogeneity, Sci. Adv., 6, eaay3314, https://doi.org/10.1126/sciadv.aay3314, 2020.
Barnolas, A., Chiron, J. C., and Guérangé, B.: Synthèse géologique et géophysique des Pyrénées, Volume 1, Introduction, géophysique, cycle hercynien, BRGM, ISBN 2-7159-0797-4, 1996.
Barré, G., Fillon, C., Ducoux, M., Mouthereau, F., Gaucher, E. C., and Calassou, S.: The North Pyrenean Frontal Thrust: structure, timing and late fluid circulation inferred from seismic and thermal-geochemical analyses of well data, B. Soc. Geol. Fr.-Earth Sci. Bull., 192, 1–95, https://doi.org/10.1051/bsgf/2021046, 2021.
Barton, C. A., Zoback, M. D., and Moos, D.: Fluid flow along potentially active faults in crystalline rock, Geology, 23, 683, https://doi.org/10.1130/0091-7613(1995)023<0683:FFAPAF>2.3.CO;2, 1995.
Beaufort, D., Patrier, P., Meunier, A., and Ottaviani, M. M.: Chemical variations in assemblages including epidote and/or chlorite in the fossil hydrothermal system of Saint Martin (Lesser Antilles), J. Volcanol Geoth. Res., 51, 95–114., 1992.
Belgrano, T. M., Herwegh, M., and Berger, A.: Inherited structural controls on fault geometry, architecture and hydrothermal activity: An example from Grimsel Pass, Switzerland, Swiss J. Geosci., 109, 345–364, https://doi.org/10.1007/s00015-016-0212-9, 2016.
Bellahsen, N., Bayet, L., Denele, Y., Waldner, M., Airaghi, L., Rosenberg, C., Dubacq, B., Mouthereau, F., Bernet, M., Pik, R., Lahfid, A., and Vacherat, A.: Shortening of the axial zone, pyrenees: Shortening sequence, upper crustal mylonites and crustal strength, Tectonophysics, 766, 433–452, https://doi.org/10.1016/j.tecto.2019.06.002, 2019.
Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., and Scibek J.: Fault zone hydrogeology, Earth-Sci. Rev., 127, 171–192, 2013.
Berman, R. G.: Thermobarometry using multi-equilibrium calculations; a new technique, with petrological applications, Can. Mineral., 29, 833–855, 1991.
Borg, S., Liu, W., Pearce, M., Cleverley, J., and MacRae, C.: Complex mineral zoning patterns caused by ultra-local equilibrium at reaction interfaces, Geology, 42, 415–418, https://doi.org/10.1130/G35287.1, 2014.
Bourdelle, F.: Low-Temperature Chlorite Geothermometry and Related Recent Analytical Advances: A Review, Minerals, 11, 130, https://doi.org/10.3390/min11020130, 2021.
Bourdelle, F., Parra, T., Beyssac, O., Chopin, C., and Vidal, O.: Clay minerals thermometry: a comparative study based on high- spatial-resolution analyses of illite and chlorite in Gulf Coast sandstones (Texas, USA), Am. Mineral., 98, 914–926, 2013.
Breede, K., Dzebisashvili, K., Liu, X., and Falcone, G.: A systematic review of enhanced (or engineered) geothermal systems: past, present and future, Geotherm. Energy, 1, 1–27, https://doi.org/10.1186/2195-9706-1-4, 2013.
Bruhn, R. L., Parry, W. T., Yonkee, W. A., and Thompson, T.: Fracturing and hydrothermal alteration in normal fault zones, Pure Appl. Geophys., 142, 609–644, 1994.
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architecture and permeability structure, Geology, 24, 1025–1028, https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2, 1996.
Caine, J. S., Bruhn, R. L., and Forster, C. B.: Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic stillwater normal fault, dixie valley, nevada, J. Struct. Geol., 32, 1576–1589, 2010.
Cathelineau, M.: Cation site occupancy in chlorites and illites as a function of temperature, Clay Miner., 23, 471–485, 1988.
Cathelineau, M. and Nieva, D.: A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system, Contrib. Mineral. Petrol., 91, 235–244, 1985.
Cathelineau, M., Boiron, M. C., and Jakomulski, H.: Triassic evaporites: A vast reservoir of brines mobilized successively during rifting and thrusting in the Pyrenees, J. Geol. Soc., 178, jgs20020-259, https://doi.org/10.1144/jgs2020-259, 2021.
Chauvet, A.: Structural control of ore deposits: The role of pre-existing structures on the formation of mineralised vein systems, Minerals, 9, 56, https://doi.org/10.3390/min9010056, 2019.
Chinchilla, D., Arroyo, X., Merinero, R., Piña, R., Nieto, F., Ortega, L., and Lunar, R.: Chlorite geothermometry applied to massive and oscillatory-zoned radiated Mn-rich chlorites in the Patricia Zn-Pb-Ag epithermal deposit (NE, Chile), Appl. Clay Sci., 134, 210–220, 2016.
Clauer, N., Rais, N., Schaltegger, U., and Piqué, A.: K-Ar systematics of clay-to-mica minerals in a multi-stage low-grade metamorphic evolution, Chem. Geol., 124, 305–316, https://doi.org/10.1016/0009-2541(95)00055-Q, 1995.
Cochelin, B., Chardon, D., Denèle, Y., Gumiaux, C., and Le Bayon, B.: Vertical strain partitioning in hot Variscan crust: Syn-convergence escape of the Pyrenees in the Iberian–Armorican syntax, B. Soc. Geol. Fr.-Earth Sci. Bull., 188, 39, https://doi.org/10.1051/bsgf/2017206, 2017.
Cox, S. C., Menzies, C. D., Sutherland, R., Denys, P. H., Chamberlain, C., and Teagle, D. A. H.: Changes in hot spring temperature and hydrogeology of the Alpine Fault hanging wall, New Zealand, induced by distal South Island earthquakes, Geofluids, 15, 216239, https://doi.org/10.1111/gfl.12093, 2015.
Cox, S. F.: Injection-driven swarm seismicity and permeability enhancement: Implications for the dynamics of hydrothermal ore systems in high fluid-flux, overpressured faulting regimes-An invited paper, Econ. Geol., 111, 559–587, https://doi.org/10.2113/econgeo.111.3.559, 2016.
Cruset, D., Vergés, J., Benedicto, A., Gomez-Rivas, E., Cantarero, I., John, C. M., and Travé, A.: Multiple fluid flow events from salt-related rifting to basin inversion (Upper Pedraforca thrust sheet, SE Pyrenees), Basin Res., 33, 3102–3136, https://doi.org/10.1111/bre.12596, 2021.
De Caritat, P., Hutcheon, I., and Walshe, J. L.: Chlorite geothermometry; a review, Clay. Clay Miner., 41, 219–239, 1993.
De Grave, E., Vandenbruwaene, J., and Bockstael, M. V.: 57Fe Mössbauer spectroscopic analysis of chlorite, Phys. Chem. Miner., 15, 173–180, 1987.
Dewey, J. F.: Evolution of the Appalachian/Caledonian Orogen, Nature, 222, 124–129, https://doi.org/10.1038/222124a0, 1969.
Diamond, L. W., Wanner, C., and Waber, H. N.: Penetration depth of meteoric water in orogenic geothermal systems, Geology, 46, 1063–1066, https://doi.org/10.1130/G45394.1, 2018.
Dorsey, M. T., Rockwell, T. K., Girty, G. H., Ostermeijer, G. A., Browning, J., Mitchell, T. M., and Fletcher, J. M.: Evidence of hydrothermal fluid circulation driving elemental mass redistribution in an active fault zone, J. Struct. Geol., 144, 104269, https://doi.org/10.1016/j.jsg.2020.104269, 2021.
Ducoux, M., Jolivet, L., Masini, E., Augier, R., Lah, A., Bernet, M., and Calassou, S.: Distribution and intensity of High-Temperature Low-Pressure metamorphism across the Pyrenean–Cantabrian belt: constraints on the thermal record of the pre-orogenic hyperextension rifting, B. Soc. Geol. Fr.-Earth Sci. Bull., 192, 43, https://doi.org/10.1051/bsgf/2021029, 2021.
Duwiquet, H., Magri, F., Lopez, S., Guillon, T., Arbaret, L., Bellanger, M., and Guillou-Frottier, L.: Tectonic Regime as a Control Factor for Crustal Fault Zone (CFZ) Geothermal Reservoir in an Amagmatic System: A 3D Dynamic Numerical Modeling Approach, Nat. Resour., 31, 3155–3172, https://doi.org/10.1007/s11053-022-10116-w, 2022.
Eude. A., Soliva, R., Poprawski, Y., Frochot, A., Lacombe, S., and Grenier, M.: Contrôle tectonique des résurgences hydrothermales Pyrénéennes: implications géothermiques, in: 27e édition de la Réunion des Sciences de la Terre, https://www.researchgate.net/publication/344426890_Controle_tectonique_des_resurgences_hydrothermales_Pyreneennes_implications_geothermiques (last access: 25 August 2025), 2020.
Fagereng, Å. and Beall, A.: Is complex fault zone behaviour a reflection of rheological heterogeneity?, Philos. T. R. Soc. A, 379, 20190421, https://doi.org/10.1098/rsta.2019.0421, 2021.
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., and Withjack, M. O.: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., 32, 1557–1575, https://doi.org/10.1016/j.jsg.2010.06.009, 2010.
Fossen, H. and Cavalcante, G. C. G.: Shear zones – A review, Earth-Sci. Rev., 171, 434–455, https://doi.org/10.1016/j.earscirev.2017.05.002, 2017.
Fossen, H., Cavalcante, G. C. G., Pinheiro, R. V. L., and Archanjo, C. J.: Deformation-progressive or multiphase?, J. Struct. Geol., 125, 82–99, 2019.
Fusseis, F. and Handy, M. R.: Micromechanisms of shear zone propagation at the brittle-viscous transition, J. Struct. Geol., 30, 1242-1253, https://doi.org/10.1016/j.jsg.2008.06.005, 2008.
Gosselin, J. M., Audet, P., Estève, C., McLellan, M., Mosher, S. G., and Shaeffer, A. J.: Seismic evidence for megathrust fault-valve behavior during episodic tremor and slip. Sci. Adv., 6, eaay5174, https://doi.org/10.1126/sciadv.aay5174, 2020.
Grant, N.: Deformation and fluid processes in thrust sheets from the central Pyrenees, Doctoral dissertation, University of Leeds, https://etheses.whiterose.ac.uk/2210/ (last access: 25 August 2025), 1989.
Grant, N.: Episodic discrete and distributed deformation: consequences and controls in a thrust culmination from the central Pyrenees, J. Struct. Geol., 12, 835–850, https://doi.org/10.1016/0191-8141(90)90058-7, 1990.
Grant, N.: Post-emplacement extension within a thrust sheet from the central Pyrenees, J. Geol. Soc. London, 149, 775–792, https://doi.org/10.1144/gsjgs.149.5.0775, 1992.
Grant, N., Banks, D. A., McCaig, A. M., and Yardley, B. W. D.: Chemistry, source, and behavior of fluids involved in alpine thrusting of the Central Pyrenees, J. Geophys. Res.-Sol. Ea., 95, 9123–9131, https://doi.org/10.1029/JB095iB06p09123, 1990.
Gringarten, A., Witherspoon, P., and Ohnishi, Y.: Theory of heat extraction from fractured hot dry rock, J. Geophys. Res., 80, 1120–1124, https://doi.org/10.1029/JB080i008p01120, 1975.
Gudmundsson, A., Berg, S. S., Lyslo, K. B., and Skurtveit, E.: Fracture networks and fluid transport in active fault zones, J. Struct. Geol., 23, 343–353, https://doi.org/10.1016/S0191-8141(00)00100-0, 2001.
Gueydan, F., Mehl, C., and Parra, T.: Stress-strain rate history of a midcrustal shear zone and the onset of brittle deformation inferred from quartz recrystallized grain size, Geol. Soc. Spec. Publ., 243, 127–142, https://doi.org/10.1144/GSL.SP.2005.243.01.10, 2005.
Guillou-Frottier, L., Milesi, G., Roche, V., Duwiquet, H., and Taillefer, A.: Heat flow, thermal anomalies, tectonic regimes and high-temperature geothermal systems in fault zones, C. R. Geosci., 356, 1–33, https://doi.org/10.5802/crgeos.213, 2024.
Hayes, J. B.: Polytypism of chlorite in sedimentary rocks, Clay. Clay Miner., 18, 285–306, 1970.
Hobbs, B. E. and Ord, A.: Episodic modes of operation in hydrothermal gold systems: Part II. A model for gold deposition, Geol. Soc. Spec. Pub., 453, 147–164, https://doi.org/10.1144/SP453.1, 2018.
Holm, D. K., Norris, R. J., and Craw, D.: Brittle and ductile deformation in a zone of rapid uplift: Central Southern Alps, New Zealand, Tectonics, 8, 153–168, https://doi.org/10.1029/TC008i002p00153, 1989.
Hueck, M., Wemmer, K., Basei, M. A. S., Philipp, R. P., Oriolo, S., Heidelbach, F., Oyhantçabal, P., and Siegesmund, S.: Dating recurrent shear zone activity and the transition from ductile to brittle deformation: White mica geochronology applied to the Neoproterozoic Dom Feliciano Belt in South Brazil, J. Struct. Geol., 141, 104199, https://doi.org/10.1016/j.jsg.2020.104199, 2020.
Incerpi, N., Manatschal, G., and Martire, L.: Characteristics and timing of hydrothermal fluid circulation in the fossil Pyrenean hyperextended rift system: new constraints from the Chaînons Béarnais (W Pyrenees), Int. J. Earth Sci. (Geol. Rundsch.), 109, 1071–1093, https://doi.org/10.1007/s00531-020-01852-6, 2020.
Inoue, A., Meunier, A., Patrier-Mas, P., Rigault, C., Beaufort, D., and Vieillard, P.: Application of chemical geothermometry to low-temperature trioctahedral chlorites, Clay. Clay Miner., 57, 371–382, 2009.
Jiménez, J., Gimeno, M. J., and Auqué, L. F.: Geochemical characterisation and modelling of the Luchon hydrothermal system (Central Pyrenees, France) and lessons learnt for the use of geochemical modelling techniques in granite-hosted alkaline thermal waters, Geothermics, 106, 102573, https://doi.org/10.1016/j.geothermics.2022.102573, 2022.
Jolie, E., Scott, S., Faulds, J., Chambefort, I., Axelsson, G., Gutierrez-Negrin, L. S., Regenspurg, S., Ziegler, M., Ayling, B., Richter, A., and Zemedkun, M. T.: Geological controls on geothermal resources for power generation, Nat. Rev. Earth Environ., 2, 324–339, https://doi.org/10.1038/s43017-021-00154-y, 2021.
Kirkland, C., Olierook, H. K. H., Danisik, M., Liebmann, J., Hollis, J., Ribeiro, B. V., and Rankenburg, K.: Dating mylonitic overprinting of ancient rocks, Communications Earth Environonment, 4, 47, https://doi.org/10.1038/s43247-023-00709-5, 2023.
Labaume, P. and Teixell, A.: Evolution of salt structures of the Pyrenean rift (Chaînons Béarnais, France): Form hyperextension to tectonic inversion, Tectonophysics, 785, 228451, https://doi.org/10.1016/j.tecto.2020.228451, 2020.
Labaume, P., Meresse, F., Jolivet, M., Teixell, A., and Lahfid, A.: Tectonothermal history of an exhumed thrust-sheet-top basin: an example from the south Pyrenean thrust belt, Tectonics, 35, 1280–1313, https://doi.org/10.1002/2016TC004192, 2016.
Lacroix, B., Charpentier, D., Buatier, M., Vennemann, T., Labaume, P., Adatte, T., Travé, A., and Dubois, M.: Formation of chlorite during thrust fault reactivation. Record of fluid origin and P-T conditions in the Monte Perdido thrust fault (southern Pyrenees), Contrib. Mineral. Petrol., 163, 1083–1102, 2012.
Lanari, P.: Micro-cartographie PT-e dans les roches métamorphiques. Applications aux Alpes et à l'Himalaya, Doctoral dissertation, Université de Grenoble, https://theses.hal.science/tel-00799283 (last access: 25 August 2025), 2012.
Lanari, P. and Duesterhoeft, E.: Modeling metamorphic rocks using equilibrium thermodynamics and internally consistent databases: Past achievements, problems and perspectives, J. Petrol., 60, 19–56. https://doi.org/10.1093/petrology/egy105, 2019.
Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E. G., and Schwartz, S.: XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry, Comput. Geosci., 62, 227–240, 2014b.
Lanari, P., Wagner, T., and Vidal, O.: A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3- SiO2-H2O: applications to P-T sections and geothermometry, Contrib. Mineral. Petrol., 167, 1–19, 2014a.
Luijendijk, E., Winter, T., Köhler, S., Ferguson, G., Hagke, C., and Scibek, J.: Using Thermal Springs to Quantify Deep Groundwater Flow and Its Thermal Footprint in the Alps and a Comparison With North American Orogens, Geophys. Res. Lett., 47, e2020GL090134, https://doi.org/10.1029/2020GL090134, 2020.
Masci, L., Dubacq, B., Verlaguet, A., Chopin, C., Andrade, V. D., and Herviou, C.: A XANES and EPMA study of Fe3+ in chlorite: Importance of oxychlorite and implications for cation site distribution and thermobarometry, Am. Mineral., 104, 403–417, https://doi.org/10.2138/am-2019-6766, 2019.
Masoch, S., Fondriest, M., Preto, N., Secco, M., and Di Toro, G.: Seismic cycle recorded in cockade-bearing faults (Col de Teghime, Alpine Corsica), J. Struct. Geol., 129, 103889, https://doi.org/10.1016/j.jsg.2019.103889, 2019.
Mathon, O., Beteva, A., Borrel, J., Bugnazet, D., Gatla, S., Hino, R., Kantor, I., Mairs, T., Muñoz, M., Pasternak, S., Perrin, F., and Pascarelli, S.: The Time resolved and Extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general purpose EXAFS bending magnet beamline BM23, J. Synchrotron Radiat., 22, 1548–1554, 2015.
Mayolle, S., Soliva, R., Caniven, Y., Wibberley, C., Ballas, G., Milesi, G., and Dominguez, S.: Scaling of fault damage zones in carbonate rocks, J. Struct. Geol., 124, 35–50, https://doi.org/10.1016/j.jsg.2019.03.007, 2019.
McCaig, A. M., Wayne, D. M., Marshall, J. D., Banks, D., and Henderson, I.: Isotopic and fluid inclusion studies of fluid movement along the Gavarnie Thrust, central Pyrenees; reaction fronts in carbonate mylonites, Am. J. Sci., 295, 309–343, 1995.
McCaig, A. M., Tritlla, J., and Banks, D. A.: Fluid mixing and recycling during Pyrenean thrusting: Evidence from fluid inclusion halogen ratios, Geochim. Cosmochim. Ac., 64, 3395–3412, https://doi.org/10.1016/S0016-7037(00)00437-3, 2000.
Medici, G., Ling, F., and Shang, J.: Review of discrete fracture network characterization for geothermal energy extraction, Front. Earth Sci., 11, 1328397, https://doi.org/10.3389/feart.2023.1328397, 2023.
Milesi, G., Monié, P., Münch, P., Soliva, R., Taillefer, A., Bruguier, O., Bellanger, M., Bonno, M., and Martin, C.: Tracking geothermal anomalies along a crustal fault using (U – Th)/He apatite thermochronology and rare-earth element (REE) analyses: the example of the Têt fault (Pyrenees, France), Solid Earth, 11, 1747–1771, https://doi.org/10.5194/se-11-1747-2020, 2020.
Mitchell, T. M. and Faulkner, D. R.: The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile, J. Struct. Geol., 31, 802–816, https://doi.org/10.1016/j.jsg.2009.05.002, 2009.
Mitra, G.: Brittle to ductile transition due to large strains along the White Rock thrust, Wind River mountains, Wyoming, J. Struct. Geol., 6, 51–61, https://doi.org/10.1016/0191-8141(84)90083-X, 1984.
Moeck, I. S.: Catalog of geothermal play types based on geologic controls, Renew. Sust. Energ. Rev., 37, 867–882, https://doi.org/10.1016/j.rser.2014.05.032, 2014.
Monié, P., Münch, P., Milesi, G., Bonno, M., and Iemmolo, A.: 40Ar/39Ar geochronology of crustal deformation. C. R. Geosci., 356, 1–29, https://doi.org/10.5802/crgeos.209, 2024.
Montemagni, C. and Villa, I. M.: Geochronology of Himalayan shear zones: Unravelling the timing of thrusting from structurally complex fault rocks, J. Geol. Soc., 178, jgs2020-235, https://doi.org/10.1144/jgs2020-235, 2021.
Morton, N., Girty, G. H., and Rockwell, T. K.: Fault zone architecture of the San Jacinto fault zone in Horse Canyon, southern California: A model for focused post-seismic fluid flow and heat transfer in the shallow crust, Earth Planet. Sc. Lett., 329–330, 71–83, https://doi.org/10.1016/j.epsl.2012.02.013, 2012.
Mouthereau, F., Filleaudeau, P. Y., Vacherat, A., Pik, R., Lacombe, O., Fellin, M. G., Castelltort, S., Christophoul, F., and Masini, E.: Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence: Plate convergence in the Pyrenees, Tectonics, 33, 2283–2314, https://doi.org/10.1002/2014TC003663, 2014.
Müller, W.: Strengthening the link between geochronology, textures and petrology, Earth Planet. Sc. Lett., 206, 237–251, https://doi.org/10.1016/S0012-821X(02)01007-5, 2003.
Muñoz, J. A.:. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In Thrust tectonics, Dordrecht, Springer Netherlands, 235–246, https://doi.org/10.1007/978-94-011-3066-0_21, 1992.
Muñoz, M., De Andrade, V., Vidal, O., Lewin, E., Pascarelli, S., and Susini, J.: Redox and speciation micromapping using dispersive X-ray absorption spectroscopy: Application to iron chlorite mineral of a metamorphic rock thin section, Geochem. Geophy. Geosy., 7, Q11020, https://doi.org/10.1029/2006GC001381, 2006.
Muñoz, M., Vidal, O., Marcaillou, C., Pascarelli, S., Mathon, O., and Farges, F.: Iron oxidation state in phyllosilicate single crystals using Fe-K pre-edge and XANES spectroscopy: Effects of the linear polarization of the synchrotron X-ray beam, Am. Mineral., 98, 1187–1197, 2013.
Muñoz-López, D., Alías, G., Cruset, D., Cantarero, I., John, C. M., and Travé, A.: Influence of basement rocks on fluid evolution during multiphase deformation: the example of the Estamariu thrust in the Pyrenean Axial Zone, Solid Earth, 11, 2257–2281, https://doi.org/10.5194/se-11-2257-2020, 2020.
Neuzil, C. E.: Permeability of clays and shales, Annu. Rev. Earth Pl. Sc., 47, 247–273, https://doi.org/10.1146/annurev-earth-053018-060437, 2019.
Oriolo, S., Wemmer, K., Oyhantçabal, P., Fossen, H., Schulz, B., and Siegesmund, S.: Geochronology of shear zones – A review, Earth-Sci. Rev., 185, 665–683, https://doi.org/10.1016/j.earscirev.2018.07.007, 2018.
Parry, W. T., Hedderly-Smith, D., and Bruhn, R. L.: Fluid inclusions and hydrothermal alteration on the Dixie Valley Fault, Nevada, J. Geophys. Res.-Sol. Ea., 96, 19733–19748, https://doi.org/10.1029/91JB01965, 1991.
Perret, J., Eglinger, A., André-Mayer, A. S., Aillères, L., Feneyrol, J., Hartshorne, C., Abanyin, E., and Bosc, R.: Subvertical, linear and progressive deformation related to gold mineralization at the Galat Sufar South deposit, Nubian Shield, NE Sudan, J. Struct. Geol., 135, 104032, https://doi.org/10.1016/j.jsg.2020.104032, 2020.
Pfalzer, P., Urbach, J. P., Klemm, M., and Horn, S.: Elimination of self-absorption in fluorescence hard-X-ray absorption spectra, Phys. Rev. B, 60, 9335–9339, 1999.
Rahl, J. M., Haines, S. H., and van der Pluijm, B. A.: Links between orogenic wedge deformation and erosional exhumation: evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees, Earth Planet. Sc. Lett., 307, 180–190, https://doi.org/10.1016/j.epsl.2011.04.036, 2011.
Ranjram, M., Gleeson, T., and Luijendijk, E.: Is the permeability of crystalline rock in the shallow crust related to depth, lithology or tectonic setting?, Geofluids, 15, 106–119, https://doi.org/10.1111/gfl.12098, 2015.
Renard, F., Gratier, J. P., and Jamtveit, B.: Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults, J. Struct. Geol., 22, 1395–1407, https://doi.org/10.1016/S0191-8141(00)00064-X, 2000.
Rolland, Y., Cox, S. F., and Corsini, M.: Constraining deformation stages in brittle-ductile shear zones from combined field mapping and 40Ar/39Ar dating: The structural evolution of the Grimsel Pass area (Aar Massif, Swiss Alps), J. Struct. Geol., 31, 1377–1394, https://doi.org/10.1016/j.jsg.2009.08.003, 2009.
Roure, F., Choukroune, P., Berastegui, X., Munoz, J. A., Villien, A., Matheron, P., Bareyt, M., Seguret, M., Camara, P., and Deramond, J.: Ecors deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees, Tectonics, 8, 41–50, https://doi.org/10.1029/TC008i001p00041, 1989.
Shata, S. and Hesse, R.: A refined XRD method for the determination of chlorite composition and application to the McGerrigle Mountains anchizone in the Quebec Appalachians, Can. Mineral., 36, 1525–1546, 1998.
Sibson, R. H.: Implications of fault-valve behaviour for rupture nucleation and recurrence, in: Earthquake Source Physics and Earthquake Precursors, edited by: Mikumo, T., Aki, K., Ohnaka, M., Ruff, L. J., and Spudich, P. K. P., Tectonophysics, 211, 283–293, 1992.
Sibson, R. H.: Fluid involvement in normal faulting, J. Geodyn., 29, 469–499, https://doi.org/10.1016/S0264-3707(99)00042-3, 2000.
Smith, S. A. F., Collettini, C., and Holdsworth, R. E.: Recognizing the seismic cycle along ancient faults: CO2-induced fluidization of breccias in the footwall of a sealing low-angle normal fault, J. Struct. Geol., 30, 1034–1046, 2008.
Stierman, D. J.: Geophysical and geological evidence for fracturing, water circulation and chemical alteration in granitic rocks adjacent to major strike-slip faults. J. Geophys. Res.-Sol. Ea., 89, 5849–5857, https://doi.org/10.1029/JB089iB07p05849, 1984.
Taillefer, A., Soliva, R., Guillou-Frottier, L., Le Goff, E., Martin, G., and Seranne, M.: Fault-Related Controls on Upward Hydrothermal Flow: An Integrated Geological Study of the Têt Fault System, Eastern Pyrénées (France), Geofluids, 2017, 8190109, https://doi.org/10.1155/2017/8190109, 2017.
Taillefer, A., Guillou-Frottier, L., Soliva, R., Magri, F., Lopez, S., Courrioux, G., Millot, R., Ladouche, B., and Le Goff, E.: Topographic and Faults Control of Hydrothermal Circulation Along Dormant Faults in an Orogen, Geochem. Geophy. Geosy., 19, 4972–4995, https://doi.org/10.1029/2018GC007965, 2018.
Taillefer, A., Milesi, G., Soliva, R., Monnier, L., Delorme, P., Guillou-Frottier, L., and Le Goff, E.: Polyphased brittle deformation around a crustal fault: A multi-scale approach based on remote sensing and field data on the mountains surrounding the Têt hydrothermal system (Eastern Pyrénées, France), Tectonophysics, 804, 228710, https://doi.org/10.1016/j.tecto.2020.228710, 2021.
Tamburello, G., Chiodini, G., Ciotoli, G., Procesi, M., Rouwet, D., Sandri, L., Carbonara, N., and Masciantonio, C.: Global thermal spring distribution and relationship to endogenous and exogenous factors, Nat. Commun., 13, 6378, https://doi.org/10.1038/s41467-022-34115-w, 2022.
Tartaglia, G., Viola, G., van der Lelij, R., Scheiber, T., Ceccato, A., and Schönenberger, J.: “Brittle structural facies” analysis: A diagnostic method to unravel and date multiple slip events of long-lived faults, Earth Planet. Sc. Lett., 545, 116420, https://doi.org/10.1016/j.epsl.2020.116420, 2020.
Teixell, A.: The Ansó transect of the southern Pyrenees: basement and cover thrust geometries, J. Geol. Soc. London, 153, 301–310, 1996.
Teixell, A., Labaume, P., Ayarza, P., Espurt, N., De Saint Blanquat, M., and Lagabrielle, Y.: Crustal structure and evolution of the Pyrenean-Cantabrian belt: a review and new interpretations from recent concepts and data, Tectonophysics, 724–725, 146–170, https://doi.org/10.1016/j.tecto.2018.01.009, 2018.
Trincal, V., Lanari, P., Buatier, M., Lacroix, B., Charpentier, D., Labaume, P., and Munoz, M.: Temperature micro-mapping in oscillatory-zoned chlorite: Application to study of a green-schist facies fault zone in the Pyrenean Axial Zone (Spain), Am. Mineral., 100, 2468–2483, 2015.
Trincal, V., Buatier, M., Charpentier, D., Lacroix, B., Lanari, P., Labaume, P., Lahfid, A., and Vennemann, T.: Fluid-rock interactions related to metamorphic reducing fluid flow in meta-sediments: example of the Pic-de-Port-Vieux thrust (Pyrenees, Spain), Contrib. Mineral. Petrol., 172, 78, https://doi.org/10.1007/s00410-017-1394-5, 2017.
Trittla, J., Alonso Azcarate, J., Bottrell, S. H.: Molten sulphur-dominated fluids in the origin of a native sulphur mineralization in lacustrine evaporites from Cervera del Rio Alhama (Cameros Basin, NE Spain), J. Geochem. Explor., 69, 183–187, https://doi.org/10.1016/S0375-6742(00)00023-6, 2000.
van der Pluijm, B. A., Hall, C. M., Vrolijk, P. J., Pevear, D. R., and Covey, M. C.: The dating of shallow faults in the Earth's crust, Nature, 412, 172–175, https://doi.org/10.1038/35084053, 2001.
Vasseur, G., Gable, R., Feuga, B., and Bienfait, G.: Groundwater flow and heat flow in an area of mineral springs, Geothermics, 20, 99–117, https://doi.org/10.1016/0375-6505(91)90009-K, 1991.
Vergés, J., Fernàndez, M., and Martìnez, A.: The Pyrenean orogen: Pre-, syn-, and post-collisional evolution, J. Virtual Explor., 8, 55–74, https://doi.org/10.3809/jvirtex.2002.00058, 2002.
Vidal, O., Parra, T.and Trotet, F.: A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100° to 600 °C, 1 to 25 Kb range, Am. J. Sci., 301, 557–592, https://doi.org/10.2475/ajs.301.6.557, 2001.
Vidal, O., Parra, T., and Vieillard, P.: Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: application to natural examples and possible role of oxidation, Am. Mineral., 90, 347–358, 2005.
Vidal, O., De Andrade, V., Lewin, E., Munoz, M., Parra, T., and Pascarelli, S.: P-T deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan), J. Metamorph. Geol., 24, 669–683, 2006.
Vidal, O., Lanari, P., Munoz, M., Bourdelle, F., and De Andrade, V.: Deciphering temperature, pressure and oxygen-activity conditions of chlorite formation, Clay Miner., 51, 615–633, 2016.
Villa, I. M.: Dating deformation: The role of atomic-scale processes, J. Geol. Soc. London, 179, jgs2021-098, https://doi.org/10.1144/jgs2021-098, 2022.
Vissers, R. L. M., Ganerød, M., Pennock, G. M., and van Hinsbergen, D. J. J.: Eocene seismogenic reactivation of a Jurassic ductile shear zone at Cap de Creus, Pyrenees, NE Spain, J. Struct. Geol., 134, 103994, https://doi.org/10.1016/j.jsg.2020.103994, 2020.
Waldner, M., Bellahsen, N., Mouthereau, F., Bernet, M., Pik, R., Rosenberg, L., and Balvay, M.: Central Pyrenees Mountain Building: Constraints From New LT Thermochronological Data From the Axial Zone, Tectonics, 40, 289–302, https://doi.org/10.1029/2020TC006614, 2021.
Walker, J. R.: Chlorite polytype geothermometry, Clay. Clay Miner., 41, 260–267, 1993.
Wanner, C., Diamond, L. W., and Alt-Epping, P.: Quantification of 3-D thermal anomalies from surface observations of an orogenic geothermal system (Grimsel Pass, Swiss Alps), J. Geophys. Res.-Sol. Ea., 124, 10839–10854, https://doi.org/10.1029/2019JB018335, 2019.
Wanner, C., Waber, H. N., and Bucher, K.: Geochemical evidence for regional and long-term topography-driven groundwater flow in an orogenic crystalline basement (Aar Massif, Switzerland), J. Hydrol., 581, 124374, https://doi.org/10.1016/j.jhydrol.2019.124374, 2020.
Wilke, M., Farges, F., Petit, P. E., Brown, G. E., and Martin, F.: Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study, Am. Mineral., 86, 714–730, 2001.
Wiprut, D. and Zoback, M. D.: Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea, Geology, 28, 595–598, https://doi.org/10.1130/0091-7613(2000)28<595:FRAFFA>2.0.CO;2, 2000.
Yin, A. and Harrison, T. M.: Geologic Evolution of the Himalayan-Tibetan Orogen, Annu. Rev. Earth Pl. Sc., 28, 211–280, https://doi.org/10.1146/annurev.earth.28.1.211, 2000.
Zane, A., Sassi, R., and Guidotti, C. V.: New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschist-facies rocks, Can. Mineral., 36, 713–726, 1998.
Zhu, W., Allison, K. L., Dunham, E. M., and Yang, Y.: Fault valving and pore pressure evolution in simulations of earthquake sequences and aseismic slip, Nat. Commun., 11, 4833, https://doi.org/10.1038/s41467-020-18598-z, 2020.
Short summary
Understanding the fluid circulation in fault zones is essential to characterize the thermochemical evolution of hydrothermal systems in mountain ranges. The study focused on a paleo-system of the Pyrenees. Phyllosilicates permit us to constrain the evolution of temperature and redox of fluids at the scale of the fault system. A scenario is proposed and involves the circulation of a single highly reducing hydrothermal fluid (~300 °C) that evolves due to redox reactions.
Understanding the fluid circulation in fault zones is essential to characterize the...