Articles | Volume 15, issue 4
https://doi.org/10.5194/se-15-555-2024
https://doi.org/10.5194/se-15-555-2024
Research article
 | 
30 Apr 2024
Research article |  | 30 Apr 2024

Uplift and denudation history of the Ellsworth Mountains: insights from low-temperature thermochronology

Joaquín Bastías-Silva, David Chew, Fernando Poblete, Paula Castillo, William Guenthner, Anne Grunow, Ian W. D. Dalziel, Airton N. C. Dias, Cristóbal Ramírez de Arellano, and Rodrigo Fernandez

Related authors

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: strategies, progress, and limitations
Nick M. W. Roberts, Kerstin Drost, Matthew S. A. Horstwood, Daniel J. Condon, David Chew, Henrik Drake, Antoni E. Milodowski, Noah M. McLean, Andrew J. Smye, Richard J. Walker, Richard Haslam, Keith Hodson, Jonathan Imber, Nicolas Beaudoin, and Jack K. Lee
Geochronology, 2, 33–61, https://doi.org/10.5194/gchron-2-33-2020,https://doi.org/10.5194/gchron-2-33-2020, 2020
Short summary

Related subject area

Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochronology
Thermal history of the East European Platform margin in Poland based on apatite and zircon low-temperature thermochronology
Dariusz Botor, Stanisław Mazur, Aneta A. Anczkiewicz, István Dunkl, and Jan Golonka
Solid Earth, 12, 1899–1930, https://doi.org/10.5194/se-12-1899-2021,https://doi.org/10.5194/se-12-1899-2021, 2021
Short summary
Tracking geothermal anomalies along a crustal fault using (U − Th)∕He apatite thermochronology and rare-earth element (REE) analyses: the example of the Têt fault (Pyrenees, France)
Gaétan Milesi, Patrick Monié, Philippe Münch, Roger Soliva, Audrey Taillefer, Olivier Bruguier, Mathieu Bellanger, Michaël Bonno, and Céline Martin
Solid Earth, 11, 1747–1771, https://doi.org/10.5194/se-11-1747-2020,https://doi.org/10.5194/se-11-1747-2020, 2020
Short summary

Cited articles

Ault, A. K., Gautheron, C., and King, G. E.: Innovations in (U–Th) / He, fission track, and trapped charge thermochronometry with applications to earthquakes, weathering, surface-mantle connections, and the growth and decay of mountains, Tectonics, 38, 3705–3739, https://doi.org/10.1029/2018TC005312, 2019. 
Balestrieri, M. L., Bigazzi, G., and Ghezzo, C.: Uplift-denudation of the Transantarctic Mountains between the David and the Mariner glaciers, northern Victoria Land (Antarctica); constraints by apatite fission-track analysis, in: VII international symposium on Antarctic earth sciences, Siena, Italy, 547–554, https://scar.org/events/conferences-and-symposia/isaes (last access: 30 April 2024), 1997. 
Bargnesi, E. A., Stockli, D. F., Hourigan, J. K., and Hager, C.: Improved accuracy of zircon (U–Th) / He ages by rectifying parent nuclide zonation with practical methods, Chem. Geol., 426, 158–169, https://doi.org/10.1016/j.chemgeo.2016.01.017, 2016. 
Bastías, J., Spikings, R., Riley, T., Ulianov, A., Grunow, A., Chiaradia, M., and Hervé, F.: A revised interpretation of the Chon Aike magmatic province: active margin origin and implications for the opening of the Weddell Sea, Lithos, 386, 106013, https://doi.org/10.1016/j.lithos.2021.106013, 2021. 
Bastias, J., Spikings, R., Riley, T., Chew, D., Grunow, A., Ulianov, A., Chiaradia, M., and Burton-Johnson, A.: Cretaceous magmatism in the Antarctic Peninsula and its tectonic implications, J. Geol. Soc., 180, 1–18, https://doi.org/10.1144/jgs2022-067, 2022. 
Download
Short summary
The Ellsworth Mountains, situated in a remote area of Antarctica, span 350 km in length and 50 km in width, encompassing Antarctica's tallest peak. Due to their isolated location, understanding their formation has been challenging and remains incomplete. Our analysis of zircon minerals from the Ellsworth Mountains indicates that the mountain chain formed between 180 and 100 million years ago, contributing to our understanding of their formation.