Articles | Volume 15, issue 6
https://doi.org/10.5194/se-15-683-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-683-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Magma-poor continent–ocean transition zones of the southern North Atlantic: a wide-angle seismic synthesis of a new frontier
Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
Related authors
Pei Yang and J. Kim Welford
EGUsphere, https://doi.org/10.5194/egusphere-2023-2524, https://doi.org/10.5194/egusphere-2023-2524, 2023
Preprint archived
Short summary
Short summary
This study challenged previous understanding of the conjugate relationship between the Goban Spur and Flemish Cap, and supports the conjugate relationship between the Porcupine Bank and Flemish Cap instead from a seismic perspective, which is further illustrated in different deformable plate reconstruction models, revealing complex 3D kinematics during the orogenic, orogenic collapse, and oblique extension stages between both margin sides.
Pei Yang and J. Kim Welford
EGUsphere, https://doi.org/10.5194/egusphere-2023-2524, https://doi.org/10.5194/egusphere-2023-2524, 2023
Preprint archived
Short summary
Short summary
This study challenged previous understanding of the conjugate relationship between the Goban Spur and Flemish Cap, and supports the conjugate relationship between the Porcupine Bank and Flemish Cap instead from a seismic perspective, which is further illustrated in different deformable plate reconstruction models, revealing complex 3D kinematics during the orogenic, orogenic collapse, and oblique extension stages between both margin sides.
Cited articles
Afilhado, A., Matias, L., Shiobara, H., Hirn, A., Mendes-Victor, L., and Shimamura, H.: From unthinned continent to ocean: the deep structure of the West Iberia passive continental margin at 38° N, Tectonophysics, 458, 9–50, 2008. a
Albers, E., Bach, W., Pérez-Gussinyé, M., McCammon, C., and Frederichs, T.: Serpentinization-Driven H2 Production From Continental Break-Up to Mid-Ocean Ridge Spreading: Unexpected High Rates at the West Iberia Margin, Front. Earth Sci., 9, 673063, https://doi.org/10.3389/feart.2021.673063, 2021. a, b
Alves, T. M. and Cunha, T. A.: A phase of transient subsidence, sediment bypass and deposition of regressive–transgressive cycles during the breakup of Iberia and Newfoundland, Earth Planet. Sc. Lett., 484, 168–183, 2018. a
Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, in: NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA [data set], https://doi.org/10.7289/V5C8276M, 2009. a, b, c
Argand, E.: La tectonique de l'Asie. Conférence faite à Bruxelles, le 10 août 1922, in: Congrès géologique international (XIIIe session) – Belgique, 171–372, https://planet-terre.ens-lyon.fr/planetterre/objets/Images/Argand-tectonique-Asie/Argand-Tectonique-Asie-1924-OCR.pdf (last access: 15 June 2024), 1922. a
Beauchamp, W., Barazangi, M., Demnati, A., and Alji, M. E.: Intracontinental rifting and inversion: Missour basin and Atlas mountains, Morocco, AAPG Bull., 80, 1459–1481, 1996. a
Begović, S.: Structure and physical properties of the subduction plate boundary, PhD thesis, Universitat de Barcelona, https://digital.csic.es/bitstream/10261/202809/3/Begovic_Thesis_2020.pdf (last access: 15 June 2024), 2020. a
Beslier, M., Ask, M., and Boillot, G.: Ocean-continent boundary in the Iberia Abyssal Plain from multichannel seismic data, Tectonophysics, 218, 383–393, 1993. a
Biari, Y., Klingelhoefer, F., Sahabi, M., Aslanian, D., Schnurle, P., Berglar, K., Moulin, M., Mehdi, K., Graindorge, D., Evain, M., Benabdellouahed, M., and Reichert, C.: Deep crustal structure of the North-West African margin from combined wide-angle and reflection seismic data (MIRROR seismic survey), Tectonophysics, 656, 154–174, https://doi.org/10.1016/j.tecto.2015.06.019, 2015. a, b, c, d
Biari, Y., Klingelhoefer, F., Franke, D., Funck, T., Loncke, L., Sibuet, J.-C., Basile, C., Austin, J. A., Rigoti, C. A., Sahabi, M., Benabdellouahed, M., and Roest, W. R.: Structure and evolution of the Atlantic passive margins: A review of existing rifting models from wide-angle seismic data and kinematic reconstruction, Mar. Petrol. Geol., 126, 104898, https://doi.org/10.1016/j.marpetgeo.2021.104898, 2021. a
Boddupalli, B., Minshull, T. A., Morgan, J., Bayrakci, G., and Klaeschen, D.: Comparison of 2-D and 3-D full waveform inversion imaging using wide-angle seismic data from the Deep Galicia Margin, Geophys. J. Int., 227, 228–256, https://doi.org/10.1093/gji/ggab164, 2021. a
Boddupalli, B., Minshull, T. A., Bayrakci, G., Lymer, G., Klaeschen, D., and Reston, T. J.: Insights Into Exhumation and Mantle Hydration Processes at the Deep Galicia Margin From a 3D High-Resolution Seismic Velocity Model, J. Geophys. Res.-Sol. Ea., 127, e2021JB023220, https://doi.org/10.1029/2021JB023220, 2022. a
Bonatti, E., Lawrence, J. R., and Morandi, N.: Serpentinization of oceanic peridotites: temperature dependence of mineralogy and boron content, Earth Planet. Sc. Lett., 70, 88–94, https://doi.org/10.1016/0012-821X(84)90211-5, 1984. a
Bowling, J. C. and Harry, D. L.: Geodynamic models of continental extension and the formation of non-volcanic rifted continental margins, Geological Society, London, Special Publications, 187, 511–536, https://doi.org/10.1144/GSL.SP.2001.187.01.25, 2001. a
Brenders, A. J. and Pratt, R. G.: Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model, Geophys. J. Int., 168, 133–151, https://doi.org/10.1111/j.1365-246X.2006.03156.x, 2007. a
Bronner, A., Sauter, D., Manatschal, G., Péron-Pinvidic, G., and Munschy, M.: Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins, Nat. Geosci., 4, 549–553, https://doi.org/10.1038/ngeo1201, 2011. a, b
Brune, S., Williams, S. E., Butterworth, N. P., and Müller, R. D.: Abrupt plate accelerations shape rifted continental margins, Nature, 536, 201–204, https://doi.org/10.1038/nature18319, 2016. a
Brune, S., Heine, C., Clift, P. D., and Pérez-Gussinyé, M.: Rifted margin architecture and crustal rheology: reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea, Mar. Petrol. Geol., 79, 257–281, 2017. a
Brune, S., Williams, S. E., and Müller, R. D.: Oblique rifting: the rule, not the exception, Solid Earth, 9, 1187–1206, https://doi.org/10.5194/se-9-1187-2018, 2018. a
Buiter, S. J. and Torsvik, T. H.: A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures?, Gondwana Res., 26, 627–653, https://doi.org/10.1016/j.gr.2014.02.007, 2014. a
Causer, A., Pérez-Díaz, L., Adam, J., and Eagles, G.: Uncertainties in break-up markers along the Iberia–Newfoundland margins illustrated by new seismic data, Solid Earth, 11, 397–417, https://doi.org/10.5194/se-11-397-2020, 2020. a
Cawood, P. A. and Buchan, C.: Linking accretionary orogenesis with supercontinent assembly, Earth-Sci. Rev., 82, 217–256, https://doi.org/10.1016/j.earscirev.2007.03.003, 2007. a
Červený, V. and Pšenčík, I.: 2-D seismic ray package, Tech. rep., Research Report, Institute of Geophysics, Charles University, Prague, 1981. a
Červený, V. and Pšenčík, I.: SEIS83 – Numerical modeling of seismic wave fields in 2-D laterally varying layered structures by the ray method, in: Documentation of earthquake algorithms, edited by: Engdahl, E., vol. Report SE-35, World Data Center (A) for Solid Earth Geophysics, Boulder, CO, USA, 36–40, 1984. a
Červený, V., Molotkov, I., and Pšenčík, I.: Ray method in seismology, University of Karlova, Prague, 214 pp., 1977. a
Chen, C., Watremez, L., Prada, M., Minshull, T., Edwards, R., O'Reilly, B., Reston, T., Wagner, G., Gaw, V., Klaschen, D., and Shannon, P.: From continental hyperextension to seafloor spreading: new insights on the Porcupine Basin from wide-angle seismic data, J. Geophys. Res., 123, 8312–8330, https://doi.org/10.1029/2018JB016375, 2018. a
Chenin, P., Manatschal, G., Lavier, L. L., and Erratt, D.: Assessing the impact of orogenic inheritance on the architecture, timing and magmatic budget of the North Atlantic rift system: a mapping approach, J. Geol. Soc. Lond., 172, 711–720, https://doi.org/10.1144/jgs2014-139, 2015. a, b, c, d
Chenin, P., Picazo, S., Jammes, S., Manatschal, G., Müntener, O., and Karner, G.: Potential role of lithospheric mantle composition in the Wilson cycle: a North Atlantic perspective, in: Fifty Years of the Wilson Cycle Concept in Plate Tectonics, edited by: Wilson, R., Houseman, G., McCaffrey, K., Doré, A., and Buiter, S., Geological Society of London, Special Publications, vol. 470, 157–172, https://doi.org/10.1144/SP470.10, 2019. a, b
Chian, D. and Louden, K. E.: The structure of Archean-Ketilidian crust along the continental shelf of southwestern Greenland from a seismic refraction profile, Can. J. Earth Sci., 29, 301–313, 1992. a
Coltat, R., Boulvais, P., Branquet, Y., Richard, A., Tarantola, A., and Manatschal, G.: Moho carbonation at an ocean-continent transition, Geology, 50, 278–283, https://doi.org/10.1130/G49363.1, 2021. a, b
Crosby, A., White, N., Edwards, G., and Shillington, D. J.: Evolution of the Newfoundland-Iberia conjugate rifted margins, Earth Planet. Sc. Lett., 273, 214–226, 2008. a
Davy, R. G., Morgan, J. V., Minshull, T. A., Bayrakci, G., Bull, J. M., Klaeschen, D., Reston, T. J., Sawyer, D. S., Lymer, G., and Cresswell, D.: Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion, Geophys. J. Int., 212, 244–263, https://doi.org/10.1093/gji/ggx415, 2017. a
Dean, S., Minshull, T., Whitmarsh, R., and Louden, K.: Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: the IAM-9 transect at 40 20'N, J. Geophys. Res., 105, 5859–5886, 2000. a
de Graciansky, P. and Poag, C.: Geologic history of Goban Spur, northwest Europe continental margin, in: Initial Reports of the DSDP, edited by: de Graciansky, P. and Poag, C., US Government Printing Office, Washington, D.C., vol. 80, chap. 58, 1187–1216, https://doi.org/10.2973/dsdp.proc.80.158.1985, 1985. a, b
Druet, M., Muñoz-Martín, A., Granja-Bruña, J. L., Carbó-Gorosabel, A., Acosta, J., Llanes, P., and Ercilla, G.: Crustal structure and continent-ocean boundary along the Galicia continental margin (NW Iberia): insights from combined gravity and seismic interpretation, Tectonics, 37, 1576–1604, https://doi.org/10.1029/2017TC004903, 2018. a, b, c, d, e, f
Eagles, G., Pérez-Díaz, L., and Scarselli, N.: Getting over continent ocean boundaries, Earth-Sci. Rev., 151, 244–265, https://doi.org/10.1016/j.earscirev.2015.10.009, 2015. a, b
Eldholm, O., Thiede, J., and Taylor, E.: Evolution of the Vøring Volcanic Margin, Proc., scientific results, ODP, Leg 104, Norwegian Sea, 104, 1033–1065, https://doi.org/10.2973/odp.proc.sr.104.191.1989, 1989. a
Eldholm, O., Gladczenko, T. P., Skogseid, J., and Planke, S.: Atlantic volcanic margins: a comparative study, Geological Society, London, Special Publications, 167, 411–428, https://doi.org/10.1144/GSL.SP.2000.167.01.16, 2000. a
Epin, M. E., Manatschal, G., Amman, M., Ribes, C., Clausse, A., Guffon, T., and Lescanne, M.: Polyphase tectono-magmatic evolution during mantle exhumation in an ultra-distal, magma-poor rift domain: example of the fossil Platta ophiolite, SE Switzerland, Int. J. Earth Sci., 108, 2443–2467, https://doi.org/10.1007/s00531-019-01772-0, 2019. a
Franke, D.: Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins, Mar. Petrol. Geol., 43, 63–87, https://doi.org/10.1016/j.marpetgeo.2012.11.003, 2013. a
Frizon de Lamotte, D., Fourdan, B., Leleu, S., Leparmentier, F., and de Clarens, P.: Style of rifting and the stages of Pangea breakup, Tectonics, 34, 1009–1029, https://doi.org/10.1002/2014TC003760, 2015. a
Funck, T. and Louden, K. E.: Wide-angle seismic imaging of pristine Archean crust in the Nain Province, Labrador, Can. J. Earth Sci., 35, 672–685, 1998. a
Funck, T. and Louden, K. E.: Wide-angle seismic transect across the Torngat Orogen, northern Labrador: evidence for a Proterozoic crustal root, J. Geophys. Res., 104, 7463–7480, 1999. a
Funck, T. and Louden, K. E.: Wide-angle seismic imaging of a Mesoproterozoic anorthosite complex: the Nain Plutonic Suite in Labrador, Canada, J. Geophys. Res., 105, 25693–25707, 2000. a
Funck, T., Louden, K. E., and Hall, J.: Wide-angle reflectivity across the Torngat Orogen, NE Canada, Geophys. Res. Lett., 28, 3541–3544, 2001a. a
Funck, T., Louden, K. E., and Reid, I.: Crustal structure of the Grenville Province in southeastern Labrador from refraction seismic data: evidence for a high-velocity lower crustal wedge, Can. J. Earth Sci., 38, 1463–1478, 2001b. a
Funck, T., Jackson, H., Louden, K. E., and Klingelhõfer, F. K.: Seismic study of the transform-rifted margin in Davis Strait between Baffin Island (Canada) and Greenland: what happens when a plume meets a transform, J. Geophys. Res., 112, B04402, https://doi.org/10.1029/2006JB004308, 2007. a
Funck, T., Hansen, A., Reid, I., and Louden, K. E.: The crustal structure of the southern Nain and Makkovik provinces of Labrador derived from refraction seismic data, Can. J. Earth Sci., 45, 465–481, 2008. a
Funck, T., Dehler, S., Chapman, C., Delescluse, M., Iuliucci, J., Iuliucci, R., Judge, W., Meslin, P., and Ruhnau, M.: Cruise Report of the SIGNAL 2009 Refraction Seismic Cruise (Hudson 2009-019), Open file # 6442, 110 pp., Geological Survey of Canada, https://publications.gc.ca/collections/collection_2016/rncan-nrcan/M183-2-6441-eng.pdf (last access: 15 June 2024), 2010. a
Funck, T., Erlendsson, Ö., Geissler, W. H., Gradmann, S., Kimbell, G. S., McDermott, K., and Petersen, U. K.: A review of the NE Atlantic conjugate margins based on seismic refraction data, Geological Society, London, Special Publications, 447, 171–205, https://doi.org/10.1144/SP447.9, 2017. a, b, c, d, e, f
Gerlings, J., Louden, K. E., Minshull, T. A., and Nedimovic, M. R.: Flemish Cap-Goban Spur conjugate margins: new evidence of asymmetry, Geology, 40, 1107–1110, 2012. a
Gillard, M., Tugend, J., Müntener, O., Manatschal, G., Karner, G. D., Autin, J., Sauter, D., Figueredo, P. H., and Ulrich, M.: The role of serpentinization and magmatism in the formation of decoupling interfaces at magma-poor rifted margins, Earth-Sci. Rev., 196, 102882, https://doi.org/10.1016/j.earscirev.2019.102882, 2019. a, b
Ginzburg, A., Whitmarsh, R., Roberts, D., Montadert, L., Camus, A., and Avedik, F.: The deep seismic structure of the northern continental margin of the Bay of Biscay, Ann. Geophys., 3, 499–510, 1985. a
Gohl, K. and Smithson, S.: Structure of Archean crust and passive margin of southwest Greenland from seismic wide-angle data, J. Geophys. Res., 98, 6623–6638, https://doi.org/10.1029/93JB00016, 1993. a
Goldberg, D. S., Kent, D. V., and Olsen, P. E.: Potential on-shore and off-shore reservoirs for CO2 sequestration in Central Atlantic magmatic province basalts, P. Natl. Acad. Sci. USA, 107, 1327–1332, https://doi.org/10.1073/pnas.0913721107, 2010. a, b
Górszczyk, A., Brossier, R., and Métivier, L.: Graph-Space Optimal Transport Concept for Time-Domain Full-Waveform Inversion of Ocean-Bottom Seismometer Data: Nankai Trough Velocity Structure Reconstructed From a 1D Model, J. Geophys. Res.-Sol. Ea., 126, e2020JB021504, https://doi.org/10.1029/2020JB021504, e2020JB021504 2020JB021504, 2021. a
Gouiza, M. and Naliboff, J.: Rheological inheritance controls the formation of segmented rifted margins in cratonic lithosphere, Nat. Commun., 12, 4653, https://doi.org/10.1038/s41467-021-24945-5, 2021. a
Gradstein, F., Ogg, J., Schmitz, M., and Ogg, G. (Eds.): The Geologic Time Scale 2012, Elsevier, ISBN 978-0-44-459434-1, 2012. a
Grevemeyer, I., Hayman, N. W., Peirce, C., Schwardt, M., van Avendonk, H. J., Dannowski, A., and Papenberg, C.: Episodic magmatism and serpentinized mantle exhumation at an ultraslow-spreading centre, Nat. Geosci., 11, 444–448, 2018. a
Grion, S., Exley, R., Manin, M., Miao, X., Pica, A., Wang, Y., Granger, P., and Ronen, S.: Mirror imaging of OBS data, First Break, 25, 37–42, https://doi.org/10.3997/1365-2397.2007028, 2007. a, b
Guo, P., Singh, S. C., Vaddineni, V. A., Visser, G., Grevemeyer, I., and Saygin, E.: Nonlinear full waveform inversion of wide-aperture OBS data for Moho structure using a trans-dimensional Bayesian method, Geophys. J. Int., 224, 1056–1078, https://doi.org/10.1093/gji/ggaa505, 2020. a
Hall, J., Louden, K. E., Funck, T., and Deemer, S.: Geophysical characteristics of the continental crust along the Lithoprobe Eastern Canadian Shield Onshore-Offshore Transect (ECSOOT): a review, Can. J. Earth Sci., 39, 569–587, 2002. a
Hannington, M., Petersen, S., and Krätschell, A.: Subsea mining moves closer to shore, Nat. Geosci., 10, 158–159, https://doi.org/10.1038/ngeo2897, 2017. a, b
Haworth, R. and Keen, C. E.: The Canadian Atlantic margin: a passive continental margin encompassing an active past, Tectonophysics, 59, 83–126, 1979. a
Heine, C., Zoethout, J., and Müller, R. D.: Kinematics of the South Atlantic rift, Solid Earth, 4, 215–253, https://doi.org/10.5194/se-4-215-2013, 2013. a
Henning, A. T., Sawyer, D. S., and Templeton, D. C.: Exhumed upper mantle within the ocean-continent transition on the northern West Iberia margin: evidence from prestack depth migration and total tectonic subsidence analyses, J. Geophys. Res., 109, B05103, https://doi.org/10.1029/2003JB002526, 2004. a
Hibbard, J. and Waldron, J. W.: Truncation and translation of Appalachian promontories: Mid-Paleozoic strike-slip tectonics and basin initiation, Geology, 37, 487–490, https://doi.org/10.1130/G25614A.1, 2009. a
Hopper, J., Funck, T., Tucholke, B., Larsen, H. C., Holbrook, W. S., Louden, K. E., Shillington, D. J., and Lau, H.: Continental breakup and the onset of ultraslow seafloor spreading off Flemish Cap on the Newfoundland rifted margin, Geology, 32, 93–96, 2004. a
Hopper, J., Funck, T., Tucholke, B., Louden, K., Holbrook, W., and Larsen, H. C.: A deep seismic investigation of the Flemish Cap margin: implications for the origin of deep reflectivity and evidence for asymmetric break-up between Newfoundland and Iberia, Geophys. J. Int., 164, 501–515, https://doi.org/10.1111/j.1365-246X.2006.02800.x, 2006. a
Huismans, R. and Beaumont, C.: Roles of lithospheric strain softening and heterogeneity in determining the geometry of rifts and continental margins, in: Imaging, mapping and modelling continental lithosphere extension and breakup, edited by: Karner, G., Manatschal, G., and Pinheiro, L., Geological Society of London, Special Publications, vol. 282, 111–138, 2007. a, b, c
Jammes, S. and Lavier, L.: Effect of contrasting strength from inherited crustal fabrics on the development of rifting margins, Geosphere, 15, 407–422, https://doi.org/10.1130/GES01686.1, 2019. a, b
Jian, H., Nedimović, M. R., Canales, J. P., and Lau, K. W. H.: New insights Into the Rift to Drift Transition across the Northeastern Nova Scotian margin From wide-angle seismic waveform inversion and reflection imaging, J. Geophys. Res.-Sol. Ea., 126, e2021JB022201, https://doi.org/10.1029/2021JB022201, 2021. a, b, c, d, e, f, g, h, i
Jolivet, L., Baudin, T., Calassou, S., Chevrot, S., Ford, M., Issautier, B., Lasseur, E., Masini, E., Manatschal, G., Mouthereau, F., Thinon, I., and Vidal, O.: Geodynamic evolution of a wide plate boundary in the Western Mediterranean, near-field versus far-field interactions, B. Soc. Géol. Fr., 192, 48, https://doi.org/10.1051/bsgf/2021043, 2021. a, b
Kamei, R., Pratt, R. G., and Tsuji, T.: On acoustic waveform tomography of wide-angle OBS data – strategies for pre-conditioning and inversion, Geophys. J. Int., 194, 1250–1280, https://doi.org/10.1093/gji/ggt165, 2013. a
Keen, C. and Dehler, S. A.: Stretching and subsidence: rifting of conjugate margins in the North Atlantic region, Tectonics, 12, 1209–1229, 1993. a
Keen, C., Potter, P., and Srivastava, S.: Deep seismic reflection data across the conjugate margins of the Labrador Sea, Can. J. Earth Sci., 31, 192–205, 1994. a
Keen, C., Dickie, K., Dafoe, L., Funck, T., Welford, J., Dehler, S., Gregersen, U., and DesRoches, K.: Rifting and evolution of the Labrador-Baffin Seaway, in: Geological synthesis of Baffin Island (Nunavut) and the Labrador-Baffin Seaway, edited by: Dafoe, L. and Bingham-Koslowski, N., Geological Survey of Canada, Bulletin 608, 341–377, https://doi.org/10.4095/321854, 2022. a
Keen, C. E. and Barrett, D.: Thinned and subsided continental crust on the rifted margin of eastern Canada: crustal structure, thermal evolution and subsidence history, Geophys. J. Roy. Astr. S., 65, 443–465, 1981. a
Keen, C. E. and Potter, D.: Formation and evolution of the Nova Scotia rifted margin: evidence from deep seismic reflection data, Tectonics, 14, 918–932, 1995. a
Keen, C. E., MacLean, B., and Kay, W. A.: A deep seismic reflection profile across the Nova Scotia continental margin, offshore eastern Canada, Can. J. Earth Sci., 28, 1112–1120, 1991. a
Klemperer, S. L. and Hobbs, R. W.: The BIRPS Atlas : Deep Seismic Reflection Profiles Around the British Isles, Cambridge Univ. Press, Cambridge, https://api.semanticscholar.org/CorpusID:128332911 (last access: 15 June 2024), 1991. a
Klingelhoefer, F., Biari, Y., Sahabi, M., Aslanian, D., Schnabel, M., Matias, L., Benabdellouahed, M., Funck, T., Gutscher, M.-A., Reichert, C., and Austin, J. A.: Crustal structure variations along the NW-African continental margin: A comparison of new and existing models from wide-angle and reflection seismic data, Tectonophysics, 674, 227–252, https://doi.org/10.1016/j.tecto.2016.02.024, 2016. a, b
Korenaga, J., Holbrook, W., Kent, G., Kelemen, P., Detrick, R., Larsen, H.-C., Hopper, J., and Dahl-Jensen, T.: Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography, J. Geophys. Res., 105, 21591–21614, 2000. a
Korenaga, J., Holbrook, W., Detrick, R., and Kelemen, P.: Gravity anomalies and crustal structure at the southeast Greenland margin, J. Geophys. Res., 106, 8853–8870, 2001. a
Kroner, U. and Romer, R.: Two plates – Many subduction zones: The Variscan orogeny reconsidered, Gondwana Res., 24, 298–329, https://doi.org/10.1016/j.gr.2013.03.001, 2013. a
Labails, C., Olivet, J.-L., Aslanian, D., and Roest, W. R.: An alternative early opening scenario for the Central Atlantic Ocean, Earth Planet. Sc. Lett., 297, 355–368, https://doi.org/10.1016/j.epsl.2010.06.024, 2010. a, b
Lau, K. H., Louden, K. E., Funck, T., Tucholke, B. E., Holbrook, W. S., Hopper, J. R., and Larsen, H. C.: Crustal structure across the Grand Banks-Newfoundland Basin continental margin – I. Results from a seismic refraction profile, Geophys. J. Int., 167, 127–156, https://doi.org/10.1111/j.1365-246X.2006.02988.x, 2006a. a, b, c, d
Lau, K. H., Louden, K. E., Deemer, S., Hall, J., Hopper, J. R., Tucholke, B. E., Holbrook, W. S., and Larsen, H. C.: Crustal structure across the Grand Banks-Newfoundland Basin continental margin – II. Results from a seismic reflection profile, Geophys. J. Int., 167, 157–170, 2006b. a
Lau, K. H., Watremez, L., Louden, K. E., and Nedimovic, M. R.: Structure of thinned continental crust across the Orphan Basin from a dense wide-angle seismic profile and gravity data, Geophys. J. Int., 202, 1969–1992, https://doi.org/10.1093/gji/ggv261, 2015. a, b
Lavier, L. and Manatschal, G.: A mechanism to thin the continental lithosphere at magma-poor margins, Nature, 440, 324–328, 2006. a
Liu, Z., Pérez-Gussinyé, M., Rüpke, L., Muldashev, I. A., Minshull, T. A., and Bayrakci, G.: Lateral coexistence of ductile and brittle deformation shapes magma-poor distal margins: An example from the West Iberia-Newfoundland margins, Earth Planet. Sc. Lett., 578, 117288, https://doi.org/10.1016/j.epsl.2021.117288, 2022. a
Liu, Z., Perez-Gussinye, M., García-Pintado, J., Mezri, L., and Bach, W.: Mantle serpentinization and associated hydrogen flux at North Atlantic magma-poor rifted margins, Geology, 51, 284–289, https://doi.org/10.1130/G50722.1, 2023. a, b, c
Louden, K. E. and Chian, D.: The deep structure of non-volcanic rifted continental margins, Philos. T. R. Soc. Lond., 357, 767–804, 1999. a
Makris, J., Egloff, R., Jacob, A. B., Mohr, P., Murphy, T., and Ryan, P.: Continental crust under the southern Porcupine Seabight, West of Ireland, Earth Planet. Sc. Lett., 89, 387–397, 1988. a
Makris, J., Ginzburg, A., Shannon, P., Jacob, A. B., Bean, C., and Vogt, U.: A new look at the Rockall region, offshore Ireland, Mar. Petrol. Geol., 8, 410–416, 1991. a
Manatschal, G., Müntener, O., Lavier, L., Minshull, T., and Péron-Pinvidic, G.: Observations from the Alpine Tethys and Iberia–Newfoundland margins pertinent to the interpretation of continental breakup, Geological Society, London, Special Publications, 282, 291–324, 2007. a
McMechan, G. A. and Mooney, W. D.: Asymptotic ray theory and synthetic seismograms for laterally varying structures: theory and application to the Imperial Valley, California, B. Seismol. Soc. Am., 70, 2021–2035, 1980. a
Meléndez, A., Korenaga, J., Sallarès, V., Miniussi, A., and Ranero, C.: TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data – synthetic test, Geophys. J. Int., 203, 158–174, https://doi.org/10.1093/gji/ggv292, 2015. a
Milkov, A. V.: Molecular hydrogen in surface and subsurface natural gases: Abundance, origins and ideas for deliberate exploration, Earth-Sci. Rev., 230, 104063, https://doi.org/10.1016/j.earscirev.2022.104063, 2022. a
Minshull, T. A.: Geophysical characterisation of ocean-continent transition at magma-poor rifted margins, C. R. Geosci., 341, 382–393, 2009. a
Minshull, T. A. and Singh, S. C.: Shallow structure of oceanic crust in the western North Atlantic from seismic waveform inversion and modeling, J. Geophys. Res.-Sol. Earth, 98, 1777–1792, https://doi.org/10.1029/92JB02136, 1993. a
Mohn, G., Karner, G. D., Manatschal, G., and Johnson, C. A.: Structural and stratigraphic evolution of the Iberia–Newfoundland hyper-extended rifted margin: a quantitative modelling approach, Special Publications, 413, 53–89, 2015. a
Morgan, J., Warner, M., Bell, R., Ashley, J., Barnes, D., Little, R., Roele, K., and Jones, C.: Next-generation seismic experiments: wide-angle, multi-azimuth, three-dimensional, full-waveform inversion, Geophys. J. Int., 195, 1657–1678, https://doi.org/10.1093/gji/ggt345, 2013. a
Mouthereau, F., Angrand, P., Jourdon, A., Ternois, S., Fillon, C., Calassou, S., Chevrot, S., Ford, M., Jolivet, L., Manatschal, G., Masini, E., Thinon, I., Vidal, O., and Baudin, T.: Cenozoic mountain building and topographic evolution in Western Europe: impact of billions of years of lithosphere evolution and plate kinematics, B. Soc. Géol. Fr., 192, 56, https://doi.org/10.1051/bsgf/2021040, 2021. a, b, c
Müller, R., Seton, M., Zahirovic, S., Williams, S., Matthews, K., Wright, N., Shephard, G., Maloney, K., Barnett-Moore, N., Hosseinpour, M., Bower, D., and Cannon, J.: Ocean basin evolution and global-scale plate reorganization events since Pangea breakup, Annual Rev. Earth Pl. Sc., 44, 107–138, 2016. a
Nance, R. D., Gutiérrez-Alonso, G., Keppie, J. D., Linnemann, U., Murphy, J. B., Quesada, C., Strachan, R. A., and Woodcock, N. H.: Evolution of the Rheic Ocean, Gondwana Res., 17, 194–222, https://doi.org/10.1016/j.gr.2009.08.001, 2010. a
Nazarova, K.: Serpentinized peridotites as a possible source for oceanic magnetic anomalies, Mar. Geophys. Res., 16, 455–462, 1994. a
Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N. J., and Sauter, D.: Nature and origin of the J-magnetic anomaly offshore Iberia-Newfoundland: implications for plate reconstructions, Terra Nova, 29, 20–28, https://doi.org/10.1111/ter.12240, 2017. a, b, c, d
Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N., and Sauter, D.: Kinematic evolution of the southern North Atlantic: implications for the formation of hyperextended rift systems, Tectonics, 37, 89–118, https://doi.org/10.1002/2017TC004495, 2018. a, b
O'Reilly, B. M., Hauser, F., Jacob, A. B., Shannon, P. M., Makris, J., and Vogt, U.: The transition between the Erris and the Rockall basins: new evidence from wide-angle seismic data, Tectonophysics, 241, 143–163, 1995. a
O'Reilly, B. M., Hauser, F., Ravaut, C., Shannon, P. M., and Readman, P.: Crustal thinning, mantle exhumation and serpentinization in the Porcupine Basin, offshore Ireland: evidence from wide-angle seismic data, J. Geol. Soc. London, 163, 775–787, https://doi.org/10.1144/0016-76492005-079, 2006. a
Oufi, O., Cannat, M., and Horen, H.: Magnetic properties of variably serpentinized abyssal peridotites, J. Geophys. Res., 107, EPM 3-1–EPM 3-19, https://doi.org/10.1029/2001JB000549, 2002. a
Patten, C., Coltat, R., Junge, M., Peillod, A., Ulrich, M., Manatschal, G., and Kolb, J.: Ultramafic-hosted volcanogenic massive sulfide deposits: an overlooked sub-class of VMS deposit forming in complex tectonic environments, Earth-Sci. Rev., 224, 103891, https://doi.org/10.1016/j.earscirev.2021.103891, 2022. a, b
Peace, A. L., Welford, J. K., Ball, P. J., and Nirrengarten, M.: Deformable plate tectonic models of the southern North Atlantic, J. Geodynam., 128, 11–37, 2019. a
Peace, A. L., Phethean, J., Franke, D., Foulger, G., Schiffer, C., Welford, J., McHone, G., Rocchi, S., Schnabel, M., and Doré, A.: A review of Pangaea dispersal and Large Igneous Provinces – In search of a causative mechanism, Earth-Sci. Rev., 206, 102902, https://doi.org/10.1016/j.earscirev.2019.102902, 2020. a
Penrose Conference Participants: Penrose field conference on ophiolites, Geotimes, 17, 1972. a
Pérez-Gussinyé, M., Reston, T., and Phipps Morgan, J.: Serpentinization and magmatism during extension at non-volcanic margins: the effect of initial lithospheric structure, in: Non-volcanic rifting of continental margins: a comparison of evidence from land and sea, edited by: Wilson, R., Whitmarsh, R., Taylor, B., and Froitzheim, N., Geological Society of London, Special Publications, vol. 187, 551–576, 2001. a
Pérez-Gussinyé, M., Morgan, J., Reston, T., and Ranero, C.: The rift to drift transition at non-volcanic margins: insights from numerical modelling, Earth Planet. Sc. Lett., 244, 458–473, 2006. a
Pérez-Gussinyé, M., Collier, J. S., Armitage, J. J., Hopper, J. R., Sun, Z., and Ranero, C. R.: Towards a process-based understanding of rifted continental margins, Nature Reviews Earth & Environment, , 4, 166–184, https://doi.org/10.1038/s43017-022-00380-y, 2023. a
Péron-Pinvidic, G. and Manatschal, G.: The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view, Int. J. Earth Sci., 98, 1581–1597, https://doi.org/10.1007/s00531-008-0337-9, 2009. a
Péron-Pinvidic, G. and Manatschal, G.: From microcontinents to extensional allochthons: witnesses of how continents rift and break apart?, Petrol. Geosci., 16, 1–10, https://doi.org/10.1144/1354-079309-903, 2010. a
Péron-Pinvidic, G., Manatschal, G., Minshull, T. A., and Sawyer, D.: Tectonosedimentary evolution of the deep Iberia-Newfoundland margins: evidence for a complex breakup history, Tectonics, 26, TC2001, https://doi.org/10.1029/2006TC001970, 2007. a
Péron-Pinvidic, G., Manatschal, G., and the IMAGinING RIFTING Workshop Participants: Rifted margins: state of the art and future challenges, Front. Earth Sci., 7, 218, https://doi.org/10.3389/feart.2019.00218, 2019. a
Péron-Pinvidic, G., Fourel, L., and Buiter, S.: The influence of orogenic collision inheritance on rifted margin architecture: Insights from comparing numerical experiments to the mid-Norwegian margin, Tectonophysics, 828, 229273, https://doi.org/10.1016/j.tecto.2022.229273, 2022. a
Picazo, S., Malvoisin, B., Baumgartner, L., and Bouvier, A.-S.: Low Temperature Serpentinite Replacement by Carbonates during Seawater Influx in the Newfoundland Margin, Minerals, 10, 184, https://doi.org/10.3390/min10020184, 2020. a
Piqué, A., Le Roy, P., and Amrhar, M.: Transtensive synsedimentary tectonics associated with ocean opening: the Essaouira–Agadir segment of the Moroccan Atlantic margin, J. Geol. Soc., 155, 913–928, 1998. a
Planke, S., Symonds, P., Alvestad, E., and Skogseid, J.: Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins, J. Geophys. Res., 105, 19335–19351, 2000. a
Pratt, R. G.: Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model, Geophysics, 64, 888–901, https://doi.org/10.1190/1.1444597, 1999. a
Pratt, R. G. and Worthington, M.: Inverse theory applied to multi-source cross-hole tomography, Geophys. Prospect., 38, 287–310, https://doi.org/10.1111/j.1365-2478.1990.tb01846.x, 1990. a
Pratt, R. G., Song, Z.-M., Williamson, P., and Warner, M.: Two-dimensional velocity models from wide-angle seismic data by wavefield inversion, Geophys. J. Int., 124, 323–340, https://doi.org/10.1111/j.1365-246X.1996.tb07023.x, 1996. a
Pratt, R. G., Shin, C., and Hick, G. J.: Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion, Geophys. J. Int., 133, 341–362, https://doi.org/10.1046/j.1365-246X.1998.00498.x, 1998. a
Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A., and Dell'Aversana, P.: Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt, Geophys. J. Int., 159, 1032–1056, https://doi.org/10.1111/j.1365-246X.2004.02442.x, 2004. a
Reid, I.: Crustal structure across the Nain-Makkovik boundary on the continental shelf off Labrador from seismic refraction data, Can. J. Earth Sci., 33, 460–471, 1996. a
Reid, I. and Keen, C. E.: High seismic velocities associated with reflections from within the lower oceanic crust near the continental margin of eastern Canada, Earth Planet. Sc. Lett., 99, 118–126, 1990. a
Reston, T., Pennell, J., Stubenrauch, A., Walker, I., and Pérez-Gussinyé, M.: Detachment faulting, mantle serpentinization, and serpentinite-mud volcanism beneath the Porcupine Basin, southwest of Ireland, Geology, 29, 587–590, 2001. a
Reston, T., Gaw, V., Pennell, J., Klaeschen, D., Stubenrauch, A., and Walker, I.: Extreme crustal thinning in the south Porcupine Basin and the nature of the Porcupine Median High: implications for the formation of non-volcanic rifted margins, J. Geol. Soc. Lond., 161, 783–798, 2004. a
Roest, W. and Srivastava, S.: Sea-floor spreading in the Labrador Sea: a new reconstruction, Geology, 17, 1000–1003, 1989. a
Russell, S. and Whitmarsh, R.: Magmatism at the west Iberia non-volcanic rifted continental margin: evidence from analyses of magnetic anomalies, Geophys. J. Int., 154, 706–730, 2003. a
Sandoval, L., Welford, J. K., MacMahon, H., and Peace, A. L.: Determining continuous basins across conjugate margins: The East Orphan, Porcupine, and Galicia Interior basins of the southern North Atlantic Ocean, Mar. Petrol. Geol., 110, 138–161, 2019. a
Sauter, D., Sloan, H., Cannat, M., Goff, J., Patriat, P., Schaming, M., and Roest, W. R.: From slow to ultra-slow: How does spreading rate affect seafloor roughness and crustal thickness?, Geology, 39, 911–914, https://doi.org/10.1130/G32028.1, 2011. a
Sauter, D., Tugend, J., Gillard, M., Nirrengarten, M., Autin, J., Manatschal, G., Cannat, M., Leroy, S., and Schaming, M.: Oceanic basement roughness alongside magma-poor rifted margins: insight into initial seafloor spreading, Geophys. J. Int., 212, 900–915, https://doi.org/10.1093/gji/ggx439, 2018. a, b
Sauter, D., Manatschal, G., Kusznir, N., Masquelet, C., Werner, P., Ulrich, M., Bellingham, P., Franke, D., and Autin, J.: Ignition of the southern Atlantic seafloor spreading machine without hot-mantle booster, Sci. Rep., 13, 1195, https://doi.org/10.1038/s41598-023-28364-y, 2023. a, b
Schettino, A. and Turco, E.: Breakup of Pangaea and plate kinematics of the central Atlantic and Atlas regions, Geophys. J. Int., 178, 1078–1097, https://doi.org/10.1111/j.1365-246X.2009.04186.x, 2009. a, b, c
Schwarzenbach, E. M., Früh-Green, G. L., Bernasconi, S. M., Alt, J. C., and Plas, A.: Serpentinization and carbon sequestration: A study of two ancient peridotite-hosted hydrothermal systems, Chem. Geol., 351, 115–133, https://doi.org/10.1016/j.chemgeo.2013.05.016, 2013. a, b
Sears, T., Singh, S., and Barton, P.: Elastic full waveform inversion of multi‐component OBC seismic data, Geophys. Prospect., 56, 843–862, https://doi.org/10.1111/j.1365-2478.2008.00692.x, 2008. a
Seton, M., Whittaker, J. M., Wessel, P., Müller, R. D., DeMets, C., Merkouriev, S., Cande, S., Gaina, C., Eagles, G., Granot, R., Stock, J., Wright, N., and Williams, S. E.: Community infrastructure and repository for marine magnetic identifications, Geochem. Geophy. Geosy., 15, 1629–1641, https://doi.org/10.1002/2013GC005176, 2014. a, b, c, d, e, f, g, h, i
Shannon, P., Jacob, A. B., O'Reilly, B., Hauser, F., Readman, P., and Makris, J.: Structural setting, geological development and basin modelling in the Rockall Trough, in: Petroleum Geology of North West Europe: Proceedings of the Fifth Conference, edited by: Fleet, A. and Boldy, S., Geological Society, vol. 5, 421–431, https://doi.org/10.1144/0050421, 1999. a
Shipboard Scientific Party: Introduction, objectives, and principal results: Ocean Drilling Program leg 103, west Galicia margin, Proceedings of the Ocean Drilling Program, Initial Reports, 103, 3–17, 1987. a
Shipboard Scientific Party: Leg 173 introduction, Proceedings of the Ocean Drilling Program, Initial Reports, 173, 7–23, 1998. a
Sibuet, J.-C., Louvel, V., Whitmarsh, R. B., White, R. S., Horsefield, S. J., Sichler, B., Léon, P., and Recq, M.: Constraints on rifting processes from refraction and deep-tow magnetic data: the example of the Galicia continental margin (west Iberia), in: Rifted ocean-continent boundaries, edited by: Banda, E., Torné, M., and Talwani, M., vol. 463 of NATO ASI Series, Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers, 197–217, https://link.springer.com/chapter/10.1007/978-94-011-0043-4_11 (last access: 15 June 2024), 1995. a, b, c, d, e, f, g
Sibuet, J.-C., Srivastava, S., Enachescu, M. E., and Karner, G.: Early Cretaceous motion of Flemish Cap with respect to North America: implications on the formation of Orphan Basin and SE Flemish Cap-Galicia Bank conjugate margins, in: Imaging, mapping and modelling continental lithosphere extension and breakup, edited by: Karner, G., Manatschal, G., and Pinheiro, L., Geological Society of London, Special Publications, vol. 282, 63–76, https://doi.org/10.1144/SP282.4, 2007a. a
Sibuet, J.-C., Srivastava, S., and Manatschal, G.: Exhumed mantle-forming transitional crust in the Newfoundland-Iberia rift and associated magnetic anomalies, J. Geophys. Res., 112, B06105, https://doi.org/10.1029/2005JB003856, 2007b. a, b
Sibuet, J.-C., Rouzo, S., and Srivastava, S.: Plate tectonic reconstructions and paleogeographic maps of the central and North Atlantic oceans, Can. J. Earth Sci., 49, 1395–1415, https://doi.org/10.1139/e2012-071, 2012. a
Soares, D. M., Alves, T. M., and Terrinha, P.: The breakup sequence and associated lithospheric breakup surface: their significance in the context of rifted continental margins (West Iberia and Newfoundland margins, North Atlantic), Earth Planet. Sc. Lett., 355–356, 311–326, 2012. a
Stampfli, G., Hochard, C., Vérard, C., Wilhem, C., and vonRaumer, J.: The formation of Pangea, Tectonophysics, 593, 1–19, https://doi.org/10.1016/j.tecto.2013.02.037, 2013. a
Stockmal, G. S., Colman-Sadd, S. P., Keen, C. E., O'Brien, S. J., and Quinlan, G.: Collision along an irregular margin: a regional plate tectonic interpretation of the Canadian Appalachians, Can. J. Earth Sci., 24, 1098–1107, https://doi.org/10.1139/e87-107, 1987. a
Sutra, E., Manatschal, G., Mohn, G., and Unternehr, P.: Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins, Geochem. Geophy. Geosy., 14, 2575–2597, 2013. a
Tetreault, J. and Buiter, S.: The influence of extension rate and crustal rheology on the evolution of passive margins from rifting to break-up, Tectonophysics, 746, 155–172, https://doi.org/10.1016/j.tecto.2017.08.029, 2018. a
Theunissen, T. and Huismans, R. S.: Mantle exhumation at magma-poor rifted margins controlled by frictional shear zones, Nat. Commun., 13, 1634, https://doi.org/10.1038/s41467-022-29058-1, 2022. a
Thomas, W.: Tectonic inheritance at a continental margin, GSA Today, 16, 4–11, 2005. a
Thomas, W. A.: Tectonic inheritance at multiple scales during more than two complete Wilson cycles recorded in eastern North America, Geological Society, London, Special Publications, 470, 337–352, https://doi.org/10.1144/SP470.4, 2019. a, b
Tucholke, B., Austin, J., and Uchupi, E.: Crustal structure and rift-drift evolution of the Newfoundland basin, in: Extensional tectonics and stratigraphy of the North Atlantic margins, edited by: Tankard, A. and Balkwill, H., AAPG Memoir, vol. 46, chap. 16, 247–263, https://doi.org/10.1306/M46497C16, 1989. a
Tucholke, B., Sawyer, D., and Sibuet, J.-C.: Breakup of the Newfoundland-Iberia rift, in: Imaging, mapping and modelling continental lithosphere extension and breakup, edited by: Karner, G., Manatschal, G., and Pinheiro, L., Geological Society of London, Special Publications, vol. 282, 9–46, https://doi.org/10.1144/SP282.2, 2007. a, b
Tyrrell, S., Haughton, P., and Daly, J.: Drainage reorganization during breakup of Pangea revealed by in-situ Pb isotopic analysis of detrital K-feldspar, Geology, 35, 971–974, https://doi.org/10.1130/G4123A.1, 2007. a, b
Van Avendonk, H. J. A., Harding, A. J., Orcutt, J. A., and McClain, J. S.: A two-dimensional tomographic study of the Clipperton transform fault, J. Geophys. Res.-Sol. Ea., 103, 17885–17899, https://doi.org/10.1029/98JB00904, 1998. a
Van Avendonk, H. J. A., Shillington, D. J., Holbrook, W. S., and Hornbach, M. J.: Inferring crustal structure in the Aleutian island arc from a sparse wide-angle seismic data set, Geochem. Geophy. Geosy., 5, Q08008, https://doi.org/10.1029/2003GC000664, 2004. a
van der Linden, W.: Crustal attenuation and sea-floor spreading in the Labrador Sea, Earth Planet. Sc. Lett., 27, 409–423, 1975. a
Virieux, J. and Operto, S.: An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, WCC1–WCC26, https://doi.org/10.1190/1.3238367, 2009. a
Waldron, J. W., McCausland, P. J., Barr, S. M., Schofield, D. I., Reusch, D., and Wu, L.: Terrane history of the Iapetus Ocean as preserved in the northern Appalachians and western Caledonides, Earth-Sci. Rev., 233, 104163, https://doi.org/10.1016/j.earscirev.2022.104163, 2022. a, b
Waldron, J. W. F., Barr, S. M., Park, A. F., White, C. E., and Hibbard, J.: Late Paleozoic strike-slip faults in Maritime Canada and their role in the reconfiguration of the northern Appalachian orogen, Tectonics, 34, 1661–1684, https://doi.org/10.1002/2015TC003882, 2015. a
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D.: The Generic Mapping Tools Version 6, Geochem. Geophy. Geosy., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019. a
Whalen, L., Gazel, E., Vidito, C., Puffer, J., Bizimis, M., Henika, W., and Caddick, M. J.: Supercontinental inheritance and its influence on supercontinental breakup: The Central Atlantic Magmatic Province and the breakup of Pangea, Geochem. Geophy. Geosy., 16, 3532–3554, https://doi.org/10.1002/2015GC005885, 2015. a
White, R.: Crustal structure and magmatism of North Atlantic continental margins, J. Geol. Soc. Lond., 149, 841–854, 1992. a
White, S. E. and Waldron, J. W.: Along-strike variations in the deformed Laurentian margin in the Northern Appalachians: Role of inherited margin geometry and colliding arcs, Earth-Sci. Rev., 226, 103931, https://doi.org/10.1016/j.earscirev.2022.103931, 2022. a
Whitmarsh, R., Avedik, F., and Saunders, M.: The seismic structure of thinned continental crust in the northern Bay of Biscay, Geophys. J. Roy. Astr. Soc., 86, 589–602, 1986. a
Whitmarsh, R., White, R. S., Horsefield, S. J., Sibuet, J.-C., Recq, M., and Louvel, V.: The ocean-continent boundary off the western continental margin of Iberia: crustal structure west of Galicia Bank, J. Geophys. Res., 101, 28291–28314, 1996. a
Williams, H.: Miogeoclines and suspect terranes of the Caledonian-Appalachian orogen: tectonic patterns in the North Atlantic region, Can. J. Earth Sci., 21, 887–901, https://doi.org/10.1139/e84--095, 1984. a, b, c
Williams, H.: Geology of the Appalachian-Caledonian orogen in Canada and Greenland, Geological Survey of Canada, Geology of Canada, no. 6, ISBN 0-660-13134-X, 1995. a
Wilson, J. T.: Did the Atlantic close and then re-open?, Nature, 211, 676–681, https://doi.org/10.1038/211676a0, 1966. a, b
Yang, P. and Welford, J. K.: Kinematic plate modelling of the Goban Spur margin, offshore Ireland, with deforming zones constrained by seismic reflection data, Mar. Petrol. Geol., 139, 105595, https://doi.org/10.1016/j.marpetgeo.2022.105595, 2022. a
Yang, P., Welford, J. K., and King, M. T.: Assessing the rotation and segmentation of the Porcupine Bank, Irish Atlantic margin, during oblique rifting using deformable plate reconstruction, Tectonics, 40, e2020TC006665, https://doi.org/10.1029/2020TC006665, 2021. a
Zelt, C. and Barton, P.: Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faeroe Basin, J. Geophys. Res., 103, 7187–7210, 1998. a
Zelt, C. and Smith, R.: Seismic traveltime inversion for 2-D crustal velocity structure, Geophys. J. Int., 108, 16–34, 1992. a
Ziegler, P. and Dèzes, P.: Crustal evolution of Western and Central Europe, Geological Society, London, Memoirs, 32, 43–56, https://doi.org/10.1144/GSL.MEM.2006.032.01.03, 2006. a, b
Short summary
I present a synthesis of the continent–ocean boundaries of the southern North Atlantic Ocean, as probed using seismic methods for rock velocity estimation, to assess their deep structures from the crust to the upper mantle and to discuss how they were formed. With this knowledge, it is possible to start evaluating these regions of the Earth for their capacity to produce hydrogen and critical minerals and to store excess carbon dioxide, all with the goal of greening our economy.
I present a synthesis of the continent–ocean boundaries of the southern North Atlantic Ocean, as...