Articles | Volume 16, issue 1
https://doi.org/10.5194/se-16-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Post-Hercynian ultrahigh-temperature tectono-metamorphic evolution of the Middle Atlas lower crust (central Morocco) revealed by metapelitic granulite xenoliths
Abdelkader El Maz
CORRESPONDING AUTHOR
Department of Geology, University of Moulay Ismaïl, Meknes, Morocco
Alain Vauchez
Geosciences Montpellier, Montpellier University and CNRS, 34095 Montpellier, France
Jean-Marie Dautria
Geosciences Montpellier, Montpellier University and CNRS, 34095 Montpellier, France
Cited articles
Albarède, F.: How deep do common basaltic magmas form and differentiate?, J. Geophys. Res., 97, 10997–11009, https://doi.org/10.1029/91JB02927, 1992.
Álvarez-Valero, A. M., Jagoutz, O., Stanley, J., Manthei, C., El Maz, A., Moukadiri, A., and Piasecki, A.: Crustal attenuation as a tracer for the emplacement of the Beni Bousera ultramafic massif (Betico-Rifean belt), Geol. Soc. Am. Bull., 126, 1614–1624, https://doi.org/10.1130/B31040.1, 2014.
Aranovich, l. Y. and Berman, R. G.: A new garnet-orthopyroxene thermometer based on reversed Al2O3 solubility in FeO–Al2O3–SiO2 orthopyroxene, Am. Mineral., 82, 345–353, https://doi.org/10.2138/am-1997-3-413, 1997.
Audibert, N., Hensen, B. J., and Bertrand, P.: Experimental study of phase relationships involving osumilite in the system K2O–FeO–MgO–Al2O3–SiO2–H2O at high pressure and high temperature, J. Metamorph. Geol., 13, 331–344, https://doi.org/10.1111/j.1525-1314.1995.tb00223.x, 1995.
Bachmann, F., Hielscher, R., and Schaeben, H.: Texture Analysis with MTEX – Free and Open Source Software Toolbox, Solid State Phenomen., 160, 63–68, https://doi.org/10.4028/www.scientific.net/SSP.160.63, 2010.
Bachmann, F., Hielscher, R., and Schaeben, H.: Grain detection from 2d and 3d EBSD data-Specification of the MTEX algorithm, Ultramicroscopy, 111, 1720–1733, https://doi.org/10.1016/j.ultramic.2011.08.002, 2011.
Baldwin, J. A., Powell, R., Brown, M., Moraes, R., and Fuck, R. A.: Modelling of mineral equilibria in ultrahigh-temperature metamorphic rocks from the Anapolis–Itauçu Complex, central Brazil, J. Metamorph. Geol., 23, 511–531, https://doi.org/10.1111/j.1525-1314.2005.00591.x, 2005.
Baptiste, V., Tommasi, A., Vauchez, A., Demouchy, S., and Rudnick, R. L.: Deformation, hydration, and anisotropy of the lithospheric mantle in an active rift: Constraints from mantle xenoliths from the North Tanzanian Divergence of the East African Rift, Tectonophysics, 639, 34–55, https://doi.org/10.1016/j.tecto.2014.11.011, 2015.
Barbosa, J., Nicollet, C., and Leite, C.: Hercynite-Quartz-Bearing Granulites from Brejoes Dome Area, Jequié Block, Bahia, Brazil: Influence of Charnockite Intrusion on Granulite Facies Metamorphism, Lithos, 92, 537–556, https://doi.org/10.1016/j.lithos.2006.03.064, 2006.
Beattie, P.: Olivine-melt and orthopyroxene-melt equilibria, Contrib. Mineral. Petr., 115, 103–111, https://doi.org/10.1007/BF00712982, 1993.
Benisek, A., Dachs, E., and Kroll, H.: A ternary feldspar mixing model based on calorimetric data: development and application, Contrib. Mineral. Petr., 160, 327–337, https://doi.org/10.1007/s00410-009-0480-8, 2010.
Bhattacharia, S. and Kar, R.: High temperature dehydration melting and decompressive P–T path in a granulite complex from the Eastern Ghats, India, Contrib. Mineral. Petr., 143, 175–191, https://doi.org/10.1007/s00410-001-0341-6, 1996.
Bohlen, S. R.: On the formation of granulites, J. Metamorph. Geol., 96, 223–229, https://doi.org/10.1111/j.1525-1314.1991.tb00518.x, 1991.
Bohlen, S. R., Wall, V. J., and Boettcher, A. L.: Experimental investigations and geological applications of equilibria in the system: FeO–TiO2–Al2O3–H2O, Am. Mineral., 68, 1049–1058, 1983.
Caddick, M. J. and Thompson, A. B.: Quantifying the tectonometamorphic evolution of pelitic rocks from a wide range of tectonic settings: Mineral compositions in equilibrium, Contrib. Mineral. Petr., 156, 177–195, https://doi.org/10.1007/s00410-008-0280-6, 2008.
Calvín, P., Ruiz-Martínez, V. C., Villalaín, J. J., Casas-Sainz, A. M., and Moussaid, B.: Emplacement and deformation of Mesozoic gabbros of the High Atlas (Morocco): Paleomagnetism and magnetic fabrics, Tectonics, 36, 3012–3037, https://doi.org/10.1002/2017TC004578, 2017.
Charlier, B., Skar, O., Korneliussen, A., Duchesne, J. C., and Auwera, J. V.: Ilmenite composition in the Tellnes Fe–Ti deposit, SW Norway: fractional crystallization, postcumulus evolution and ilmenite–zircon relation, Contrib. Mineral. Petr., 154, 119–134, 2007.
Chopin, F., Corsini, M., Schulmann, K., El Houicha, M., Ghienne, J. F., and Edel, J. B.: Tectonic evolution of the Rehamna metamorphic dome (Morocco) in the context of the Alleghanian-Variscan orogeny, Tectonics, 33, 1154–1177, https://doi.org/10.1002/2014TC003539, 2014.
Coenraads, R. R., Sutherland, F. L., and Kinny P. D.: The origin of sapphires: U–Pb dating of zircon inclusions sheds new light, Mineral. Mag., 54, 113–122, https://doi.org/10.1180/minmag.1990.054.374.13, 1990.
Das, K., Dasgupta, S., and Miura, H.: Stability of osumilite coexisting with spinel solid solution in metapelitic granulites at high oxygen fugacity, Am. Mineral., 86, 1423–1434, https://doi.org/10.2138/am-2001-11-1211, 2001.
Diener, J. F. A. and Powell, R.: Influence of ferric iron on the stability of mineral assemblages, J. Metamorph. Geol., 28, 599–613, https://doi.org/10.1111/j.1525-1314.2010.00880.x, 2010.
Droop, G.: A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineral. Mag., 51, 431–435, https://doi.org/10.1180/minmag.1987.051.361.10, 1987.
El Azzouzi, M., Maury, R. C., Bellon, H., Youbi, N., Cotton, J., and Kharbouch, F.: Petrology and K-Ar chronology of the Neogene-Quaternary Middle Atlas basaltic province, Morocco, B. Soc. Géol. Fr., 181, 243–257, https://doi.org/10.2113/gssgfbull.181.3.243, 2010.
El Bakili, A., Corsini, M., Chalouan, A., Münch, P., Romagny, A., Lardeaux, J. M., and Azdimousa, A.: Neogene polyphase deformation related to the Alboran Basin evolution: new insights for the Beni Bousera massif (Internal Rif, Morocco), B. Soc. Géol. Fr., 191, 1–18, https://doi.org/10.1051/bsgf/2020008, 2020.
El Maz, A. and Guiraud, M.: Paragenèse à faible variance dans les métapélites de la série de Filali (Rif interne marocain): description, interprétation et conséquence géodynamique, B. Soc. Géol. Fr., 172, 469–485, https://doi.org/10.2113/172.4.469, 2001.
El Messbahi, H., Bodinier, J. L., Vauchez, A., Dautria, J. M., Ouali, H., and Garrido, C. J.: Short wavelength lateral variability of lithospheric mantle beneath the Middle Atlas (Morocco) as recorded by mantle xenoliths, Tectonophysics, 650, 34–52, https://doi.org/10.1016/j.tecto.2014.11.020, 2015.
El Messbahi, H., Dautria, J. M., Jourde, H., Munch, P., Alard, O., Bodinier, J. L., and Ouali, H.: Eruption dynamics of pleistocene maars and tuff rings from the Azrou Timahdite district (Middle Atlas, northern Morocco) and its relevance to environmental changes and ground water table characteristics, J. Afr. Earth Sci., 167, 1–20, https://doi.org/10.1016/j.jafrearsci.2020.103845, 2020.
Essene, E. J.: The current status of thermobarometry in metamorphic rocks, Geol. Soc. London Spec. Publ., 43, 1–44, https://doi.org/10.1144/GSL.SP.1989.043.01.02, 1989.
Fiechtner, L., Friedrichsen, H., and Hammerschmid, K.: Geochemistry and geochronology of Early Mesozoic tholeiites, Geol. Rundsch., 81/1, 45–62, https://doi.org/10.1007/BF01764538, 1992.
Frizon de Lamotte, D., Saint Bezar, B., Bracène, E., and Mercier, E.: The two main steps of the Atlas building and geodynamics of the western Mediterranean, Tectonics, 19, 40–761, https://doi.org/10.1029/2000TC900003, 2000.
Frizon de Lamotte, D., Zizi, M., Missenard, Y., Hafid, M., Elazzouzi, M., Charrière, A., Maury, R. C., Taki, Z., Benammi, M., and Michard, A.: The Atlas system, in: Continental Evolution: The Geology of Morocco, edited by: Michard, A., Saddiqi, O., Chalouan, A., and Frizon de Lamotte, D., Structure, Stratigraphy, and Tectonics of the Africa-Atlantic-Mediterranean Triple Junction, Springer-Verlag, 133–202, https://doi.org/10.1007/978-3-540-77076-3_4, 2008.
Giuliani, G., Fallick, A., Ohnenstetter, D., and Pegere, G.: Oxygen isotopes composition of sapphires from the French Massif Central: implications for the origin of gem corundum in basaltic fields, Miner. Deposita, 44, 221–231, https://doi.org/10.1007/s00126-008-0214-2, 2009.
Gomez, F., Barazang, M., and Bensaid, M.: Active tectonism in the intracontinental Middle Atlas Mountains of Morocco: synchronous crustal shortening and extension, J. Geol. Soc. London, 153, 389–402, https://doi.org/10.1144/gsjgs.153.3.0389, 1996.
Guiraud, M., Kienast, J. R., and Ouzegane, K.: Corundum-quartz-bearing assemblage in the Ihouhaouene area (In Ouzzal, Algeria), J. Metamorph. Geol., 14, 755–761, https://doi.org/10.1111/j.1525-1314.1996.00046.x, 1996a.
Guiraud, M., Kienast, J. R., and Rahmani, A.: Petrological study of high-temperature granulites from In Ouzzal, Algeria: some implications on the phase relationships in the FMASTOCr system, Eur. J. Mineral., 8, 1375–1390, https://doi.org/10.1127/ejm/8/6/1375, 1996b.
Guo, J., O'Reilly, S. Y., and Griffin, W. L.: Corundum from basaltic terrains: a mineral inclusion approach to the enigma, Contrib. Mineral. Petr., 122, 368–386, https://doi.org/10.1007/s004100050134, 1996.
Hailwood, E. A. and Mitchell, J. C.: Paleomagmatic and radiometric dating results from Jurassic in South Morroco, Geophys. J. Roy. Astr. S., 24, 351–364, https://doi.org/10.1111/j.1365-246X.1971.tb02183.x, 1971.
Harley, S. L.: An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene, Contrib. Mineral. Petr., 86, 359–373, https://doi.org/10.1007/BF01187140, 1984.
Harley, S. L.: The origins of granulites: a metamorphic perspective, Geol. Mag., 126, 215–247, https://doi.org/10.1017/S0016756800022330, 1989.
Harley, S. L.: On the occurrence and characterization of ultrahigh-temperature crustal metamorphism, Geol. Soc. London Spec. Publ., 138, 81–107, https://doi.org/10.1144/GSL.SP.1996.138.01.06, 1998.
Harley, S. L.: Refining the P–T records of UHT crustal metamorphism, J. Metamorph. Geol., 26, 125–154, https://doi.org/10.1111/j.1525-1314.2008.00765.x, 2008.
Harley, S. L. and Green, D. H.: Garnet-orthopyroxene barometry for granulites and peridotites, Nature, 300, 23–30, https://doi.org/10.1038/300697a0, 1982.
Hensen, B. J. and Green, D. H.: Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures: III. Synthesis of experimental data and geological applications, Contrib. Mineral. Petr., 38, 151–166, https://doi.org/10.1007/bf00373879, 1973.
Hielscher, R.: MTEX, Version 1.0, MATLAB and C subroutine library, http://code.google.com/p/mtex/ (last access: 18 December 2024), 2008.
Hielscher, R. and Schaeben, H.: A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallogr., 41, 1024–1037, https://doi.org/10.1107/S0021889808030112, 2008.
Hoepffner, C., Soulaimani, A., and Piqué, A.: The Moroccan hercynides, J. Afr. Earth Sci., 43, 144–165, https://doi.org/10.1016/j.jafrearsci.2005.09.002, 2005.
Holdaway, M. J. and Mukhopadhyay, B.: A reevaluation of the stability relations of andalusite: thermochemical data and phase diagram for the aluminum silicates, Am. Mineral., 78, 298–315, 1993.
Holland, T. J. B. and Powell, R.: An internally consistent dataset for phases of petrological interest, J. Metamorph. Geol., 16, 309–343, https://doi.org/10.1111/j.1525-1314.1998.00140.x, 1998.
Holness, M. B. and Sawyer, E.: On the Pseudomorphing of Melt-filled Pores During the Crystallization of Migmatites, J. Petrol., 49, 1343–1363, https://doi.org/10.1093/petrology/egn028, 2008.
Kelsey, D. E. and Hand, M.: On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings, Geosci. Front., 6, 311–356, https://doi.org/10.1016/j.gsf.2014.09.006, 2015.
Kornprobst, J.: Le massif ultrabasique des Beni Bouchera (Rif Interne, Maroc): Etude des péridotites de haute température et de haute pression, et des pyroxénolites, à grenat ou sans grenat, qui leur sont associées, Contrib. Mineral. Petr., 23, 283–322, https://doi.org/10.1007/bf00371425, 1969.
Koziol, A. M. and Newton, R. C.: Grossular activity-composition relationships in ternary garnets determined by reversed displaced-equilibrium experiments, Contrib. Mineral. Petr., 103, 423–433, https://doi.org/10.1007/BF01041750, 1989.
Lal, R. K., Ackermand, D., Raith, M., Raase, P., and Seifert, F.: Sapphirine-bearing assemblages from Kiranur, Southern India: a study of chemographic relationships in the Na2O–FeO–MgO–Al2O3–SiO2–H2O system, N. Jb. Mineral Abh., 150, 121–150, 1984.
Lepage, L. D.: ILMAT: An excel worksheet for ilmenite–magnetite geothermometry and geobarometry, Comput. Geosci., 29, 673–678, https://doi.org/10.1016/S0098-3004(03)00042-6, 2003.
Leyreloup, A.: Les enclaves catazonales remontées par les éruptions néogènes de France: nature de la croûte inférieure, Contrib. Mineral. Petr., 46, 17–27, https://doi.org/10.1007/BF00377990, 1974.
Lindsley, D. H. and Spencer, K. J.: Fe-Ti oxide geothermometry: Reducing analyses of coexisting Ti-magnetite (Mt) and ilmenite (Ilm) abstract AGU 1982 Spring Meeting, EOS T. Am. Geophys. Un., 63, 471, 1982.
Mainprice, D., Bachmann, F., Hielscher, R., and Schaeben, H.: Descriptive tools for the analysis of texture projects with large datasets using MTEX: strength, symmetry and components, Geol. Soc. London Spec. Publ., 409, 251–271, https://doi.org/10.1144/SP409.8, 2014.
Martignole, J. and Martelat, J. E.: Regional-scale Grenvillian-age UHT metamorphism in the Mollendo-Camana Block (basement of the Peruvian Andes), J. Metamorph. Geol., 1, 99–120, https://doi.org/10.1046/j.1525-1314.2003.00417.x, 2003.
Mattauer, M., Tapponnier, P., and Proust, F.: Sur les mécanismes de formation des chaînes intracontinentales: l'exemple des chaînes atlasiques du Maroc, B. Geol. Soc. Fr., 77, 521–526, https://doi.org/10.2113/gssgfbull.S7-XIX.3.521,1977.
Melchiorre, M., Alvarez-Valero, A. M., Fernandez, J. V. M., Belousova, E. A., El Maz, A., and Moukadiri, A.: In situ U–Pb zircon geochronology on metapelitic granulites of Beni Bousera (Betic-Rif system, N Morocco), Geol. Soc. Am. Spec. Pap., 526, 151–171, https://doi.org/10.1130/2017.2526(08), 2017.
Michard, A., Saddiqi, O., Chalouan, A., and Frizon de Lamotte, D.: The Variscan belt in Continental evolution: the geology of Morocco: structure, stratigraphy and tectonics of the Africa-Atlantic-Mediterranean triple junction, Lecture notes in Earth Sciences, Springer-Verlag, https://doi.org/10.1007/978-3-540-77076-3, 2008.
Miyashiro, A.: Osumilite, a new silicate mineral, and its crystal structure, Am. Mineral., 41, 104–116, 1956.
Montel, J. M., Kornprobst, J., and Vielzeuf D.: Preservation of old U–Th–Pb ages in shielded monazites: exemple from the Beni Bousera hercynian kinzigites (Morocco), J. Metamorph. Geol., 18, 335–342, https://doi.org/10.1046/j.1525-1314.2000.00261.x, 2000.
Moukadiri, A. and Boulouton, J.: Petrology of granulitic xenoliths in Neogene volcanic rocks of the Middle Atlas: implications for the lower crust of central Morocco, CR Acad. Sci. Paris, 327, 731–734, https://doi.org/10.1016/S1251-8050(99)80043-3, 1998.
Nair, R. and Chacko, T.: Fluid-absent Melting of High-grade Semipelites: P–T Constraints on Orthopyroxene Formation and Implications for Granulite Genesis, J. Petrol., 43, 2121–2142, https://doi.org/10.1093/petrology/43.11.2121, 2002.
Nekvasil, H. and Burnham, C. W.: The calculated individual effects of pressure and water content on phase equilibiria in the granite system, in: Magmatic processes: physicochemical principles, edited by: Mysen, B. O., Geol. Soc. Spec. Publ., 1, 433–445, ISBN 0-941809-00-5, 1987.
Newton, R. C. and Haselton, H. T.: Thermodynamics of the garnet–plagioclase–Al2SiO5-quartz geobarometer, in: Thermodynamics of minerals and Melts, edited by: Newton, R. C., Navrotsky, A., and Wood, B. J., Springer-Verlag, New York, 129–145, https://doi.org/10.1007/978-1-4612-5871-1_7, 1981.
Newton, R. C. and Perkins III, D.: Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene (clinopyroxène)-quartz, Am. Mineral., 67, 203–222, 1982.
Nickel, K. G. and Green, D. H.: Emperical geothermobarometry for garnet peridotites and implications for the nature of lithosphere kimberlites and diamonds, Earth Planet. Sc. Lett., 73, 158–170, https://doi.org/10.1016/0012-821X(85)90043-3, 1985.
Ouzegane, K., Guiraud, M., and Kienast, J. R.: Prograde and Retrograde Evolution in High-temperature Corundum Granulites (FMAS and KFMASH Systems) from In Ouzzal Terrane (NW Hoggar, Algeria), J. Petrol., 44, 517–545, https://doi.org/10.1093/petrology/44.3.517, 2003a.
Ouzegane, K., Kienast, J. R., Bendaoud, A., and Drareni, A.: A review of Archaean and Paleoproterozoic evolution of the In Ouzzal granulitic terrane (Western Hoggar, Algerian), J. Afr. Earth Sci., 37, 207–227, https://doi.org/10.1016/j.jafrearsci.2003.05.002, 2003b.
Peucat, J. J., Ruffault, P., Fritsch, E., Bouhnik-Le Coz, M., Simonet, C., and Lasnier, B.: ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires, Lithos, 98, 261–274, https://doi.org/10.1016/j.lithos.2007.05.001, 2007.
Pezzali, I., France, L., Chazot, G., and Vannucci, R.: Analogues of exhumed pyroxenite layers in the Alboran domain sampled as xenoliths by Middle Atlas Cenozoic volcanism, Lithos, 230, 184–188, https://doi.org/10.1016/j.lithos.2015.02.024, 2015.
Piazolo, S. and Jaconelli, P.: Sillimanite deformation mechanisms within a Grt-Sil-Bt gneiss: effect of pre-deformation grain orientations and characteristics on mechanism, slip-system activation and rheology, Geol. Soc. London Special Publications, 394, 189–213, https://doi.org/10.1144/SP394.10, 2013.
Piqué, A. and Michard, A.: Moroccan Hercynides: a synopsis. The Paleozoic sedimentary and tectonic evolution at the northern margin of West Africa, Am. J. Sci., 289, 286–330, https://doi.org/10.2475/ajs.289.3.286, 1989.
Price, J. G.: Ideal site mixing in solid solutions, with an application to two-feldapar geothermometry, Am. Mineral., 70, 696–701, 1985.
Putirka, K.: Thermometers and Barometers for Volcanic Systems, in: Minerals, Inclusions and Volcanic Processes, edited by: Putirka, K.and Tepley, F., Rev. Mineral. Geochem., 69, 61–120, https://doi.org/10.2138/rmg.2008.69.3, 2008.
Raith, M., Karmakar, S., and Brown, M.: Ultrahigh-temperature metamorphism and multi-stage decompressional evolution of sapphirine granulites from the Palni Hill Ranges, Southern India, J. Metamorph. Geol., 15, 379–399, https://doi.org/10.1111/j.1525-1314.1997.00027.x, 1997.
Rossetti, F., Lucci, F., Theye, T., Bouybaouène, M., Gerdes, A., Opitz, J., Dini, A., and Lipp, C.: Hercynian anatexis in the envelope of the Beni Bousera peridotites (Alboran Domain, Morocco): Implications for the tectono-metamorphic evolution of the deep crustal roots of the Mediterranean region, Gondwana Res., 83, 157–182, 2020.
Sato, K., Miyamoto, T., and Kawasaki, T.: Fe2+–Mg partitioning experimemts between orthopyroxene and spinel using ultrahigh-temperture granulite from the Napier complex, Est Antartica, Geol. Soc. Spec. Publ., 308, 431–447, https://doi.org/10.1144/SP308.22, 2008.
Saura, E., Vergés, J., Martin-Martin, J. D., Messager, G., Moragas, M., Razin, P., Grélaud, C., Joussiaume, R., Malaval, M., Homke, S., and Hunt, D.: Syn- to post-rift diapirism and minibasins of the Central High Atlas (Morocco): the changing face of a mountain belt, J. Geol. Soc. London, 171, 97–105, https://doi.org/10.1144/SP308.22, 2014.
Schumacher, J. C.: Empirical ferric iron corrections: necessity, assumptions, and effect on selected geothermobarometers, Mineral. Mag., 55, 3–18, https://doi.org/10.1180/minmag.1991.055.378.02, 1991.
Shaw, C. S. J.: Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 GPa: further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths, Contrib. Mineral. Petr., 135, 114–132, 1999.
Smith, R. L. and Pozzobon, J. C.: The Imiter gabbroic complex, High Atlas Mountains, Morocco, J. Geol., 87, 317–324, https://doi.org/10.1086/628420, 1979.
Spencer, K. J. and Lindsley, D. H.: A solution model for coexisting iron-titanium oxides, Am. Mineral., 66, 1189–1201, 1981.
Sudholz, Z. J., Green, D. H., Yaxley, G. M., and Jaques, A. L.: Mantle geothermometry: experimental evaluation and recalibration of Fe–Mg geothermometers for garnet-clinopyroxene and garnet-orthopyroxene in peridotite, pyroxenite and eclogite systems, Contrib. Mineral. Petr., 177, 77, https://doi.org/10.1007/s00410-022-01944-3, 2022.
Sutherland, F. L., Hoskin, P. W. O., Fanning, C. M., and Coenraads, R. R.: Models of corundum origin from alkali basaltic terrains: a reappraisal, Contrib. Mineral. Petr., 133, 356–372, https://doi.org/10.1007/s004100050458, 1998.
Tong, L. and Wilson, C. J. L.: Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, east Antarctica, Precambrian Res., 149, 1–20, https://doi.org/10.1016/j.precamres.2006.04.004, 2006.
Uher, P., Guliani, G., Szakáll, S., Fallick, A., Strunga, V., Vaculovič, T., Ozdín, D., and Gregáňová, M.: Sapphires related to alkali basalts from Cerová Highlands, Western Carpathians (southern Slovakia): composition and origin, Geol. Carpath., 63, 71–82, 2012.
Vielzeuf, D. and Holloway, J. R.: Experimental determination of the fluid-absent melting reactions in the pelitic system, Contrib. Mineral. Petr., 98, 257–276, https://doi.org/10.1007/BF00375178, 1988.
Vielzeuf, D., Clemens, J. D., Pin, C., and Moinet, E.: Granites, Granulites, and Crustal Differentiation, in: Granulites and Crustal Evolution, edited by: Vielzeuf, D. and Vidal, P., NATO ASI Series, vol. 311, Springer, Dordrecht, https://doi.org/10.1007/978-94-009-2055-2_5, 1990.
Wen, S. and Nekvasil, H.: SOLVCALC: An interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry, Comput. Geosci., 20, 1025–1040, https://doi.org/10.1016/0098-3004(94)90039-6, 1994.
Westphal, M., R., Montigny, R., Thuizat, R., Bardon, C., Bossert, A. R., and Hamze, R.: Paleomagnetisme et datation du volcanisme permien, triasique et crétacé du Maroc, Can. J. Earth Sci., 16, 2150–2164, https://doi.org/10.1139/e79-202, 1979.
Wheller, C. J. and Powell, R.: A new thermodynamic model for sapphirine: calculated phase equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3, J. Metamorph. Geol., 32, 287–299, https://doi.org/10.1111/jmg.12067, 2014.
Yardley, B. W. D.: An empirical study of diffusion in garnet, Am. Mineral., 62, 793–800, 1977.
Yavuz, F. and Yavuz, E. V.: A Windows Program for Feldspar Group Thermometers and Hygrometers, Period di Mineral, 91, 63–87, https://doi.org/10.13133/2239-1002/17666, 2022.
Zeyen, H., Ayarza, P., Fernàndez, M., and Rimi, A.: Lithospheric structure under the western African-European plate boundary: A transect across the Atlas Mountains and the Gulf of Cadiz, Tectonics, 24, TC2001, https://doi.org/10.1029/2004TC001639, 2005.
Short summary
This study highlights the tectono-metamorphic evolution of the lower crust in central Morocco from the Hercynian to the Quaternary from the study of granulitic xenoliths. After a first tectono-metamorphic event, the lower crust recorded heating associated with a moderate deformation preserved in sillimanite. Later, the lower crust interacted with basanite that brought the xenoliths up to the surface. This allows us to compare the evolution of the lower crust in the Rif and the Middle Atlas.
This study highlights the tectono-metamorphic evolution of the lower crust in central Morocco...