Articles | Volume 16, issue 10
https://doi.org/10.5194/se-16-1181-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-1181-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dissolution–precipitation creep in polymineralic granitoid shear zones in experiments – Part 1: Strain localization mechanisms
Natalia Nevskaya
CORRESPONDING AUTHOR
Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland
Department of Earth & Planetary Sciences, Yale University, New Haven, CT 06511, USA
Alfons Berger
Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland
Holger Stünitz
Department of Geology, Tromsø University, Tromsø, 9037, Norway
Institut des Sciences de la Terre d'Orléans, Université d'Orléans, Orléans, 45100, France
Weijia Zhan
Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland
Institut des Sciences de la Terre d'Orléans, Université d'Orléans, Orléans, 45100, France
Markus Ohl
Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, the Netherlands
Oliver Plümper
Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, the Netherlands
Marco Herwegh
Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland
Related authors
Natalia Nevskaya, Alfons Berger, Holger Stünitz, Markus Ohl, Oliver Plümper, and Marco Herwegh
Solid Earth, 16, 1205–1226, https://doi.org/10.5194/se-16-1205-2025, https://doi.org/10.5194/se-16-1205-2025, 2025
Short summary
Short summary
To date, there remains a deficiency in rheological parameters for polymineralic rocks to be used in models, e.g., for strain localization in the Earth's continental middle crust. We provide a first estimate on grain size and stress sensitivity of experimentally deformed natural fine-grained granitoid rocks. Extrapolation of these parameters predicts a switch in the weakest material as a function of grain size and deformation mechanism from coarse monomineralic quartz to fine polymineralic rocks.
Natalia Nevskaya, Alfons Berger, Holger Stünitz, Markus Ohl, Oliver Plümper, and Marco Herwegh
Solid Earth, 16, 1205–1226, https://doi.org/10.5194/se-16-1205-2025, https://doi.org/10.5194/se-16-1205-2025, 2025
Short summary
Short summary
To date, there remains a deficiency in rheological parameters for polymineralic rocks to be used in models, e.g., for strain localization in the Earth's continental middle crust. We provide a first estimate on grain size and stress sensitivity of experimentally deformed natural fine-grained granitoid rocks. Extrapolation of these parameters predicts a switch in the weakest material as a function of grain size and deformation mechanism from coarse monomineralic quartz to fine polymineralic rocks.
James Gilgannon and Marco Herwegh
Solid Earth, 16, 877–898, https://doi.org/10.5194/se-16-877-2025, https://doi.org/10.5194/se-16-877-2025, 2025
Short summary
Short summary
Carbonates can control how strong the Earth's crust is in places. They are often described in simple terms as calcite or dolomite, but they are more complicated. At the atomistic level different amounts of elements, like magnesium and calcium, are incorporated at different temperatures and at the microscopic level carbonates can have different internal structures which leads to differences in strength. We review 50 years of experimental data to provide new equations that describe this strength.
Sandro Truttmann, Tobias Diehl, Marco Herwegh, and Stefan Wiemer
Solid Earth, 16, 641–662, https://doi.org/10.5194/se-16-641-2025, https://doi.org/10.5194/se-16-641-2025, 2025
Short summary
Short summary
Our study investigates the statistical relationship between geological fractures and earthquakes in the southwestern Swiss Alps. We analyze how the fracture size and earthquake rupture are related and find differences in how fractures at different depths rupture seismically. While shallow fractures tend to rupture only partially, deeper fractures are more likely to rupture along their entire length, potentially resulting in larger earthquakes.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Benita Putlitz, Andreas Mulch, Edwin Gnos, and Marco Herwegh
Eur. J. Mineral., 36, 879–898, https://doi.org/10.5194/ejm-36-879-2024, https://doi.org/10.5194/ejm-36-879-2024, 2024
Short summary
Short summary
We used U–Pb dating and Pb–Sr–O–H isotopes of hydrothermal epidote to characterize fluid circulation in the Aar Massif (central Swiss Alps). Our data support the hypothesis that Permian fluids exploited syn-rift extensional faults. In the Miocene during the Alpine orogeny, fluid sources were meteoric, sedimentary, and/or metamorphic water. Likely, Miocene shear zones were exploited for fluid circulation, with implications for the Sr isotope budget of the granitoids.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Pierre Lanari, Igor Maria Villa, and Marco Herwegh
Solid Earth, 13, 1803–1821, https://doi.org/10.5194/se-13-1803-2022, https://doi.org/10.5194/se-13-1803-2022, 2022
Short summary
Short summary
This work studies the interplay of epidote dissolution–precipitation and quartz dynamic recrystallization during viscous granular flow in a deforming epidote–quartz vein. Pb and Sr isotope data indicate that epidote dissolution–precipitation is mediated by internal/recycled fluids with an additional external fluid component. Microstructures and geochemical data show that the epidote material is redistributed and chemically homogenized within the deforming vein via a dynamic granular fluid pump.
Valentin Basch, Martyn R. Drury, Oliver Plumper, Eric Hellebrand, Laura Crispini, Fabrice Barou, Marguerite Godard, and Elisabetta Rampone
Eur. J. Mineral., 33, 463–477, https://doi.org/10.5194/ejm-33-463-2021, https://doi.org/10.5194/ejm-33-463-2021, 2021
Short summary
Short summary
This paper investigates the possibility for melts to migrate within extensively deformed crystals and assesses the impact of this intracrystalline melt percolation on the chemical composition of the deformed crystal. We here document that the presence of melt within a crystal greatly enhances chemical diffusive re-equilibration between the percolating melt and the mineral and that such a process occurring at crystal scale can impact the large-scale composition of the oceanic lithosphere.
Arianne J. Petley-Ragan, Oliver Plümper, Benoit Ildefonse, and Bjørn Jamtveit
Solid Earth, 12, 959–969, https://doi.org/10.5194/se-12-959-2021, https://doi.org/10.5194/se-12-959-2021, 2021
Short summary
Short summary
Earthquakes cause rapid deformation that has long-term effects on the Earth's crust. We studied the most abundant mineral, feldspar, in the vicinity of an earthquake to unravel its deformation history. With microscopy, we found internal nm-scale structures that indicate a history of high stress and destruction of atomic structure. This was quickly followed by high temperature and fluid introduction within seconds. Our findings illustrate the intense conditions imposed on rocks by earthquakes.
Veronica Peverelli, Tanya Ewing, Daniela Rubatto, Martin Wille, Alfons Berger, Igor Maria Villa, Pierre Lanari, Thomas Pettke, and Marco Herwegh
Geochronology, 3, 123–147, https://doi.org/10.5194/gchron-3-123-2021, https://doi.org/10.5194/gchron-3-123-2021, 2021
Short summary
Short summary
This work presents LA-ICP-MS U–Pb geochronology of epidote in hydrothermal veins. The challenges of epidote dating are addressed, and a protocol is proposed allowing us to obtain epidote U–Pb ages with a precision as good as 5 % in addition to the initial Pb isotopic composition of the epidote-forming fluid. Epidote demonstrates its potential to be used as a U–Pb geochronometer and as a fluid tracer, allowing us to reconstruct the timing of hydrothermal activity and the origin of the fluid(s).
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Short summary
Using experiments that simulate deep tectonic interfaces, known as viscous shear zones, we found that these zones spontaneously develop periodic sheets of small pores. The presence of porous layers in deep rocks undergoing tectonic deformation is significant because it requires a change to the current model of how the Earth deforms. Emergent porous layers in viscous rocks will focus mineralising fluids and could lead to the seismic failure of rocks that are never supposed to have this occur.
Cited articles
Arzt, E., Ashby, M. F., and Verrall, R. A.: Interface controlled diffusional creep, Acta Metall. Mater., 31, 1977–1989, https://doi.org/10.1016/0001-6160(83)90015-9, 1983.
Austin, N. J. and Evans, B.: Paleowattmeters: A scaling relation for dynamically recrystallized grain size, Geol, 35, 343, https://doi.org/10.1130/G23244A.1, 2007.
Austin, N. J. and Evans, B.: The kinetics of microstructural evolution during deformation of calcite, J. Geophys. Res., 114, B09402, https://doi.org/10.1029/2008JB006138, 2009.
Behrmann, J. H. and Mainprice, D.: Deformation mechanisms in a high-temperature quartz-feldspar mylonite: evidence for superplastic flow in the lower continental crust, Tectonophysics, 140, 297–305, https://doi.org/10.1016/0040-1951(87)90236-8, 1987.
Bercovici, D. and Karato, S.-I.: Theoretical Analysis of Shear Localization in the Lithosphere, Reviews in Mineralogy and Geochemistry, 51, 387–420, https://doi.org/10.2138/gsrmg.51.1.387, 2002.
Bercovici, D. and Ricard, Y.: Plate tectonics, damage and inheritance, Nature, 508, 513–516, https://doi.org/10.1038/nature13072, 2014.
Bercovici, D. and Skemer, P.: Grain damage, phase mixing and plate-boundary formation, J. Geodyn., 108, 40–55, https://doi.org/10.1016/j.jog.2017.05.002, 2017.
Brodhag, S. H., Herwegh, M., and Berger, A.: Grain coarsening in polymineralic contact metamorphic carbonate rocks: The role of different physical interactions during coarsening, J. Struct. Geol., 33, 698–712, https://doi.org/10.1016/j.jsg.2010.12.003, 2011.
Bürgmann, R. and Dresen, G.: Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations, Annu. Rev. Earth Planet. Sci., 36, 531–567, https://doi.org/10.1146/annurev.earth.36.031207.124326, 2008.
Ceccato, A., Menegon, L., Pennacchioni, G., and Morales, L. F. G.: Myrmekite and strain weakening in granitoid mylonites, Solid Earth, 9, 1399–1419, https://doi.org/10.5194/se-9-1399-2018, 2018.
Ceccato, A., Goncalves, P., and Menegon, L.: On the petrology and microstructures of small-scale ductile shear zones in granitoid rocks: An overview, J. Struct. Geol., 161, 104667, https://doi.org/10.1016/j.jsg.2022.104667, 2022.
Challandes, N., Marquer, D., and Villa, I. M.: P-T-t modelling, fluid circulation, and 39Ar-40Ar and Rb-Sr mica ages in the Aar Massif shear zones (Swiss Alps), Swiss J. Geosci., 101, 269–288, https://doi.org/10.1007/s00015-008-1260-6, 2008.
Choukroune, P. and Gapais, D.: Strain pattern in the Aar Granite (Central Alps): Orthogneiss developed by bulk inhomogeneous flattening, J. Struct. Geol., 5, 411–418, https://doi.org/10.1016/0191-8141(83)90027-5, 1983.
Cross, A. J. and Skemer, P.: Ultramylonite generation via phase mixing in high-strain experiments, J. Geophys. Res.-Sol. Ea., 122, 1744–1759, https://doi.org/10.1002/2016JB013801, 2017.
Derby, B.: The dependence of grain size on stress during dynamic recrystallisation, Acta Metall. Mater., 39, 955–962, https://doi.org/10.1016/0956-7151(91)90295-C, 1991.
Ebert, A., Herwegh, M., Evans, B., Pfiffner, A., Austin, N., and Vennemann, T.: Microfabrics in carbonate mylonites along a large-scale shear zone (Helvetic Alps), Tectonophysics, 444, 1–26, https://doi.org/10.1016/j.tecto.2007.07.004, 2007.
Ebert, A., Herwegh, M., Berger, A., and Pfiffner, A.: Grain coarsening maps for polymineralic carbonate mylonites: A calibration based on data from different Helvetic nappes (Switzerland), Tectonophysics, 457, 128–142, https://doi.org/10.1016/j.tecto.2008.05.007, 2008.
Elliott, D.: Diffusion Flow Laws in Metamorphic Rocks, Geol. Soc. Am. Bull., 84, 2645, https://doi.org/10.1130/0016-7606(1973)84<2645:DFLIMR>2.0.CO;2, 1973.
Etheridge, M. A., Wall, V. J., Cox, S. F., and Vernon, R. H.: High fluid pressures during regional metamorphism and deformation: Implications for mass transport and deformation mechanisms, J. Geophys. Res., 89, 4344–4358, https://doi.org/10.1029/JB089iB06p04344, 1984.
EXCITE Network: https://excite-network.eu/, last access: 13 September 2024.
Fitz Gerald, J. D. and Stünitz, H.: Deformation of granitoids at low metamorphic grade. I: Reactions and grain size reduction, Tectonophysics, 221, 269–297, https://doi.org/10.1016/0040-1951(93)90163-E, 1993.
Fuhrman, M. L. and Lindsley, D. H.: Ternary-feldspar modeling and thermometry, Am. Mineral., 73, 201–215, 1988.
Fukuda, J., Holyoke III, C. W., and Kronenberg, A. K.: Deformation of Fine-Grained Quartz Aggregates by Mixed Diffusion and Dislocation Creep, J. Geophys. Res.-Sol. Ea., 123, 4676–4696, https://doi.org/10.1029/2017JB015133, 2018.
Fusseis, F., Regenauer-Lieb, K., Liu, J., Hough, R. M., and De Carlo, F.: Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones, Nature, 459, 974–977, https://doi.org/10.1038/nature08051, 2009.
Ghosh, S., Stünitz, H., Raimbourg, H., and Précigout, J.: Quartz rheology constrained from constant-load experiments: Consequences for the strength of the continental crust, Earth Planet. Sc. Lett., 597, 117814, https://doi.org/10.1016/j.epsl.2022.117814, 2022.
Ghosh, S., Stünitz, H., Raimbourg, H., Précigout, J., Di Carlo, I., Heilbronner, R., and Piani, L.: Importance of grain boundary processes for plasticity in the quartz-dominated crust: Implications for flow laws, Earth Planet. Sc. Lett., 640, 118767, https://doi.org/10.1016/j.epsl.2024.118767, 2024.
Gilgannon, J., Fusseis, F., Menegon, L., Regenauer-Lieb, K., and Buckman, J.: Hierarchical creep cavity formation in an ultramylonite and implications for phase mixing, Solid Earth, 8, 1193–1209, https://doi.org/10.5194/se-8-1193-2017, 2017.
Gilgannon, J., Waldvogel, M., Poulet, T., Fusseis, F., Berger, A., Barnhoorn, A., and Herwegh, M.: Experimental evidence that viscous shear zones generate periodic pore sheets, Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, 2021.
Giraud, F. and Giraud-Audine, C.: Chapter Two – Dynamic modeling of piezoelectric media, in: Piezoelectric Actuators: Vector Control Method, edited by: Giraud, F. and Giraud-Audine, C., Butterworth-Heinemann, 43–94, https://doi.org/10.1016/B978-0-12-814186-1.00006-5, 2019.
Goncalves, P., Oliot, E., Marquer, D., and Connolly, J. A. D.: Role of chemical processes on shear zone formation: an example from the Grimsel metagranodiorite (Aar massif, Central Alps): SHEAR ZONE FORMATION, J. Metamorph. Geol., 30, 703–722, https://doi.org/10.1111/j.1525-1314.2012.00991.x, 2012.
Goncalves, P., Poilvet, J.-C., Oliot, E., Trap, P., and Marquer, D.: How does shear zone nucleate? An example from the Suretta nappe (Swiss Eastern Alps), J. Struct. Geol., 86, 166–180, https://doi.org/10.1016/j.jsg.2016.02.015, 2016.
Gratier, J., Guiguet, R., Renard, F., Jenatton, L., and Bernard, D.: A pressure solution creep law for quartz from indentation experiments, J. Geophys. Res., 114, 2008JB005652, https://doi.org/10.1029/2008JB005652, 2009.
Gratier, J., Menegon, L., and Renard, F.: Pressure Solution Grain Boundary Sliding as a Large Strain Mechanism of Superplastic Flow in the Upper Crust, J. Geophys. Res.-Sol. Ea., 128, e2022JB026019, https://doi.org/10.1029/2022JB026019, 2023.
Gratier, J.-P., Dysthe, D. K., and Renard, F.: The Role of Pressure Solution Creep in the Ductility of the Earth's Upper Crust, in: Advances in Geophysics, vol. 54, Elsevier, 47–179, https://doi.org/10.1016/B978-0-12-380940-7.00002-0, 2013.
Gueydan, F., Leroy, Y. M., Jolivet, L., and Agard, P.: Analysis of continental midcrustal strain localization induced by microfracturing and reaction-softening: CONTINENTAL MIDCRUSTAL STRAIN LOCALIZATION, J. Geophys. Res., 108, https://doi.org/10.1029/2001JB000611, 2003.
Handy, M. R.: Flow laws for rocks containing two non-linear viscous phases: A phenomenological approach, J. Struct. Geol., 16, 287–301, https://doi.org/10.1016/0191-8141(94)90035-3, 1994a.
Handy, M. R.: The energetics of steady state heterogeneous shear in mylonitic rock, Mat. Sci. Eng. A-Struct., 175, 261–272, https://doi.org/10.1016/0921-5093(94)91065-0, 1994b.
Herwegh, M. and Jenni, A.: Granular flow in polymineralic rocks bearing sheet silicates: new evidence from natural examples, Tectonophysics, 332, 309–320, https://doi.org/10.1016/S0040-1951(00)00288-2, 2001.
Herwegh, M., de Bresser, J. H. P., and ter Heege, J. H.: Combining natural microstructures with composite flow laws: an improved approach for the extrapolation of lab data to nature, J. Struct. Geol., 27, 503–521, https://doi.org/10.1016/j.jsg.2004.10.010, 2005.
Herwegh, M., Linckens, J., Ebert, A., Berger, A., and Brodhag, S. H.: The role of second phases for controlling microstructural evolution in polymineralic rocks: A review, J. Struct. Geol., 33, 1728–1750, https://doi.org/10.1016/j.jsg.2011.08.011, 2011.
Hippertt, J. F.: Breakdown of feldspar, volume gain and lateral mass transfer during mylonitization of granitoid in a low metamorphic grade shear zone, J. Struct. Geol., 20, 175–193, https://doi.org/10.1016/S0191-8141(97)00083-7, 1998.
Hirth, G. and Tullis, J.: The brittle-plastic transition in experimentally deformed quartz aggregates, J. Geophys. Res., 99, 11731–11747, https://doi.org/10.1029/93JB02873, 1994.
Hirth, G., Teyssier, C., and Dunlap, J. W.: An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks, Int. J. Earth Sci., 90, 77–87, https://doi.org/10.1007/s005310000152, 2001.
Hull, J.: Thickness-displacement relationships for deformation zones. Journal of Structural Geology, 10, 431–435, ISSN 0191-8141, https://doi.org/10.1016/0191-8141(88)90020-X, 1988.
Imon, R., Okudaira, T., and Fujimoto, A.: Dissolution and precipitation processes in deformed amphibolites: an example from the ductile shear zone of the Ryoke metamorphic belt, SW Japan, Journal Metamorphic Geology, 20, 297–308, https://doi.org/10.1046/j.1525-1314.2002.00367.x, 2002.
Imon, R., Okudaira, T., and Kanagawa, K.: Development of shape- and lattice-preferred orientations of amphibole grains during initial cataclastic deformation and subsequent deformation by dissolution–precipitation creep in amphibolites from the Ryoke metamorphic belt, SW Japan, J. Struct. Geol., 26, 793–805, https://doi.org/10.1016/j.jsg.2003.09.004, 2004.
Kilian, R., Heilbronner, R., and Stünitz, H.: Quartz grain size reduction in a granitoid rock and the transition from dislocation to diffusion creep, J. Struct. Geol., 33, 1265–1284, https://doi.org/10.1016/j.jsg.2011.05.004, 2011.
Lee, A. L., Stünitz, H., Soret, M., and Battisti, M. A.: Dissolution precipitation creep as a process for the strain localisation in mafic rocks, J. Struct. Geol., 155, 104505, https://doi.org/10.1016/j.jsg.2021.104505, 2022.
Linckens, J., Herwegh, M., Müntener, O., and Mercolli, I.: Evolution of a polymineralic mantle shear zone and the role of second phases in the localization of deformation, J. Geophys. Res., 116, B06210, https://doi.org/10.1029/2010JB008119, 2011.
Linckens, J., Herwegh, M., and Müntener, O.: Small quantity but large effect – How minor phases control strain localization in upper mantle shear zones, Tectonophysics, 643, 26–43, https://doi.org/10.1016/j.tecto.2014.12.008, 2015.
Mancktelow, N. S. and Pennacchioni, G.: The control of precursor brittle fracture and fluid–rock interaction on the development of single and paired ductile shear zones, J. Struct. Geol., 27, 645–661, https://doi.org/10.1016/j.jsg.2004.12.001, 2005.
Mansard, N., Raimbourg, H., Augier, R., Précigout, J., and Le Breton, N.: Large-scale strain localization induced by phase nucleation in mid-crustal granitoids of the south Armorican massif, Tectonophysics, 745, 46–65, https://doi.org/10.1016/j.tecto.2018.07.022, 2018.
Mansard, N., Stünitz, H., Raimbourg, H., and Précigout, J.: The role of deformation-reaction interactions to localize strain in polymineralic rocks: Insights from experimentally deformed plagioclase-pyroxene assemblages, J. Struct. Geol., 134, 104008, https://doi.org/10.1016/j.jsg.2020.104008, 2020a.
Mansard, N., Stünitz, H., Raimbourg, H., Précigout, J., Plunder, A., and Nègre, L.: Relationship between microstructures and resistance in mafic assemblages that deform and transform, Solid Earth, 11, 2141–2167, https://doi.org/10.5194/se-11-2141-2020, 2020b.
Marquer, D., Gapais, D., and Capdevila, R.: Comportement chimique et orthogneissification d'une granodiorite en faciès schistes verts (Massif de l'Aar, Alpes centrales), bulmi, 108, 209–221, https://doi.org/10.3406/bulmi.1985.7869, 1985.
Marti, S., Heilbronner, R., Stuenitz, H., Pluemper, O., and Drury, M.: Solution-mass transfer and grain boundary sliding in mafic shear zones; comparison between experiments and nature, Geophys. Res. Abstr., 19, Abstract EGU2017-3203, https://meetingorganizer.copernicus.org/EGU2017/EGU2017-3203.pdf, 2017.
Marti, S., Stünitz, H., Heilbronner, R., Plümper, O., and Kilian, R.: Syn-kinematic hydration reactions, grain size reduction, and dissolution–precipitation creep in experimentally deformed plagioclase–pyroxene mixtures, Solid Earth, 9, 985–1009, https://doi.org/10.5194/se-9-985-2018, 2018.
Means, W. D.: Shear zones and rock history, Tectonophysics, 247, 157–160, https://doi.org/10.1016/0040-1951(95)98214-H, 1995.
Menegon, L., Pennacchioni, G., and Spiess, R.: Dissolution-precipitation creep of K-feldspar in mid-crustal granite mylonites, J. Struct. Geol., 30, 565–579, https://doi.org/10.1016/j.jsg.2008.02.001, 2008.
Menegon, L., Stünitz, H., Nasipuri, P., Heilbronner, R., and Svahnberg, H.: Transition from fracturing to viscous flow in granulite facies perthitic feldspar (Lofoten, Norway), J. Struct. Geol., 48, 95–112, https://doi.org/10.1016/j.jsg.2012.12.004, 2013.
Mitra, P. P. and Sen, P. N.: Effects of microgeometry and surface relaxation on NMR pulsed-field-gradient experiments: Simple pore geometries, Phys. Rev. B, 45, 143–156, https://doi.org/10.1103/PhysRevB.45.143, 1992.
Nevskaya, N., Berger, A., Stünitz, H., Ohl, M., Plümper, O., and Herwegh, M.: Dissolution–precipitation creep in polymineralic granitoid shear zones in experiments – Part 2: Rheological parameters, Solid Earth, 16, 1205–1226, https://doi.org/10.5194/se-16-1205-2025, 2025.
Nibourel, L., Berger, A., Egli, D., Heuberger, S., and Herwegh, M.: Structural and thermal evolution of the eastern Aar Massif: insights from structural field work and Raman thermometry, Swiss J. Geosci., 114, 9, https://doi.org/10.1186/s00015-020-00381-3, 2021.
Niemeijer, A. R., Spiers, C. J., and Bos, B.: Compaction creep of quartz sand at 400–600 °C: experimental evidence for dissolution-controlled pressure solution, Earth Planet. Sc. Lett., 195, 261–275, https://doi.org/10.1016/S0012-821X(01)00593-3, 2002.
Okamoto, A. and Hiraga, T.: A Common Diffusional Mechanism for Creep and Grain Growth in Polymineralic Rocks: Experiments, J. Geophys. Res.-Sol. Ea., 127, e2022JB024638, https://doi.org/10.1029/2022JB024638, 2022.
Olgaard, D. L. and Evans, B.: Effect of Second-Phase Particles on Grain Growth in Calcite, J. Am. Ceram. Soc., 69, C-272–C–277, https://doi.org/10.1111/j.1151-2916.1986.tb07374.x, 1986.
Pec, M.: Experimental Investigation on the Rheology of Fault Rocks, PhD Thesis, Basel University, 210 pp., 2014.
Pec, M. and Al Nasser, S.: Formation of Nanocrystalline and Amorphous Materials Causes Parallel Brittle-Viscous Flow of Crustal Rocks: Experiments on Quartz-Feldspar Aggregates, J. Geophys. Res.-Sol. Ea., 126, e2020JB021262, https://doi.org/10.1029/2020JB021262, 2021.
Pec, M., Stünitz, H., Heilbronner, R., and Drury, M.: Semi-brittle flow of granitoid fault rocks in experiments, J. Geophys. Res.-Sol. Ea., 121, 1677–1705, https://doi.org/10.1002/2015JB012513, 2016.
Pennacchioni, G. and Mancktelow, N. S.: Nucleation and initial growth of a shear zone network within compositionally and structurally heterogeneous granitoids under amphibolite facies conditions, J. Struct. Geol., 29, 1757–1780, https://doi.org/10.1016/j.jsg.2007.06.002, 2007.
Platt, J. P. and Behr, W. M.: Grainsize evolution in ductile shear zones: Implications for strain localization and the strength of the lithosphere, J. Struct. Geol., 33, 537–550, https://doi.org/10.1016/j.jsg.2011.01.018, 2011.
Raj, R. and Ashby, M. F.: On grain boundary sliding and diffusional creep, Metall Trans 2, 1113–1127, https://doi.org/10.1007/BF02664244, 1971.
Raj, R.: Creep in polycrystalline aggregates by matter transport through a liquid phase, J. Geophys. Res., 87, 4731–4739, https://doi.org/10.1029/JB087iB06p04731, 1982.
Ranalli, G.: Deformation maps in grain-size-stress space as a tool to investigate mantle rheology, Phys. Earth Planet. In., 29, 42–50, https://doi.org/10.1016/0031-9201(82)90136-4, 1982.
Ree, J.-H.: Grain boundary sliding and development of grain boundary openings in experimentally deformed octachloropropane, J. Struct. Geol., 16, 403–418, https://doi.org/10.1016/0191-8141(94)90044-2, 1994.
Regenauer-Lieb, K. and Yuen, D. A.: Modeling shear zones in geological and planetary sciences: solid- and fluid-thermal–mechanical approaches, Earth-Sci. Rev., 63, 295–349, https://doi.org/10.1016/S0012-8252(03)00038-2, 2003.
Ricard, Y. and Bercovici, D.: A continuum theory of grain size evolution and damage, J. Geophys. Res., 114, 2007JB005491, https://doi.org/10.1029/2007JB005491, 2009.
Richter, B., Stünitz, H., and Heilbronner, R.: The brittle-to-viscous transition in polycrystalline quartz: An experimental study, J. Struct. Geol., 114, 1–21, https://doi.org/10.1016/j.jsg.2018.06.005, 2018.
Ruh, J., Behr, W., and Tokle, L.: Effect of Grain-Size and Textural Weakening in Polyphase Crustal and Mantle Lithospheric Shear Zones, tekt, 2, https://doi.org/10.55575/tektonika2024.2.1.68, 2024.
Rutter, E. H.: A Discussion on natural strain and geological structure - The kinetics of rock deformation by pressure solution, Phil. Trans. R. Soc. Lond. A, 283, 203–219, https://doi.org/10.1098/rsta.1976.0079, 1976.
Rutter, E. H. and Brodie, K. H.: The role of tectonic grain size reduction in the rheological stratification of the lithosphere, Geol. Rundsch., 77, 295–307, https://doi.org/10.1007/BF01848691, 1988.
Rybacki, E. and Dresen, G.: Deformation mechanism maps for feldspar rocks, Tectonophysics, 382, 173–187, https://doi.org/10.1016/j.tecto.2004.01.006, 2004.
Schmid, S. M.: Microfabric studies as indicators of deformation mechanisms and flow laws operative in mountain building, Mountain Building Processes, 95–110, 1982.
Schrank, C., Bishop, N., Jones, M., Berger, A., Herwegh, M., Paterson, D., Manni, L. S., and Kirby, N.: Nanopores enable fluid flux in mylonites and ultramylonites – novel insights from Scanning Small-angle X-ray Scattering and X-ray Fluorescence Microscopy, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25–7433, https://doi.org/10.5194/egusphere-egu25-7433, 2025.
Stünitz, H. and Fitz Gerald, J. D.: Deformation of granitoids at low metamorphic grade. II: Granular flow in albite-rich mylonites, Tectonophysics, 221, 299–324, https://doi.org/10.1016/0040-1951(93)90164-F, 1993.
Stünitz, H. and Tullis, J.: Weakening and strain localization produced by syn-deformational reaction of plagioclase, Int. J. Earth Sci., 90, 136–148, https://doi.org/10.1007/s005310000148, 2001.
Sun, H. and Pec, M.: Nanometric flow and earthquake instability, Nat. Commun., 12, 6779, https://doi.org/10.1038/s41467-021-26996-0, 2021.
Tokle, L. and Hirth, G.: Assessment of Quartz Grain Growth and the Application of the Wattmeter to Predict Quartz Recrystallized Grain Sizes, J. Geophys. Res.-Sol. Ea., 126, e2020JB021475, https://doi.org/10.1029/2020JB021475, 2021.
Tullis, J.: Deformation of Granitic Rocks: Experimental Studies and Natural Examples, Reviews in Mineralogy and Geochemistry, 51, 51–95, https://doi.org/10.2138/gsrmg.51.1.51, 2002.
Tullis, J. and Yund, R. A.: Experimental deformation of dry westerly granite, J. Geophys. Res., 82, 5705–5718, https://doi.org/10.1029/JB082i036p05705, 1977.
Tullis, J. and Yund, R. A.: Dynamic recrystallization of feldspar: A mechanism for ductile shear zone formation, Geol., 13, 238, https://doi.org/10.1130/0091-7613(1985)13<238:DROFAM>2.0.CO;2, 1985.
Tullis, J., Dell'Angelo, L., and Yund, R. A.: Ductile shear zones from brittle precursors in feldspathic rocks: The role of dynamic recrystallization, in: Geophysical Monograph Series, vol. 56, edited by: Duba, A. G., Durham, W. B., Handin, J. W., and Wang, H. F., American Geophysical Union, Washington, D. C., 67–81, https://doi.org/10.1029/GM056p0067, 1990.
Twiss, R. J.: Theory and applicability of a recrystallized grain size paleopiezometer, Pure and Applied Geophysics (PAGEOPH), Birkhäuser Verlag, Basel, 115, https://doi.org/10.1007/BF01637105, 1977.
Wehrens, P., Berger, A., Peters, M., Spillmann, T., and Herwegh, M.: Deformation at the frictional-viscous transition: Evidence for cycles of fluid-assisted embrittlement and ductile deformation in the granitoid crust, Tectonophysics, 693, 66–84, https://doi.org/10.1016/j.tecto.2016.10.022, 2016.
Wehrens, P., Baumberger, R., Berger, A., and Herwegh, M.: How is strain localized in a meta-granitoid, mid-crustal basement section? Spatial distribution of deformation in the central Aar massif (Switzerland), J. Struct. Geol., 94, 47–67, https://doi.org/10.1016/j.jsg.2016.11.004, 2017.
Weyl, P. K.: Pressure solution and the force of crystallization: a phenomenological theory, J. Geophys. Res., 64, 2001–2025, https://doi.org/10.1029/JZ064i011p02001, 1959.
Wheeler, J.: Importance of pressure solution and coble creep in the deformation of polymineralic rocks, J. Geophys. Res., 97, 4579, https://doi.org/10.1029/91JB02476, 1992.
White, S. H., Burrows, S. E., Carreras, J., Shaw, N. D., and Humphreys, F. J.: On mylonites in ductile shear zones, J. Struct. Geol., 2, 175–187, https://doi.org/10.1016/0191-8141(80)90048-6, 1980.
Wightman, R. H., Prior, D. J., and Little, T. A.: Quartz veins deformed by diffusion creep-accommodated grain boundary sliding during a transient, high strain-rate event in the Southern Alps, New Zealand, J. Struct. Geol., 28, 902–918, https://doi.org/10.1016/j.jsg.2006.02.008, 2006.
Short summary
Rheology of polymineralic rocks is crucial to unravel the strain and stress distribution in Earth’s middle crust, with implications for seismicity or geothermal systems. Our experimental study of the viscous rheology of natural, fine-grained granitoid rocks shows that dissolution–precipitation creep and pinning are active in extremely weak narrow zones. Due to the polymineralic character, strain localizes with and without a precursory fracture in zones weaker than monomineralic quartz.
Rheology of polymineralic rocks is crucial to unravel the strain and stress distribution in...