Articles | Volume 16, issue 2
https://doi.org/10.5194/se-16-179-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-179-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Petrogenesis of early Paleozoic I-type granitoids in the Longshoushan and implications for the tectonic affinity and evolution of the southwestern Alxa Block
Renyu Zeng
CORRESPONDING AUTHOR
School of Earth Sciences, East China University of Technology, Nanchang, 330013, China
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
Department of Earth Sciences, Durham University, Durham DH1 3LE, UK
Hui Su
School of Earth Sciences, East China University of Technology, Nanchang, 330013, China
Mark B. Allen
Department of Earth Sciences, Durham University, Durham DH1 3LE, UK
Haiyan Shi
Qinghai Geological Survey, Technology Innovation Center for Exploration and Exploitation of Strategic Mineral Resources in Plateau Desert Region, Ministry of Natural Resources, Xining 810000, China
Houfa Du
School of Earth Sciences, East China University of Technology, Nanchang, 330013, China
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
Chenguang Zhang
School of Geographic Sciences, Xinyang Normal University, Xinyang, 464000, China
Jie Yan
School of Earth Sciences, East China University of Technology, Nanchang, 330013, China
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
Related authors
Renyu Zeng, Mark B. Allen, Xiancheng Mao, Jianqing Lai, Jie Yan, and Jianjun Wan
Solid Earth, 13, 1259–1280, https://doi.org/10.5194/se-13-1259-2022, https://doi.org/10.5194/se-13-1259-2022, 2022
Short summary
Short summary
In the Liaodong Peninsula, the widely exposed Jurassic high-Sr / Y rocks are generally considered to be derived from the thickened mafic crust. However, research on the Zhoujiapuzi granite in this study shows that there is at least one pluton with a high Sr / Y signature inherited from the source. Zircon growth in Zhoujiapuzi granite can be divided into two stages. The light-CL core was formed in a deeper, hotter magma chamber. The dark-CL rim formed from later, more evolved magma.
Malte Froemchen, Ken J. W. McCaffrey, Mark B. Allen, Jeroen van Hunen, Thomas B. Phillips, and Yueren Xu
Solid Earth, 15, 1203–1231, https://doi.org/10.5194/se-15-1203-2024, https://doi.org/10.5194/se-15-1203-2024, 2024
Short summary
Short summary
The Shanxi Rift is a young, active rift in northern China that formed atop a Proterozoic orogen. The impact of these structures on active rift faults is poorly understood. Here, we quantify the landscape response to active faulting and compare it with published maps of inherited structures. We find that inherited structures played an important role in the segmentation of the Shanxi Rift and in the development of rift interaction zones, which are the most active regions in the Shanxi Rift.
Renyu Zeng, Mark B. Allen, Xiancheng Mao, Jianqing Lai, Jie Yan, and Jianjun Wan
Solid Earth, 13, 1259–1280, https://doi.org/10.5194/se-13-1259-2022, https://doi.org/10.5194/se-13-1259-2022, 2022
Short summary
Short summary
In the Liaodong Peninsula, the widely exposed Jurassic high-Sr / Y rocks are generally considered to be derived from the thickened mafic crust. However, research on the Zhoujiapuzi granite in this study shows that there is at least one pluton with a high Sr / Y signature inherited from the source. Zircon growth in Zhoujiapuzi granite can be divided into two stages. The light-CL core was formed in a deeper, hotter magma chamber. The dark-CL rim formed from later, more evolved magma.
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Petrography
Post-Hercynian ultrahigh-temperature tectono-metamorphic evolution of the Middle Atlas lower crust (central Morocco) revealed by metapelitic granulite xenoliths
Abdelkader El Maz, Alain Vauchez, and Jean-Marie Dautria
Solid Earth, 16, 1–22, https://doi.org/10.5194/se-16-1-2025, https://doi.org/10.5194/se-16-1-2025, 2025
Short summary
Short summary
This study highlights the tectono-metamorphic evolution of the lower crust in central Morocco from the Hercynian to the Quaternary from the study of granulitic xenoliths. After a first tectono-metamorphic event, the lower crust recorded heating associated with a moderate deformation preserved in sillimanite. Later, the lower crust interacted with basanite that brought the xenoliths up to the surface. This allows us to compare the evolution of the lower crust in the Rif and the Middle Atlas.
Cited articles
Allen, M. B., Song, S. G., Wang, C., Zeng, R. Y., and Wen, T.: An oblique subduction model for closure of the Proto-Tethys and Palaeo-Tethys oceans and creation of the Central China Orogenic Belt, Earth-Sci. Rev., 104385, https://doi.org/10.1016/j.earscirev.2023.104385, 2023.
Bonin, B.: Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources?, Lithos, 78, 1–24, https://doi.org/10.1016/j.lithos.2004.04.042, 2004.
Burnham, A. D. and Berry, A. J.: Formation of Hadean granites by melting of igneous crust, Nat. Geosci., 10, 457–461, https://doi.org/10.1038/ngeo2942, 2017.
Cawood, A. P., Pisarevsky, A. S., and Leitch, C. E.: Unraveling the New England orocline, east Gondwana accretionary margin, Tectonics, 30, 1–15, https://doi.org/10.1029/2011TC002864, 2011.
Chappell, B. W. and White, A. J. R.: I- and S-type granites in the Lachlan Fold Belt, Geol. Soc. Am. Spec. Pap., 272, 1–26, https://doi.org/10.1130/SPE272-p1, 1992.
Dan, W., Li, X. H., Guo, J. H., Liu, Y., and Wang, X. C.: Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China: Evidence from in situ zircon U-Pb dating and Hf-O isotopes, Gondwana Res., 21, 838–864, https://doi.org/10.1016/j.gr.2011.09.004, 2012.
Dan, W., Li, X. H., Wang, Q., Wang, X. C., and Liu, Y.: Neoproterozoic S-type granites in the Alxa Block, westernmost North China and tectonic implications: in situ zircon U-Pb-Hf-O isotopic and geochemical constraints, Am. J. Sci., 14, 110–153, https://doi.org/10.2475/01.2014.04, 2014.
Dan, W., Li, X. H., Wang, Q., Wang, X. C., Wyman, D. A., and Liu, Y.: Phanerozoic amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic granitoids, U-Pb geochronology and Sr-Nd-Pb-Hf-O isotope geochemistry, Gondwana Res., 32, 105–121, https://doi.org/10.1016/j.gr.2015.02.011, 2016.
Dong, C. Y., Liu, D. Y., Li, J. J., Wan, Y. S., Zhou, H. Y., Li, C. D., Yang, Y. H., and Xie, L. W.: New evidence for the timing of the formation of the western segment of the Khondalite Belt in the North China Craton: SHRIMP dating Hf isotopic composition of zircons from the Bayanwula Helan Shan region, Chinese Sci. Bull., 16, 1913–1922, https://doi.org/10.3321/j.issn:0023-074x.2007.16.012, 2007.
Duan, F. H., Zhi, Q., Li, Y. J., Xiao, H., Wang, P. L., and Gao, J. P.: Petrogenesis and geodynamic setting of the Late Carboniferous granodioriteporphyry in Miaoergou pluton, southern West Junggar, Acta Petrol. Sin., 37, 1159–1176, https://doi.org/10.18654/1000-0569/2021.04.12, 2021.
Ferry, J. M. and Watson, E. B.: New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers, Contrib. Mineral. Petrol., 154, 429–437, https://doi.org/10.1007/s00410-007-0201-0, 2007.
Foley, S. F., Barth, M. G., and Jenner, G. A.: Rutile/Melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas, Geochim. Cosmochim. Ac., 64, 933–938, https://doi.org/10.1016/S0016-7037(99)00355-5, 2000.
Freeburn, R., Bouilhol, P., Maunder, B., Magni, V., and Hunen, J. V.: Numerical models of the magmatic processes induced by slab break off, Earth Planet. Sci. Lett., 478, 203–213, https://doi.org/10.1016/j.epsl.2017.09.008, 2017.
Frost, C. D. and Frost, B. R.: On ferroan (A-type) granitoids: Their compositional variability and modes of origin, J. Petrol., 52, 39–53, https://doi.org/10.1093/petrology/egq070, 2011.
Fu, D., Kusky, T. M., Wilde, S. A., Windley, B. F., Polat, A., Huang, B., and Zhou, Z. P.: Structural anatomy of the early Paleozoic Laohushan ophiolite and subduction complex: Implications for accretionary tectonics of the Proto-Tethyan North Qilian orogenic belt, northeastern Tibet, Geol. Soc. Am. Bull., 132, 2175–2201, https://doi.org/10.1130/B35442.1, 2020.
Fu, D., Kusky, T. M., Wilde, S. A., Windley, B. F., Polat, A., Huang, B., and Zhou, Z. P.: Boninitic blueschists record subduction initiation and subsequent accretion of an arc-forearc in the northeast Proto-Tethys Ocean, Geology, 50, 10–15, https://doi.org/10.1130/G49457.1, 2022.
Gong, J. H., Zhang, J. X., Wang, Z. Q., Yu, S. Y., Li, H. K., and Li, Y. S.: Origin of the Alxa Block, western China: New evidence from zircon U-Pb geochronology and Hf isotopes of the Longshoushan Complex, Gondwana Res., 36, 359–375, https://doi.org/10.1016/j.gr.2015.06.014, 2016.
Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O'Reilly, S. Y., Xu, X. X., and Zhou, X. M.: Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes, Lithos, 61, 237–269, https://doi.org/10.1016/S0024-4937(02)00082-8, 2002.
Harris, N. B. W., Inger, S., and Xu, R. H.: Cretaceous plutonism in Central Tibet: an example of post-collision magmatism?, J. Volcanol. Geotherm. Res., 44, 21–32, https://doi.org/10.1016/0377-0273(90)90009-5, 1990.
He, H. Y., Li, Y. L., Wang, C. S., Han, Z. P., Ma, P. F., and Xiao, S. Q.: Petrogenesis and tectonic implications of Late Cretaceous highly fractionated I-type granites from the Qiangtang block, central Tibet, J. Asian Earth Sci., 176, 337–352, https://doi.org/10.1016/j.jseaes.2019.02.022, 2019.
Hoskin, P. W. O. and Schaltegger, U.: The composition of zircon and igneous and metamorphic petrogenesis, Rev. Mineral. Geochem., 53, 27–62, https://doi.org/10.2113/0530027, 2003.
Hu, F. Y., Ducea, M. N., Liu, S. W., and Chapman, J. B.: Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application, Sci. Rep., 7, 1–10, https://doi.org/10.1038/s41598-017-07849-7, 2017.
Hu, Z. C., Liu, Y. S., Gao, S., Liu, W. G., Zhang, W., and Tong, X. R.: Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS, J. Anal. At. Spectrom., 27, 1391–1399, https://doi.org/10.1039/C2JA30078H, 2012.
Hui, J., Zhang, K. J., Zhang, J., Qu, J. F., Zhang, B. H., Zhao, H., and Niu, P. F.: Middle-late Permian high-K adakitic granitoids in the NE Alxa block, northern China: Orogenic record following the closure of a Paleo-Asian oceanic branch?, Lithos, 400–401, 106379, https://doi.org/10.1016/j.lithos.2021.106379, 2021.
Jahn, B. M., Wu, F. Y., Lo, C. H., and Tsai, C. H.: Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the Northern Dabie complex, central China, Chem. Geol., 157, 119–146, https://doi.org/10.1016/S0009-2541(98)00197-1, 1999.
Karsli, O., Dokuz, A., Uysal, İ., Aydin, F., Chen, B., Kandemir, R., and Kandemir, R.: Relative contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoids in a subduction setting, with special reference to the Harşit Pluton, Eastern Turkey, Contrib. Mineral. Petrol., 160, 467–487, https://doi.org/10.1007/s00410-010-0489-z, 2010.
Kong, H., Li, H., Wu, Q. H., Xi, X. S., Dick, J. M., and Gabo-Ratio, J. A. S.: Co-development of Jurassic I-type and A-type granites in southern Hunan, South China: Dual control by plate subduction and intraplate mantle upwelling, Chem. Erde-Geochem., 78, 500–520, https://doi.org/10.1016/j.chemer.2018.08.002, 2018.
Li, B., Jiang, S. Y., Lu, A. H., Zhao, H. X., Yang, T. L., and Hou, M. L.: Zircon U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics of the Jintonghu monzonitic rocks in western Fujian Province, South China: Implication for Cretaceous crust-mantle interactions and lithospheric extension, Lithos, 260, 413–428, https://doi.org/10.1016/j.lithos.2016.05.002, 2016.
Li, C. D., Zhang, Q., Miao, L. C., and Meng, X. F.: Mesozoic high-Sr, low-Y and low-Sr, low-Y types granitoids in the northern Hebeiprovince: Geochemistry and petrogenesis and its relation to mineralization of gold deposits, Acta Petrol. Sin., 20, 269–284, https://doi.org/10.1016/j.sedgeo.2004.01.002, 2004.
Li, H., Sun, H. S., Wu, J. H., Evans, N. J., Xi, X. S., Peng, N. L., Cao, J. Y., and Gabo-Ratio, J. A. S.: Re-Os and U-Pb geochronology of the Shazigou Mo polymetallic ore field, Inner Mongolia: Implications for Permian-Triassic mineralization at the northern margin of the North China Craton, Ore Geol. Rev., 83, 287–299, https://doi.org/10.1016/j.oregeorev.2016.12.010, 2017.
Li, J. Y., Zhang, J., and Qu, J. F.: Amalgamation of North China Craton with Alxa Block in the Late of Early Paleozoic: Evidengce from Sedmentary Sequences in the Niushou Mountain, Ningxia Hui Autonomous Region, NW China, Geol. Rev., 58, 208–214, https://doi.org/10.16509/j.georeview.2012.02.014, 2012.
Li, S., Wang, T., Xiao, W. J., and Ho, Q. L.: Tectono-magmatic evolution from accretion to collision in the southern margin of the Central Asian Orogenic Belt, Acta Petrol. Sin., 39, 1261–1275, https://doi.org/10.18654/1000-0569/2023.05.03, 2023.
Liégeois, J. P., Navez, J., Hertogen, J., and Black, R.: Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids, The use of sliding normalization, Lithos, 45, 1–28, https://doi.org/10.1016/S0024-4937(98)00023-1, 1998.
Liu, Q., Zhao, G. C., Han, Y. G., Eizenhöfer, P. R., Zhu, Y. L., Hou, W. Z., and Zhang, X. R.: Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites, Lithos, 274–275, 19–30, https://doi.org/10.1016/j.lithos.2016.12.029, 2017.
Liu, Q., Zhao, G. C., Sun, M., Han, Y. G., Eizenhofer, P. R., Hou, W. Z., Zhang, X. R., Zhu, Y. L., Wang, B., and Liu, D. X.: Early Paleozoic subduction processes of the Paleo-Asian Ocean: Insights from geochronology and geochemistry of Paleozoic plutons in the Alxa Terrane, Lithos, 262, 546–560, https://doi.org/10.1016/j.lithos.2016.07.041, 2016.
Liu, Q. Q., Li, H., Shao, Y. J., Girei, M. B., Jiang, W. C., Yuan, H. M., and Zhang, X.: Age, genesis, and tectonic setting of the Qiushuwan Cu-Mo deposit in East Qinling (Central China): constraints from Sr-Nd-Hf isotopes, zircon U-Pb and molybdenite Re-Os dating, Ore Geol. Rev., 132, 103998, https://doi.org/10.1016/j.oregeorev.2021.103998, 2021.
Liu, W. H., Spier, C., Niu, Y. B., Liu, X. D., Yan, J., Wang, K. X., and Pan, J. Y.: Magma mixing in the genesis of the Qingshanbao granitoids in the Longshoushan area: Implications for the tectonic evolution of the North Qilian orogenic belt, NW China, Geol. J., 56, 4594–4617, https://doi.org/10.1002/gj.4195, 2021.
Li, Y. L., Zhou, H. W., Brouwer, F. M., Xiao, W. J., Wijbrans, J. R., and Zhong, Z. Q.: Early Paleozoic to Middle Triassic bivergent accretion in the Central Asian Orogenic Belt: insights from zircon U-Pb dating of ductile shear zones in central Inner Mongolia, China, Lithos, 205, 84–111, https://doi.org/10.1016/j.lithos.2014.06.017, 2014.
Ma, L., Jiang, S. Y., Dai, B. Z., Jiang, Y. H., Hou, M. L., Pu, W., and Xu, B.: Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence, Lithos, 162–163, 251–263, https://doi.org/10.1016/j.lithos.2013.01.009, 2013.
Maniar, P. D. and Piccoli, P. M.: Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 101, 635–643, https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2, 1989.
Mantle, G. W. and Collins, W. J.: Quantifying crustal thickness variations in evolving orogens: Correlation between arc basalt composition and Moho depth, Geology, 36, 87–90, https://doi.org/10.1130/G24095A.1, 2008.
Middlemost, E. A. K.: Naming materials in the magma/igneous rock system, Earth-Sci. Rev., 37, 215–224, https://doi.org/10.1016/0012-8252(94)90029-9, 1994.
Pearce, J. A., Harris, N. B. W., and Tindle, A. G.: Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks, J. Petrol., 25, 956–983, https://doi.org/10.1093/petrology/25.4.956, 1984.
Qi, J. W., Zhang, S. M., Yang, C. S., Lan, D. C., and Wang, L. L.: The LA-lCP-MS zircon U-Pb age of the pegmatoidal alaskite and its relationshipwith uranium mineralization in Hongshiquan area, Gansu Province, Geol. Bull., 38, 562–572, https://doi.org/CNKI:SUN:ZQYD.0.2019-04-009, 2019.
Schiano, P., Monzier, M., Eissen, J. P., Martin, H., and Koga, K. T.: Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes, Contrib. Mineral. Petrol., 160, 297–312, https://doi.org/10.1007/s00410-009-0478-2, 2010.
Schiller, D. and Finger, F.: Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions, Contrib. Mineral. Petrol., 174, 51, https://doi.org/10.1007/s00410-019-1585-3, 2019.
Shi, X. J., Wang, T., Zhang, L., Castro, A., Xiao, X. C., Tong, Y., Zhang, J. X., Guo, L., and Yang, Q. D.: Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro-granodiorite-granite intrusions in the Shalazhashan of northern Alxa: Constraints on the southernmost boundary of the Central Asian Orogenic Belt, Lithos, 208–209, 158–177, https://doi.org/10.1016/j.lithos.2014.08.024, 2014.
Skjerlie, K. P. and Johnston, A. D.: Vapor-absent melting at 10 kbar of a biotite-and amphibole-bearing tonalitic gneiss: implications for the generation of A-type granites, Geology, 20, 263–266, https://doi.org/10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2, 1992.
Song, S. G., Niu, Y. L., Su, L., and Xia, X. H.: Tectonics of the North Qilian Orogen, NW China, Gondwana Res., 23, 1378–1401, https://doi.org/10.1016/j.gr.2012.02.004, 2013.
Song, S. G., Wang, M. J., Wang, C., and Niu, Y. L.: Magmatism during continental collision, subduction, exhumation and mountaincollapse in collisional orogenic belts and continental net growth: A perspective, Sci. China Earth Sci., 58, 1284–1304, https://doi.org/10.1007/s11430-015-5102-x, 2015.
Sun, H. S., Li, H., Danišík, M., Xia, Q. L., Jiang, C. L., Wu, P., Yang, H., Fan, Q. R., and Zhu, D. S.: U-Pb and Re-Os geochronology and geochemistry of the Donggebi Mo deposit, Eastern Tianshan, NW China: Insights into mineralization and tectonic setting, Ore Geol. Rev., 86, 584–599, https://doi.org/10.1016/j.oregeorev.2017.03.020, 2017.
Sun, S. S. and Mcdonough, W. F.: Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. Lond. Spec. Publ., 42, 313–345, https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989.
Sylvester, P. J.: Post-collisional strongly peraluminous granites, Lithos, 45, 29–44, https://doi.org/10.1016/S0024-4937(98)00024-3, 1998.
Tang, Y. L., Shi, Y., Hu, X. M., Liu, X. J., and Huang, C. W.: Petrogenesis of Early Paleozoic I-type granitoids in the Wuyi-Yunkai Orogen, South China: Implications for the tectono-magmatic evolution of the Cathaysia Block, J. Asian Earth Sci., 220, 104906, https://doi.org/10.1016/j.jseaes.2021.104906, 2021.
Trail, D., Watson, E. B., and Tailby, N. D.: Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas, Geochim. Cosmochim. Ac., 97, 70–87, https://doi.org/10.1016/j.gca.2012.08.032, 2012.
Wang, C. Y., Zhang, Q., Qian, Q., and Zhou, M. F.: Geochemistry of the Early Paleozoic Baiyin Volcanic Rocks (NW China): Implications for the Tectonic Evolution of the North Qilian Orogenic Belt, J. Geol., 113, 83–94, https://doi.org/10.1086/425970, 2005.
Wang, T., Tong, Y., Zhang, L., Li, S., Huang, H., Zhang, J. J., Guo, L., Yang, Q. D., Hong, D. W., Donskaya, T., Gladkochub, D., and Tserendash, N.: Phanerozoic granitoids in the middle and eastern parts of CentralAsia and their tectonic significance, J. Asian Earth Sci., 145, 368–392, https://doi.org/10.1016/j.jseaes.2017.06.029, 2017.
Wang, Z. Z., Chen, X. H., Li, B., Zhang, Y. P., and Xu, S. L.: The discovery of the Paleoproterozoic syenite in Helishan, Gansu Province, and its implications for the tectonic attribution of the Alxa Block, Geol. China, 46, 1094–1104, https://doi.org/10.12029/gc20190510, 2019.
Wang, Z. Z., Chen, X. H., Shao, Z. G., Li, B., Ding, W. C., Zhang, Y. P., Wang, Y. C., Zhang, Y. Y., Xu, S. L., and Qin, X.: Petrogenesis of the Late Silurian-Early Devonian granites in the Longshoushan-Helishan area, Gansu Province, and its tectonic implications for the Early Paleozoicevolution of the southwestern Alxa Block, Acta Geol. Sin., 94, 2243–2261, https://doi.org/10.19762/j.cnki.dizhixuebao.2020027, 2020.
Wang, Z. Z., Han, B., Feng, L. X., and Liu, B.: Geochronology, geochemistry and origins of the Paleozoic-Triassic plutons in the Langshan area, western Inner Mongolia, China, J. Asian Earth Sci., 97, 337–351, https://doi.org/10.1016/j.jseaes.2014.08.005, 2015.
Watson, E. B. and Harrison, T. M.: Zircon saturation revisited: temperature and composition effects in variety of crustal magma types, Earth Planet. Sci. Lett., 64, 295–304, https://doi.org/10.1016/0012-821X(83)90211-X, 1983.
Watson, E. B. and Harrison, T. M.: Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth, Science, 308, 841–844, https://doi.org/10.1126/science.1120977, 2005.
Wei, Q. Q., Hao, L. B., Lu, J. L., Zhong, Y. Y., Zhao, X. Y., and Shi, H. L.: LA-MC-ICP-MS Zircon U-Pb Dating of Hexipu Granite and lts Geologica Implications, Bull. Mineral., Petrol. Geochem., 32, 729–735, 2013.
Whalen, J. B., Currie, K. L., and Chappell, B. W.: A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol., 95, 407–419, https://doi.org/10.1007/BF00402202, 1987.
Wolf, M. B. and London, D.: Apatite dissolution into peraluminous haplogranitic melts:An experimental study of solubilities and mechanism, Geochim. Cosmochim. Ac., 58, 4127–4145, https://doi.org/10.1016/0016-7037(94)90269-0, 1994.
Wu, D. D., Li, S., Chew, D., Liu, T. X., and Guo, D. H.: Permian-Triassic magmatic evolution of granitoids from the southeastern Central Asian Orogenic Belt: lmplications for accretion leading to collision, Sci. China Earth Sci., 64, 788–806, https://doi.org/10.1007/S11430-020-9714-5, 2021.
Wu, F. Y., Liu, X. C., Ji, W. Q., Wang, J. M., and Yang, L.: Highly fractionated granites: recognition and research, Sci. China Earth Sci., 60, 1201–1219, https://doi.org/10.1007/s11430-016-5139-1, 2017.
Xia, L. Q., Li, X. M., Yu, J. Y., and Wang, G. Q.: Mid-late neoproterozoic to early paleozoic volcanism and tectonic evolution of the Qilianshan, NW China, Georesj, 9–12, 1–41, https://doi.org/10.1016/j.grj.2016.06.001, 2016.
Xia, X., Song, S., and Niu, Y.: Tholeiite-Boninite terrane in the North Qilian suture zone: Implications for subduction initiation and back-arc basin development, Chem. Geol., 328, 259–277, https://doi.org/10.1016/j.chemgeo.2011.12.001, 2012.
Xiao, B., Chen, H. Y., Hollings, P., Han, J. S., Wang, Y. F., Yang, J. T., and Cai, K. D.: Magmatic evolution of the Tuwu-Yandong porphyry Cu belt, NW China: Constraints from geochronology, geochemistry and Sr-Nd-Hf isotopes, Gondwana Res., 43, 74–91, https://doi.org/10.1016/j.gr.2015.09.003, 2017.
Xiao, W. J., Windley, B. F., Sun, S., Li, J. L., Huang, B. C., Han, C. M., Yuan, C., Sun, M., and Chen, H. L.: A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion, Annu. Rev. Earth Planet. Sci., 43, 477–507, https://doi.org/10.1146/annurev-earth-060614-105254, 2015.
Xue, S., Ling, M. X., Liu, Y. L., Zhang, H., and Sun, W. D.: The genesis of early Carboniferous adakitic rocks at the southern margin of the Alxa Block, North China, Lithos, 278–281, 181–194, https://doi.org/10.1016/j.lithos.2017.01.012, 2017.
Yang, H., Zhang, H. F., Xiao, W. J., Luo, B. J., Gao, Z., Tao, L., Zhang, L. Q., and Guo, L.: Petrogenesis of Early Paleozoic high intrusive rocks from the North Qilian orogen: Implication for diachronous continental collision, Lithosphere, 12, 53–73, https://doi.org/10.1130/L1129.1, 2019.
Yu, S. Y., Zhang, J. X., Qin, H. P., Sun, D. Y., Zhao, X. L., Cong, F., and Li, Y. S.: Petrogenesis of the early Paleozoic low-Mg and high-Mg adakitic rocks in the North Qilian orogenic belt, NW China: Implications for transition from crustal thickening to extension thinning, J. Asian Earth Sci., 107, 122–139, https://doi.org/10.1016/j.jseaes.2015.04.018, 2015.
Yuan, W. and Yang, Z. Y.: The Alashan Terrane did not amalgamate with North China block by the Late Permian: Evidence from Carboniferous and Permian paleomagnetic results, J. Asian Earth Sci., 104, 145–159, https://doi.org/10.1016/j.jseaes.2014.02.010, 2015.
Zeng, R. Y., Lai, J. Q., Mao, X. C., Li, B., Ju, P. J., and Tao, S. L.: Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China: Constraints on their petrogenesis, source characteristics and tectonic implication, J. Asian Earth Sci., 121, 20–33, https://doi.org/10.1016/j.jseaes.2016.02.009, 2016.
Zeng, R. Y., Lai, J. Q., Mao, X. C., Li, B., Zhang, J. D., Bayless, R., and Yang, L. Z.: Paleoproterozoic multiple tectonothermal events in the Longshoushan area, Western North China Craton and their geological implication: evidence from geochemistry, zircon U-Pb geochronology and Hf isotopes, Minerals, 8, 361, https://doi.org/10.3390/MIN8090361, 2018.
Zeng, R. Y., Lai, J. Q., Mao, X. C., Xiao, W. Z., Yan, J., Zhang, C. G., and Xiao, W. Z.: Geochemistry and zircon ages of the Yushigou diabase in the Longshoushan area, Alxa Block: implications for crust-mantle interaction and tectonic evolution, Geol. Mag., 158, 685–700, https://doi.org/10.1017/S0016756820000783, 2021.
Zeng, R. Y., Allen, M. B., Mao, X. C., Lai, J. Q., Yan, J., and Wan, J. J.: Whole-rock and zircon evidence for evolution of the Late Jurassic high Zhoujiapuzi granite, Liaodong Peninsula, North China Craton, Solid Earth, 13, 1259–1280, https://doi.org/10.5194/se-2021-129, 2022.
Zhang, B., Guo, F., Zhang, X. B., Wu, Y. M., Wang, G. Q., and Zhao, L.: Early Cretaceous subduction of Paleo-Pacific Ocean in the coastal region of SE China: Petrological and geochemical constraints from the mafic intrusions, Lithos, 334–335, 8–24, https://doi.org/10.1016/j.lithos.2019.03.010, 2019.
Zhang, D. H., Wei, J. H., Fu, L. B., Chen, H. Y., Tan, J., Li, Y. J., Shi, W. J., and Tian, N.: Formation of the Jurassic Changboshan-Xieniqishan highly fractionated I-type granites, northeastern China: implication for the partial melting of juvenile crust induced by asthenospheric mantle upwelling, Geol. J., 50, 122–138, https://doi.org/10.1002/gj.2531, 2015.
Zhang, J. J., Wang, T., Zhang, L., Tong, Y., Zhang, Z. C., Shi, X. J., Guo, L., Huang, H., Yang, Q. D., Huang, W., Zhao, J. X., Ye, K., and Hou, J. Y.: Tracking deep crust by zircon xenocrysts within igneous rocks from the northern Alxa, China: Constraints on the southern boundary of the Central Asian Orogenic Belt, J. Asian Earth Sci., 108, 150–169, https://doi.org/10.1016/j.jseaes.2015.04.019, 2015.
Zhang, J. J., Wang, T., Castro, A., Zhang, L., Shi, X. J., Tong, Y., Zhang, Z. C., Guo, L., Yang, Q. D., and Iaccheri, L. M.: Multiple Mixing and Hybridization from Magma Source to Final Emplacement in the Permian Yamatu Pluton, the Northern Alxa Block, China, J. Petrol., 157, 183–197, https://doi.org/10.1007/BF01765318, 2016.
Zhang, J. X. and Gong, J. H.: Revisiting the nature and affinity of the Alxa Block, Acta Petrol. Sin., 34, 940–962, doi:10.2018-04-008, 2018.
Zhang, J. X., Gong, J. H., Yu, S. Y., Li, H. K., and Hou, K. J.: Neoarchean-Paleoproterozoic multiple tectonothermal events in the western Alxa block, North China Craton and their geological implication: Evidence from zircon U-Pb ages and Hf isotopic composition, Precambrian Res., 235, 36–57, https://doi.org/10.1016/j.precamres.2013.05.002, 2013.
Zhang, L., Zhang, H., Hawkesworth, C., Luo, B., and Yang, H.: Mafic rocks from the southern Alxa block of Northwest China and its geodynamic evolution in the Paleozoic, J. Geol. Soc., 178, 2020–038, https://doi.org/10.1144/jgs2020-038, 2021.
Zhang, L., Wang, T., Zhang, J. J., Shi, X. J., Ren, H. D., Yang, Q. D., Tong, Y., and Guo, L.: Revisiting the boundary between the Central Asian Orogenic Belt and North China Craton in Alxa area, China: Insights from zircon U-Pb ages and Hf isotopes of Phanerozoic granitoids, Gondwana Res, 119, 119–137, https://doi.org/10.1016/j.gr.2023.03.011, 2023.
Zhang, L. Q., Zhang, H. F., Zhang, S. S., Xiong, Z. L., Luo, B. J., Yang, H., Pan, F. B., Zhou, X. C., Xu, W. C., and Guo, L.: Lithospheric delamination in post-collisional setting: Evidence from intrusive magmatism from the North Qilian orogen to southern margin of the Alxa block, NW China, Lithos, 288–289, 20–34, https://doi.org/10.1016/j.lithos.2017.07.009, 2017.
Zhang, Q., Wang, Y., Li, C. D., Wang, Y. L., Jin, W. J., and Jia, X. Q.: Granite classification on the basis of Sr and Yb contents and its implications, Acta Petrol. Sin., 22, 2249–2269, https://doi.org/10.3969/j.issn.1000-0569.2006.09.001, 2006.
Zhang, Q., Jin, W. J., Li, C. D., and Wang, Y. L.: Revisiting the new classification of granitic rocks based on whole-rock Sr and Yb contents:ndex, Acta Petrol. Sin., 26, 985–1015, https://doi.org/CNKI:SUN:YSXB.0.2010-04-002, 2010.
Zhang, W. and Hu, Z. C.: Estimation of Isotopic Reference Values for Pure Materials and Geological Reference Materials, At. Spectrosc., 41, 93–102, https://doi.org/10.46770/AS.2020.03.001, 2020.
Zhou, X. C., Zhang, H. F., Luo, B. J., Pan, F. B., Zhang, S. S., and Guo, L.: Origin of high -type granitic magma-tism in the southwestern of the Alxa Block, Northwest China, Lithos, 256–257, 211–227, https://doi.org/10.1016/j.lithos.2016.04.021, 2016.
Zong, K. Q., Klemd, R., Yuan, Y., He, Z. Y., Guo, J. L., Shi, X. L., Liu, Y. S., Hu, Z. C., and Zhang, Z. M.: The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB), Precambrian Res., 290, 32–48, https://doi.org/10.1016/j.precamres.2016.12.010, 2017.
Zorpi, M. J., Coulon, C., Orsini, J. B., and Cocirta, C.: Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons, Tectonophysics, 157, 315–329, https://doi.org/10.1016/0040-1951(89)90147-9, 1989.
Short summary
Debate has long surrounded the tectonic affinity and evolution of Longshoushan during the Paleozoic. This study presents new zircon U–Pb ages, whole-rock major and trace element data, and Hf isotopic analyses for granitoids. (1) Longshoushan was influenced by the North Qilian Orogenic Belt in the early Paleozoic, (2) it transitioned from a post-collisional compressional to an extensional setting ~435 Ma, and (3) a three-stage early Paleozoic tectonic model is proposed.
Debate has long surrounded the tectonic affinity and evolution of Longshoushan during the...