Articles | Volume 16, issue 4/5
https://doi.org/10.5194/se-16-333-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-333-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Understanding seismic anisotropy in the Rotondo granite: investigating stress as a potential source
Kathrin Behnen
CORRESPONDING AUTHOR
Department of Earth Sciences, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Marian Hertrich
Department of Earth Sciences, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Hansruedi Maurer
Department of Earth Sciences, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Alexis Shakas
Department of Earth Sciences, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Kai Bröker
Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland
Claire Epiney
Geo-Energie Suisse AG, Reitergasse 11, 8004 Zurich, Switzerland
María Blanch Jover
GEOMAR, Wischhofstrasse 1–3, 24148 Kiel, Germany
Domenico Giardini
Department of Earth Sciences, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Related authors
No articles found.
Miriam Larissa Schwarz, Hansruedi Maurer, Anne Christine Obermann, Paul Antony Selvadurai, Alexis Shakas, Stefan Wiemer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1094, https://doi.org/10.5194/egusphere-2025-1094, 2025
Short summary
Short summary
This study applied fat ray travel time tomography to image the geothermal testbed at the BedrettoLab. An active seismic crosshole survey provided a dataset of 42'843 manually picked first breaks. The complex major fault zone was successfully imaged by a 3D velocity model and validated with wireline logs and geological observations. Seismic events from hydraulic stimulation correlated with velocity structures, "avoiding" very high and low velocities, speculatively due to stress gradients.
Valentin Samuel Gischig, Antonio Pio Rinaldi, Andres Alcolea, Falko Bethman, Marco Broccardo, Kai Erich Norbert Bröker, Raymi Castilla, Federico Ciardo, Victor Clasen Repollés, Virginie Durand, Nima Gholizadeh Doonechaly, Marian Hertrich, Rebecca Hochreutener, Philipp Kästli, Dimitrios Karvounis, Xiaodong Ma, Men-Andrin Meier, Peter Meier, Maria Mesimeri, Arnaud Mignan, Anne Obermann, Katrin Plenkers, Martina Rosskopf, Francisco Serbeto, Paul Antony Selvadurai, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Jordan Aaron, Hansruedi Maurer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2024-3882, https://doi.org/10.5194/egusphere-2024-3882, 2025
Short summary
Short summary
Induced earthquakes present a major obstacle for developing geoenergy resources. These occur during hydraulic stimulations that enhance fluid pathways in the rock. In the Bedretto Underground Laboratory, hydraulic stimulations are investigated in a downscaled manner. A workflow to analyse the hazard of induced earthquakes is applied at different stages of the test program. The hazard estimates illustrate the difficulty to reduce the uncertainty owing to the variable seismogenic responses.
Laura Gabriel, Marian Hertrich, Christophe Ogier, Mike Müller-Petke, Raphael Moser, Hansruedi Maurer, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-3741, https://doi.org/10.5194/egusphere-2024-3741, 2025
Short summary
Short summary
Surface nuclear magnetic resonance (SNMR) is a geophysical technique directly sensitive to liquid water. We expand the limited applications of SNMR on glaciers by detecting water within Rhonegletscher, Switzerland. By carefully processing the data to reduce noise, we identified signals indicating a water layer near the base of the glacier, surrounded by ice with low water content. Our findings, validated by radar measurements, show SNMR's potential and limitations in studying water in glaciers.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Cited articles
Al-Harthi, A. A.: Effect of planar structures on the anisotropy of Ranyah sandstone, Saudi Arabia, Eng. Geol., 50, 49–57, https://doi.org/10.1016/S0013-7952(97)00081-1, 1998. a, b, c
Amann, F., Gischig, V., Evans, K., Doetsch, J., Jalali, R., Valley, B., Krietsch, H., Dutler, N., Villiger, L., Brixel, B., Klepikova, M., Kittilä, A., Madonna, C., Wiemer, S., Saar, M. O., Loew, S., Driesner, T., Maurer, H., and Giardini, D.: The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment, Solid Earth, 9, 115–137, https://doi.org/10.5194/se-9-115-2018, 2018. a
Aminzadeh, A., Petružálek, M., Vavryčuk, V., Ivankina, T. I., Svitek, T., Petrlíková, A., Staš, L., and Lokajíček, T.: Identification of higher symmetry in triclinic stiffness tensor: Application to high pressure dependence of elastic anisotropy in deep underground structures, Int. J. Rock Mech. Min., 158, 105168, https://doi.org/10.1016/j.ijrmms.2022.105168, 2022. a
Behnen, K.: Crosshole Seismic Survey Data in the tripod boreholes (BedrettoLab), ETH Zürich [data set], https://doi.org/10.3929/ethz-b-000678987, 2024. a
Berryman, J.: Long-wave elastic anisotropy in transversely isotropic media, Geophysics, 44, 896–917, https://doi.org/10.1190/1.1440984, 1979. a
Boese, C. M., Kwiatek, G., Fischer, T., Plenkers, K., Starke, J., Blümle, F., Janssen, C., and Dresen, G.: Seismic monitoring of the STIMTEC hydraulic stimulation experiment in anisotropic metamorphic gneiss, Solid Earth, 13, 323–346, https://doi.org/10.5194/se-13-323-2022, 2022. a
Bröker, K. and Ma, X.: Estimating the Least Principal Stress in a Granitic Rock Mass: Systematic Mini-Frac Tests and Elaborated Pressure Transient Analysis, Rock Mech. Rock Eng., 55, 1931–1954, https://doi.org/10.1007/s00603-021-02743-1, 2022. a, b, c, d
Bröker, K., Ma, X., Zhang, S., Gholizadeh Doonechaly, N., Hertrich, M., Klee, G., Greenwood, A., Caspari, E., and Giardini, D.: Constraining the stress field and its variability at the BedrettoLab: Elaborated hydraulic fracture trace analysis, Int. J. Rock Mech. Min., 178, 105739, https://doi.org/10.1016/J.IJRMMS.2024.105739, 2024. a, b, c, d
Carcione, J. M., Kosloff, D., and Kosloff, R.: Wave-Propagation Simulation in an Elastic Anisotropic (Transversely Isotropic) Solid, Q. J. Mech. Appl. Math., 41, 319–346, https://doi.org/10.1093/qjmam/41.3.319, 1988. a
Chan, J. and Schmitt, D. R.: Elastic Anisotropy of a Metamorphic Rock Sample of the Canadian Shield in Northeastern Alberta, Rock Mech. Rock Eng., 48, 1369–1385, https://doi.org/10.1007/s00603-014-0664-z, 2015. a, b
Daley, P. F. and Hron, F.: Reflection and Transmission Coefficients for Transversely Isotropic Media, B. Seismol. Soc. Am., 67, 661–675, https://doi.org/10.1785/BSSA0670030661, 1977. a, b
David, C., Nejati, M., and Geremia, D.: On petrophysical and geomechanical properties of Bedretto Granite, Tech. Rep., ETH Zurich, https://doi.org/10.3929/ethz-b-000428267, 2020. a, b, c
Doetsch, J., Krietsch, H., Schmelzbach, C., Jalali, M., Gischig, V., Villiger, L., Amann, F., and Maurer, H.: Characterizing a decametre-scale granitic reservoir using ground-penetrating radar and seismic methods, Solid Earth, 11, 1441–1455, https://doi.org/10.5194/se-11-1441-2020, 2020. a
Eken, T., Plomerová, J., Vecsey, L., Babuška, V., Roberts, R., Shomali, H., and Bodvarsson, R.: Effects of seismic anisotropy on P-velocity tomography of the Baltic Shield, Geophys. J. Int., 188, 600–612, https://doi.org/10.1111/j.1365-246X.2011.05280.x, 2012. a
Ellis, D. V. and Singer, J. M.: Well Logging for Earth Scientists, Chap. 18.5, Springer Science & Business Media, ISBN 978-1-4020-3738-2, 2007. a
Geotomographie GmbH: Equipment – Borehole Sources, https://geotomographie.de/equipment/borehole-sources, last access: 3 June 2024. a
Gerst, A. and Savage, M. K.: Seismic Anisotropy Beneath Ruapehu Volcano: A Possible Eruption Forecasting Tool, Science, 306, 1540–1543, https://doi.org/10.1126/science.1103445, 2004. a
Gischig, V. S., Giardini, D., Amann, F., Hertrich, M., Krietsch, H., Loew, S., Maurer, H., Villiger, L., Wiemer, S., Bethmann, F., Brixel, B., Doetsch, J., Doonechaly, N. G., Driesner, T., Dutler, N., Evans, K. F., Jalali, M., Jordan, D., Kittilä, A., Ma, X., Meier, P., Nejati, M., Obermann, A., Plenkers, K., Saar, M. O., Shakas, A., and Valley, B.: Hydraulic stimulation and fluid circulation experiments in underground laboratories: Stepping up the scale towards engineered geothermal systems, Geomechanics for Energy and the Environment, 24, 100175, https://doi.org/10.1016/J.GETE.2019.100175, 2020. a, b
Hellmann, S., Grab, M., Patzer, C., Bauder, A., and Maurer, H.: A borehole trajectory inversion scheme to adjust the measurement geometry for 3D travel-time tomography on glaciers, Solid Earth, 14, 805–821, https://doi.org/10.5194/se-14-805-2023, 2023. a
Heng, S., Guo, Y., Yang, C., Daemen, J. J., and Li, Z.: Experimental and theoretical study of the anisotropic properties of shale, Int. J. Rock Mech. Min., 74, 58–68, https://doi.org/10.1016/J.IJRMMS.2015.01.003, 2015. a, b
Horne, S. A.: A statistical review of mudrock elastic anisotropy, Geophys. Prospect., 61, 817–826, https://doi.org/10.1111/1365-2478.12036, 2013. a, b, c
Howarth, D.: The effect of pre-existing microcavities on mechanical rock performance in sedimentary and crystalline rocks, Int. J. Rock Mech. Min., 24, 223–233, https://doi.org/10.1016/0148-9062(87)90177-X, 1987. a
Johnson, J. H., Savage, M. K., and Townend, J.: Distinguishing between stress-induced and structural anisotropy at Mount Ruapehu volcano, New Zealand, J. Geophys. Res., 116, 12303, https://doi.org/10.1029/2011JB008308, 2011. a, b
Jordan, D.: Geological characterization of the Bedretto underground laboratory for geoenergies, Master's thesis, ETH Zurich, Geological Institute, https://doi.org/10.3929/ethz-b-000379305, 2019. a, b, c
Keller, F. and Schneider, T. R.: Geologie und Geotechnik, Schweizer Ingenieur und Architekt, 100, 512–520, 1982. a
Lee, H., Ong, S. H., Azeemuddin, M., and Goodman, H.: A wellbore stability model for formations with anisotropic rock strengths, J. Petrol. Sci. Eng., 96-97, 109–119, https://doi.org/10.1016/J.PETROL.2012.08.010, 2012. a
Li, Z. and Peng, Z.: Stress-and Structure-Induced Anisotropy in Southern California From Two Decades of Shear Wave Splitting Measurements, Geophys. Res. Lett., 44, 9607–9614, https://doi.org/10.1002/2017GL075163, 2017. a
Ma, X., Hertrich, M., Amann, F., Bröker, K., Gholizadeh Doonechaly, N., Gischig, V., Hochreutener, R., Kästli, P., Krietsch, H., Marti, M., Nägeli, B., Nejati, M., Obermann, A., Plenkers, K., Rinaldi, A. P., Shakas, A., Villiger, L., Wenning, Q., Zappone, A., Bethmann, F., Castilla, R., Seberto, F., Meier, P., Driesner, T., Loew, S., Maurer, H., Saar, M. O., Wiemer, S., and Giardini, D.: Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility, Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, 2022. a, b
Maitra, M. and Al-Attar, D.: On the stress dependence of the elastic tensor, Geophys. J. Int., 225, 378–415, https://doi.org/10.1093/gji/ggaa591, 2021. a
Maurer, H. and Green, A. G.: Potential coordinate mislocations in crosshole tomography: Results from the Grimsel test site, Switzerland, Geophysics, 62, 1696–1709, https://doi.org/10.1190/1.1444269, 1997. a, b
Menke, W.: Geophysical data analysis: Discrete inverse theory, Academic Press, Amsterdam, fourth edn., ISBN 9780128135556, 2018. a
Motra, H. B., Mager, J., Ismail, A., Wuttke, F., Rabbel, W., Köhn, D., Thorwart, M., Simonetta, C., and Costantino, N.: Determining the influence of pressure and temperature on the elastic constants of anisotropic rock samples using ultrasonic wave techniques, J. Appl. Geophys., 159, 715–730, https://doi.org/10.1016/j.jappgeo.2018.10.016, 2018. a
Nur, A. and Simmons, G.: Stress-induced velocity anisotropy in Rock: An Experimental Study, J. Geophys. Res., 74, 6667–6674, https://doi.org/10.1029/jb074i027p06667, 1969. a, b, c
Özbek, A., Gül, M., Karacan, E., and Alca, Ã.: Anisotropy effect on strengths of metamorphic rocks, Journal of Rock Mechanics and Geotechnical Engineering, 10, 164–175, https://doi.org/10.1016/J.JRMGE.2017.09.006, 2018. a, b
Palmström, A. and Strömme, B.: The Weighted Joint Density Method Leads to Improved Characterization of Jointing, in: Conference on recent advances in tunnelling technology, 1996, New Delhi, https://rockmass.net/ap/48_Palmstrom_on_Weighted_joint_method.pdf (last access: 13 May 2025), 1996. a
Plenkers, K., Reinicke, A., Obermann, A., Doonechaly, N. G., Krietsch, H., Fechner, T., Hertrich, M., Kontar, K., Maurer, H., Philipp, J., Volksdorf, M., Giardini, D., and Wiemer, S.: Multi-Disciplinary Monitoring Networks for Mesoscale Underground Experiments: Advances in the Bedretto Reservoir Project, Sensors, 23, 3315, https://doi.org/10.3390/s23063315, 2023. a
Ramamurthy, T., Rao, G. V., and Singh, J.: Engineering behaviour of phyllites, Eng. Geol., 33, 209–225, https://doi.org/10.1016/0013-7952(93)90059-L, 1993. a
Rast, M., Galli, A., Ruh, J. B., Guillong, M., and Madonna, C.: Geology along the Bedretto tunnel: kinematic and geochronological constraints on the evolution of the Gotthard Massif (Central Alps), Swiss J. Geosci., 115, 8, https://doi.org/10.1186/s00015-022-00409-w, 2022. a
Sayers, C. M.: Stress-dependent elastic anisotropy of sandstones, Geophys. Prospect., 50, 85–95, https://doi.org/10.1046/j.1365-2478.2002.00289.x, 2002. a, b
Schneider, C.: Seismic Velocity Anisotropy and Microstructural Characterization of Ductile Shear Zones in the Rotondo Granite, Master thesis, ETH Zürich, https://doi.org/10.3929/ethz-b-000710435, 2022. a, b, c
Song, I., Suh, M., Woo, Y. K., and Hao, T.: Determination of the elastic modulus set of foliated rocks from ultrasonic velocity measurements, Eng. Geol., 72, 293–308, https://doi.org/10.1016/J.ENGGEO.2003.10.003, 2004. a, b, c
Terzaghi, R. D.: Sources of Error in Jopint Surveys, Géotechnique, 15, 287–304, https://doi.org/10.1680/geot.1965.15.3.287, 1965. a
Tsvankin, I.: Anisotropic parameters and P-wave velocity for orthorhombic media, Geophysics, 62, 1292–1309, https://doi.org/10.1190/1.1444231, 1997. a
Wang, H., Peng, S., and Du, W.: Azimuthal AVO for tilted TI medium, Geophysics, 82, C21–C33, https://doi.org/10.1190/geo2015-0430.1, 2017. a
Wenning, Q. C., Madonna, C., de Haller, A., and Burg, J.-P.: Permeability and seismic velocity anisotropy across a ductile–brittle fault zone in crystalline rock, Solid Earth, 9, 683–698, https://doi.org/10.5194/se-9-683-2018, 2018. a
Short summary
Several cross-hole seismic surveys in the undisturbed Rotondo granite are used to analyze the seismic anisotropy in the Bedretto Lab, Switzerland. The P and S1 waves show a clear trend of faster velocities in the NE–SW direction and slower velocities perpendicular to it, indicating a tilted transverse isotropic velocity model. The symmetry plane is mostly aligned with the direction of maximum stress, but also the orientation of fractures is expected to influence the velocities.
Several cross-hole seismic surveys in the undisturbed Rotondo granite are used to analyze the...