Articles | Volume 16, issue 6
https://doi.org/10.5194/se-16-551-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-551-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Time changes during the last 40 years in the Solfatara magmatic–hydrothermal system (Campi Flegrei, Italy): new conceptual model and future scenarios
Luigi Marini
STEAM srl, Pisa, 56124, Italy
CNR, Istituto di Geoscienze e Georisorse, Pisa, 56124, Italy
Claudia Principe
CNR, Istituto di Geoscienze e Georisorse, Pisa, 56124, Italy
INGV – Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Napoli, 80124, Italy
CNR, Istituto di Geoscienze e Georisorse, Pisa, 56124, Italy
INGV – Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, 56125, Italy
Related authors
No articles found.
Cécile Massiot, Ludmila Adam, Eric S. Boyd, S. Craig Cary, Daniel R. Colman, Alysia Cox, Ery Hughes, Geoff Kilgour, Matteo Lelli, Domenico Liotta, Karen G. Lloyd, Tiipene Marr, David D. McNamara, Sarah D. Milicich, Craig A. Miller, Santanu Misra, Alexander R. L. Nichols, Simona Pierdominici, Shane M. Rooyakkers, Douglas R. Schmitt, Andri Stefansson, John Stix, Matthew B. Stott, Camille Thomas, Pilar Villamor, Pujun Wang, Sadiq J. Zarrouk, and the CALDERA workshop participants
Sci. Dril., 33, 67–88, https://doi.org/10.5194/sd-33-67-2024, https://doi.org/10.5194/sd-33-67-2024, 2024
Short summary
Short summary
Volcanoes where tectonic plates drift apart pose eruption and earthquake hazards. Underground waters are difficult to track. Underground microbial life is probably plentiful but unexplored. Scientists discussed the idea of drilling two boreholes in the Okataina Volcanic Centre, New Zealand, to unravel the connections between volcano, faults, geotherms, and the biosphere, also integrating mātauranga Māori (Indigenous knowledge) to assess hazards and manage resources and microbial ecosystems.
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochemistry
Evolution of fluid redox in a fault zone of the Pic de Port Vieux thrust in the Pyrenees Axial Zone (Spain)
Mapping geochemical anomalies by accounting for the uncertainty of mineralization-related elemental associations
Rare Earth element distribution on the Fuerteventura Basal Complex (Canary Islands, Spain): a geochemical and mineralogical approach
Mineralogical and elemental geochemical characteristics of Taodonggou Group mudstone in the Taibei Sag, Turpan–Hami Basin: implication for its formation mechanism
Application of lithogeochemical and pyrite trace element data for the determination of vectors to ore in the Raja Au–Co prospect, northern Finland
Influence of basement rocks on fluid evolution during multiphase deformation: the example of the Estamariu thrust in the Pyrenean Axial Zone
Spatiotemporal history of fault–fluid interaction in the Hurricane fault, western USA
Fluid–rock interactions in the shallow Mariana forearc: carbon cycling and redox conditions
Squirt flow due to interfacial water films in hydrate bearing sediments
Delphine Charpentier, Gaétan Milesi, Pierre Labaume, Ahmed Abd Elmola, Martine Buatier, Pierre Lanari, and Manuel Muñoz
Solid Earth, 15, 1065–1086, https://doi.org/10.5194/se-15-1065-2024, https://doi.org/10.5194/se-15-1065-2024, 2024
Short summary
Short summary
Understanding the fluid circulation in fault zones is essential to characterize the thermochemical evolution of hydrothermal systems in mountain ranges. The study focused on a paleo-system of the Pyrenees. Phyllosilicates permit us to constrain the evolution of temperature and redox of fluids at the scale of the fault system. A scenario is proposed and involves the circulation of a single highly reducing hydrothermal fluid (~300 °C) that evolves due to redox reactions.
Jian Wang, Renguang Zuo, and Qinghai Liu
Solid Earth, 15, 731–746, https://doi.org/10.5194/se-15-731-2024, https://doi.org/10.5194/se-15-731-2024, 2024
Short summary
Short summary
This study improves geochemical mapping by addressing the uncertainty in defining element associations. It clusters the study area by element similarity, recognizes elemental associations for each cluster, and then detects anomalies indicating underlying geological processes. This method is applied to a region in China, confirming its effectiveness and consistency with the geology. This study can enhance geochemical mapping for mineral exploration and improve geological-process understanding.
Marc Campeny, Inmaculada Menéndez, Luis Quevedo, Jorge Yepes, Ramón Casillas, Agustina Ahijado, Jorge Méndez-Ramos, and José Mangas
Solid Earth, 15, 639–656, https://doi.org/10.5194/se-15-639-2024, https://doi.org/10.5194/se-15-639-2024, 2024
Short summary
Short summary
The Basal Complex unit on Fuerteventura island comprises magmatic rocks showing significant rare Earth element (REE) concentrations with values up to 10 300 ppm REY (REEs plus yttrium). We carried out mineralogical and geochemical analyses, but additional research is needed to fully understand their distribution due to structural complexities and environmental factors.
Huan Miao, Jianying Guo, Yanbin Wang, Zhenxue Jiang, Chengju Zhang, and Chuanming Li
Solid Earth, 14, 1031–1052, https://doi.org/10.5194/se-14-1031-2023, https://doi.org/10.5194/se-14-1031-2023, 2023
Short summary
Short summary
The Taodonggou Group mudstone was deposited in a warm, humid, and hot paleoclimate with strong weathering. The parent rocks of the Taodonggou Group mudstone are felsic volcanic rocks and andesites, with weak sedimentary sorting and recycling and with well-preserved source information. The Taodonggou Group mudstone was deposited in dyoxic fresh water–brackish water in intermediate-depth or deep lakes with stable inputs of terrigenous debris but at slower deposition rates.
Sara Raič, Ferenc Molnár, Nick Cook, Hugh O'Brien, and Yann Lahaye
Solid Earth, 13, 271–299, https://doi.org/10.5194/se-13-271-2022, https://doi.org/10.5194/se-13-271-2022, 2022
Short summary
Short summary
Orogenic gold deposits in Paleoproterozoic belts in northern Finland have been explored not only for gold but because of the occurrences of economically important concentrations of base metals, especially cobalt. In this study we are testing the vectoring capacities of pyrite trace element geochemistry, combined with lithogeochemical and sulfur isotopic data in the Raja gold–cobalt prospect (northern Finland), by using multivariate statistical data analysis.
Daniel Muñoz-López, Gemma Alías, David Cruset, Irene Cantarero, Cédric M. John, and Anna Travé
Solid Earth, 11, 2257–2281, https://doi.org/10.5194/se-11-2257-2020, https://doi.org/10.5194/se-11-2257-2020, 2020
Short summary
Short summary
This study assesses the influence of basement rocks on the fluid chemistry during deformation in the Pyrenees and provides insights into the fluid regime in the NE part of the Iberian Peninsula.
Jace M. Koger and Dennis L. Newell
Solid Earth, 11, 1969–1985, https://doi.org/10.5194/se-11-1969-2020, https://doi.org/10.5194/se-11-1969-2020, 2020
Short summary
Short summary
The Hurricane fault is a major and active normal fault located in the southwestern USA. This study utilizes the geochemistry and dating of calcite veins associated with the fault to characterize ancient groundwater flow. Results show that waters moving along the fault over the last 540 000 years were a mixture of infiltrating fresh water and deep, warm salty groundwater. The formation of calcite veins may be related to ancient earthquakes, and the fault influences regional groundwater flow.
Elmar Albers, Wolfgang Bach, Frieder Klein, Catriona D. Menzies, Friedrich Lucassen, and Damon A. H. Teagle
Solid Earth, 10, 907–930, https://doi.org/10.5194/se-10-907-2019, https://doi.org/10.5194/se-10-907-2019, 2019
Short summary
Short summary
To understand the fate of carbon in subducted oceanic sediments and crust, we studied carbonate phases in rocks from the Mariana subduction zone. These show that carbon is liberated from the downgoing plate at depths less than 20 km. Some of the carbon is subsequently trapped in minerals and likely subducts to greater depths, whereas fluids carry the other part back into the ocean. Our findings imply that shallow subduction zone processes may play an important role in the deep carbon cycle.
Kathleen Sell, Beatriz Quintal, Michael Kersten, and Erik H. Saenger
Solid Earth, 9, 699–711, https://doi.org/10.5194/se-9-699-2018, https://doi.org/10.5194/se-9-699-2018, 2018
Short summary
Short summary
Sediments containing hydrates dispersed in the pore space show a characteristic seismic anomaly: a high attenuation along with increasing seismic velocities. Recent major findings from synchrotron experiments revealed the systematic presence of thin water films between quartz and gas hydrate. Our numerical studies support earlier speculation that squirt flow causes high attenuation at seismic frequencies but are based on a conceptual model different to those previously considered.
Cited articles
Abiyudo, R., Hadi, J., Cumming, W., and Marini, L.: Conceptual model assessment of vapor core geothermal system for exploration. Mt. Bromo case study, in: Proceedings of the 4th Indonesia international geothermal convention and exhibition, 10–12 August 2016, Cendrawasih Hall, Jakarta Convention Center, Indonesia, 2016.
Acocella, V.: Activating and reactivating pairs of nested collapses during caldera-forming eruptions: Campi Flegrei (Italy), Geophys. Res. Lett., 35, L17304, https://doi.org/10.1029/2008GL035078, 2008.
Ambrosio, M., Doveri, M., Fagioli, M. T., Marini, L., Principe, C., and Raco, B.: Water–rock interaction in the magmatic-hydrothermal system of Nisyros Island (Greece), J. Volcanol. Geotherm. Res., 192, 57–68, https://doi.org/10.1016/j.jvolgeores.2010.02.005, 2010.
Anderko, A. and Pitzer, K. S.: Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K, Geochim. Cosmochim. Ac., 57, 1657–1680, https://doi.org/10.1016/0016-7037(93)90105-6, 1993.
Anovitz, L. M., Labotka, T. C., Blencoe, J. G., and Horita, J.: Experimental determination of the activity-composition relations and phase equilibria of H2O-CO2-NaCl fluids at 500 °C, 500 bars, Geochim. Cosmochim. Ac., 68, 3557–3567, https://doi.org/10.1016/j.gca.2003.12.012, 2004.
Apuada, N. A. and Sigurjonsson, G. F.: The geothermal potential of Biliran Island, Philippines, in: Proceedings of the 8th Asian geothermal symposium, 73–77, 2008.
Astort, A., Trasatti, E., Caricchi, L., Polcari, M., De Martino, P., Acocella, V., and Di Vito, M. A.: Tracking the 2007–2023 magma-driven unrest at Campi Flegrei caldera (Italy), Commun. Earth Environ., 5, 506, https://doi.org/10.1038/s43247-024-01665-4, 2024.
Barberi, F., Cassano, E., La Torre, P., and Sbrana, A.: Structural evolution of Campi Flegrei caldera in light of volcanological and geophysical data, J. Volcanol. Geotherm. Res., 48, 33–49, https://doi.org/10.1016/0377-0273(91)90031-T, 1991.
Barberi, F., Bertagnini, A., Landi, P., and Principe, C.: A review on phreatic eruptions and their precursors, J. Volcanol. Geotherm. Res., 52, 231–246, https://doi.org/10.1016/0377-0273(92)90046-G, 1992.
Baron, G. and Ungemach, P.: European geothermal drilling experience-Problem areas and case studies, US-DOE Office of Energy Efficiency and Renewable Energy Geothermal Technical Program, 24 pp., 1981.
Battaglia, J., Zollo, A., Virieux, J., and Dello Iacono, D.: Merging active and passive data sets in traveltime tomography: The case study of Campi Flegrei caldera southern Italy, Geophys. Prospect., 56, 555–573, https://doi.org/10.1111/j.1365-2478.2007.00687.x, 2008.
Bevilacqua, A., Neri, A., De Martino, P., Isaia, R., Novellino, A., Tramparulo, F. D. A., and Vitale, S.: Radial interpolation of GPS and leveling data of ground deformation in a resurgent caldera: application to Campi Flegrei (Italy), J. Geod., 94, 1–27, https://doi.org/10.1007/s00190-020-01355-x, 2020.
Bonafede, M., Dragoni, M., and Quareni, F.: Displacement and stress fields produced by a centre of dilation and by a pressure source in a viscoelastic half-space: application to the study of ground deformation and seismic activity at Campi Flegrei, Italy, Geophys. J. R. Astron. Soc., 87, 455–485, https://doi.org/10.1111/j.1365-246X.1986.tb06632.x, 1986.
Bonafede, M. and Ferrari, C.: Analytical models of deformation and residual gravity changes due to a Mogi source in a viscoelastic medium, Tectonophysics, 471, 4–13, https://doi.org/10.1016/j.tecto.2008.10.006, 2009.
Brace, W. F. and Kohlstedt, D. L.: Limits on lithospheric stress imposed by laboratory experiments, J. Geophys. Res.-Sol. Ea., 85, 6248–6252, https://doi.org/10.1029/JB085iB11p06248, 1980.
Bruni, P., Chelini, W., Sbrana, A., and Verdiani, G.: Deep exploration of the S. Vito area (Pozzuoli-NA) - well S. Vito 1, in: European Geothermal Update, edited by Strub, A.S. and Ungemach, P., Proceedings of the 3rd International Seminar on the Results of EC Geothermal Energy Research, Munich, Germany, 29 November–1 December, 1983, 390–406, ISBN-13 978-9027720481, 1985.
Buono, G., Caliro, S., Paonita, A., Pappalardo, L., and Chiodini, G.: Discriminating carbon dioxide sources during volcanic unrest: The case of Campi Flegrei caldera (Italy), Geology, 51, 397–401, https://doi.org/10.1130/G50624.1, 2023.
Caliro, S., Chiodini, G., Moretti, R., Avino, R., Granieri, D., Russo, M., and Fiebig, J.: The origin of the fumaroles of La Solfatara (Campi Flegrei, south Italy), Geochim. Cosmochim. Ac., 71, 3040–3055, https://doi.org/10.1016/j.gca.2007.04.007, 2007.
Caliro, S., Chiodini, G., and Paonita, A.: Geochemical evidences of magma dynamics at Campi Flegrei (Italy), Geochim. Cosmochim. Ac., 132, 1–15, https://doi.org/10.1016/j.gca.2014.01.021, 2014.
Cardellini, C., Chiodini, G., Frondini, F., Avino, R., Bagnato, E., Caliro, S., Lelli, M., and Rosiello, A.: Monitoring diffuse volcanic degassing during volcanic unrests: the case of Campi Flegrei (Italy), Sci. Rep.-UK, 7, 6757, https://doi.org/10.1038/s41598-017-06941-2, 2017.
Capuano, P., Russo, G., Civetta, L., Orsi, G., D'Antonio, M., and Moretti, R.: The active portion of the Campi Flegrei caldera structure imaged by 3-D inversion of gravity data, Geochem. Geophy. Geosy., 14, 4681–4697, https://doi.org/10.1002/ggge.20276, 2013
Cassano, E. and La Torre, P.: Geophysics, in: Phlegrean Fields, edited by: Rosi, M. and Sbrana, A., Quaderni de “La Scientifica”, CNR, Roma, Italy, 114, vol. 9, 103–133, ISSN 0556-9664, 1987.
Cavarretta, G., Gianelli, G., Scandiffio, G., and Tecce, F.: Evolution of the Latera geothermal system II: metamorphic, hydrothermal mineral assemblages and fluid chemistry, J. Volcanol. Geotherm. Res., 26, 337–364, https://doi.org/10.1016/0377-0273(85)90063-0, 1985.
Chelini, W. and Sbrana, A.: Subsurface Geology, in: Phlegrean Fields, edited by: Rosi, M. and Sbrana, A., Quaderni de “La Scientifica”, CNR, Roma, Italy, 114, vol. 9, 94–103, ISSN 0556-9664, 1987.
Chiarabba, C. and Moretti, M.: An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp Vs tomography, Terra Nova, 18, 373–379, https://doi.org/10.1111/j.1365-3121.2006.00701.x, 2006.
Chiodini, G.: CO2 CH4 ratio in fumaroles a powerful tool to detect magma degassing episodes at quiescent volcanoes, Geophys. Res. Lett., 36, L02302, https://doi.org/10.1029/2008GL036347, 2009.
Chiodini, G. and Marini, L.: Hydrothermal gas equilibria: The H2O-H2-CO2-CO-CH4 system, Geochim. Cosmochim. Ac., 62, 2673–2687, https://doi.org/10.1016/S0016-7037(98)00181-1, 1998.
Chiodini, G., Caliro, S., Cardellini, C., Granieri, D., Avino, R., Baldini, A., Donnini, M., and Minopoli, C.: Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity, J. Geophys. Res. Sol. Ea., 115, B03205, https://doi.org/10.1029/2008JB006258, 2010.
Chiodini, G., Avino, R., Caliro, S., and Minopoli, C.: Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei), Ann. Geophys., 54, 151–160, https://doi.org/10.4401/ag-5002, 2011.
Chiodini, G., Caliro, S., De Martino, P., Avino, R., and Gherardi, F.: Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations, Geology, 40, 943–946, https://doi.org/10.1130/G33251.1, 2012.
Chiodini, G., Vandemeulebrouck, J., Caliro, S., D'Auria, L., De Martino, P., Mangiacapra, A., and Petrillo, Z.: Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera, Earth Planet. Sci. Lett., 414, 58–67, https://doi.org/10.1016/j.epsl.2015.01.012, 2015.
Chiodini, G., Paonita, A., Aiuppa, A., Costa, A., Caliro, S., De Martino, P., Acocella, V., and Vandemeulebrouck, J.: Magmas near the critical degassing pressure drive volcanic unrest towards a critical state, Nat. Commun., 7, 13712, https://doi.org/10.1038/ncomms13712, 2016.
Chiodini, G., Selva, J., Del Pezzo, E., Marsan, D., De Siena, L., D'Auria, L., Bianco, F., Caliro, S., De Martino, P., Ricciolino, P., and Petrillo, Z.: Clues on the origin of post-2000 earthquakes at Campi Flegrei caldera (Italy), Sci. Rep., 7, 4472, https://doi.org/10.1038/s41598-017-04845-9, 2017a.
Chiodini, G., Giudicepietro, F., Vandemeulebrouck, J., Aiuppa, A., Caliro, S., De Cesare, W., Tamburello, G., Avino, R., Orazi, M., and D'Auria, L.: Fumarolic tremor and geochemical signals during a volcanic unrest, Geology, 45, 1131–1134, https://doi.org/10.1130/G39447.1, 2017b.
Chiodini, G., Caliro, S., Avino, R., Bini, G., Giudicepietro, F., De Cesare, W., Ricciolino, P., Aiuppa, A., Cardellini, C., Petrillo, Z., Selva, J., Siniscalchi, A., and Tripaldi, S.: Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy), J. Volcanol. Geotherm. Res., 414, 107245, https://doi.org/10.1016/j.jvolgeores.2021.107245, 2021.
Cioni, R. and D'Amore, F.: A genetic model for the crater fumaroles of Vulcano Island (Sicily, Italy), Geothermics, 13, 375–384, https://doi.org/10.1016/0375-6505(84)90051-8, 1984.
Cioni, R., Corazza, E., and Marini, L.: The gas/steam ratio as indicator of heat transfer at the Solfatara fumaroles, Phlegraean Fields (Italy), B. Volcanol., 47, 295–302, https://doi.org/10.1007/BF01961560, 1984.
Cioni, R., Corazza, E., Fratta, M., Guidi, M., Magro, G., and Marini, L.: Geochemical precursors at Solfatara Volcano, Pozzuoli (Italy), in: Volcanic Hazards, IAVCEI Proceedings in Volcanology, edited by: Latter, J. H., 1, 384–398, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-73759-6_23, 1989.
Cumming, W.: Geothermal resource conceptual models using surface exploration data, in: Proceedings of the 34th Workshop on Geothermal Reservoir Engineering, Stanford University, California, 9–11 February 2009, SGP-TR-187, 2009.
Cumming, W.: Resource conceptual models of volcano-hosted geothermal reservoirs for exploration well targeting and resource capacity assessment: Construction, pitfalls and challenges, Geoth. Res. T., 40, 623–637, 2016.
D'Amore, F. and Panichi, C.: Evaluation of deep temperature of hydrothermal systems by a new gas-geothermometer, Geochim. Cosmochim. Ac., 44, 549–556, https://doi.org/10.1016/0016-7037(80)90051-4, 1980
D'Auria, L., Giudicepietro, F., Aquino, I., Borriello, G., Del Gaudio, C., Lo Bascio, D., Martini, M., Ricciardi, G. P., Ricciolino, P., and Ricco, C.: Repeated fluid-transfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera (1989–2010), J. Geophys. Res.-Sol. Ea., 116, B04313, https://doi.org/10.1029/2010JB007837, 2011.
Deino, A.L., Orsi, G., de Vita, S., and Piochi, M.: The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera-Italy) assessed by 40Ar 39Ar dating method, J. Volcanol. Geotherm. Res., 133, 157–170, https://doi.org/10.1016/S0377-0273(03)00396-2, 2004.
Del Gaudio, C., Aquino, I., Ricciardi, G. P., Ricco, C., and Scandone, R.: Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009, J. Volcanol. Geotherm. Res., 195, 48–56, https://doi.org/10.1016/j.jvolgeores.2010.05.014, 2010.
De Martino, P., Tammaro, U., and Obrizzo, F.: GPS time series at Campi Flegrei caldera (2000–2013), Ann. Geophys.-Italy, 57, S0213, https://doi.org/10.4401/ag-6431, 2014.
De Siena, L., Chiodini, G., Vilardo, G., Del Pezzo, E., Castellano, M., Colombelli, S., Tisato, N., and Ventura, G.: Source and dynamics of a volcanic caldera unrest: Campi Flegrei, 1983–84, Sci. Rep.-UK., 7, 8099, https://doi.org/10.1038/s41598-017-08192-7, 2017.
Di Luccio, F., Pino, N. A., Piscini, A., and Ventura, G.: Significance of the 1982–2014 Campi Flegrei seismicity: Preexisting structures, hydrothermal processes, and hazard assessment, Geophys. Res. Lett., 42, 7498–7506, https://doi.org/10.1002/2015GL064962, 2015.
Driesner, T. and Heinrich, C. A.: The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl, Geochim. Cosmochim. Ac., 71, 4880–4901, https://doi.org/10.1016/j.gca.2006.01.033, 2007.
Duan, Z., Møller, N., and Weare, J. H.: Equation of state for the NaCl-H2O-CO2 system: prediction of phase equilibria and volumetric properties, Geochim. Cosmochim. Ac., 59, 2869–2882, https://doi.org/10.1016/0016-7037(95)00182-4, 1995.
Duan, Z., Hu, J., Li, D., and Mao, S.: Densities of the CO2–H2O and CO2–H2O–NaCl systems up to 647 K and 100 MPa, Energ. Fuel., 22, 1666–1674, https://doi.org/10.1021/ef700666b, 2008.
Dubacq, B., Bickle, M. J., and Evans, K.A.: An activity model for phase equilibria in the H2O–CO2–NaCl system, Geochim. Cosmochim. Ac., 110, 229–252, https://doi.org/10.1016/j.gca.2013.02.008, 2013.
Fiebig, J., Tassi, F., D'Alessandro, W., Vaselli, O., and Woodland, A.B.: Carbon-bearing gas geothermometers for volcanic-hydrothermal systems, Chem. Geol., 351, 66–75, https://doi.org/10.1016/j.chemgeo.2013.05.006, 2013.
Fiebig, J., Hofmann, S., Tassi, F., D'Alessandro, W., Vaselli, O., and Woodland, A. B: Isotopic patterns of hydrothermal hydrocarbons emitted from Mediterranean volcanoes, Chem. Geol., 396, 152–163, https://doi.org/10.1016/j.chemgeo.2014.12.030, 2015.
Fournier, R. O.: Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment, Econ. Geol., 94, 1193–1211, https://doi.org/10.2113/gsecongeo.94.8.1193,1999.
Fournier, R. O., White, D. E., and Truesdell, A. H.: Geochemical indicators of subsurface temperature. Part I. Basic assumptions, J. Res. U.S. Geol. Surv., 2, 259–262, 1974.
Gallagher, J. S., Crovetto, R., and Sengers, J. L.: The thermodynamic behavior of the CO2-H2O system from 400 to 1000 K, up to 100 MPa and 30 % mole fraction of CO2, J. Phys. Chem. Ref. Data, 22, 431–513, https://doi.org/10.1063/1.555938, 1993.
Giaccio, B., Hajdas, I., Isaia, R., Deino, A., and Nomade, S.: High-precision 14C and 40Ar 39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka, Sci. Rep.-UK., 7, 45940, https://doi.org/10.1038/srep45940, 2017.
Giggenbach, W. F.: Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand, Appl. Geochem., 2, 143–161, https://doi.org/10.1016/0883-2927(87)90030-8, 1987.
Grant, M. A. and Bixley, P. F.: Geothermal Reservoir Engineering, Second Edition, Academic Press, Amsterdam, 359 pp., ISBN 978-0-12-383880-3, 2011.
Guidoboni, E. and Ciuccarelli, C.: The Campi Flegrei caldera: historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 AD), B. Volcanol., 73, 655–677, https://doi.org/10.1007/s00445-010-0430-3, 2011.
Henley, R. W. and Fischer, T. P.: Sulfur sequestration and redox equilibria in volcanic gases, J. Volcanol. Geotherm. Res., 414, 107181, https://doi.org/10.1016/j.jvolgeores.2021.107181, 2021.
Holland, H. D.: Some applications of thermochemical data to problems of ore deposits. II. Mineral assemblages and the composition of ore forming fluids, Econ. Geol., 60, 1101–1166, https://doi.org/10.2113/gsecongeo.60.6.1101, 1965.
INGV – Osservatorio Vesuviano, Bollettino di Sorveglianza, Campi Flegrei, Settembre 2024, https://www.ov.ingv.it/index.php/monitoraggio-e-infrastrutture/bollettini-tutti/bollett-mensili-cf/anno-2024-3/1712-bollettino-mensile-campi-flegrei-2024-11/file, last access: 15 December 2024.
Isaia, R., Marianelli, P., and Sbrana, A.: Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka BP: Implications for caldera dynamics and future eruptive scenarios, Geophys. Res. Lett., 36, L21303, https://doi.org/10.1029/2009GL040513, 2009.
Isaia, R., Vitale, S., Di Giuseppe, M. G., Iannuzzi, E., D'Assisi Tramparulo, F., and Troiano, A.: Stratigraphy, structure, and volcano-tectonic evolution of Solfatara maar-diatreme (Campi Flegrei, Italy), Geol. Soc. Am. Bull., 127, 1485–1504, https://doi.org/10.1130/B31183.1, 2015.
Judenherc, S. and Zollo, A.: The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey, J. Geophys. Res.-Sol. Ea., 109, B10312, https://doi.org/10.1029/2003JB002876, 2004.
Kerrick, D. M.: The genesis of zoned skarns in the Sierra Nevada, California, J. Petrol., 18, 144–181, https://doi.org/10.1093/petrology/18.1.144, 1977.
Kilburn, C. R., Carlino, S., Danesi, S., and Pino, N.A.: Potential for rupture before eruption at Campi Flegrei caldera, Southern Italy, Commun. Earth Environ., 4, 190, https://doi.org/10.1038/s43247-023-00842-1, 2023.
Kunz, O. and Wagner, W.: The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004, J. Chem. Eng. Data., 57, 3032–3091, https://doi.org/10.1021/je300655b, 2012.
Lemmon, E. W., Bell, I. H., Huber, M. L., and McLinden, M. O.: Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database # 69, https://webbook.nist.gov/chemistry/fluid/ (last access: 15 December 2024), 2025.
Li, J., Wei, L., and Li, X.: An improved cubic model for the mutual solubilities of CO2–CH4–H2S–brine systems to high temperature, pressure and salinity, Appl. Geochem., 54, 1–12, https://doi.org/10.1016/j.apgeochem.2014.12.015, 2015.
Lima, A., De Vivo, B., Spera, F. J., Bodnar, R. J., Milia, A., Nunziata, C., Belkin, H. E., and Cannatelli, C.: Thermodynamic model for uplift and deflation episodes (bradyseism) associated with magmatic–hydrothermal activity at the Campi Flegrei (Italy), Earth-Sci. Rev., 97, 44–58, https://doi.org/10.1016/j.earscirev.2009.10.001, 2009.
Lima, A., Bodnar, R. J., De Vivo, B., Spera, F. J., and Belkin, H. E.: Interpretation of recent unrest events (bradyseism) at Campi Flegrei, Napoli (Italy): Comparison of models based on cyclical hydrothermal events versus shallow magmatic intrusive events, Geofluids, 2021, 2000255, https://doi.org/10.1155/2021/2000255, 2021.
Lima, A., Bodnar, R. J., De Vivo, B., Spera, F. J., and Belkin, H. E.: The “breathing” Earth (la terra che respira) at Solfatara-Pisciarelli (Campi Flegrei, southern Italy) during 2005–2024: Nature's way of attenuating the effects of bradyseism through gradual and episodic release of subsurface pressure, American Mineralogist, 110, 820–825, https://doi.org/10.2138/am-2024-9516, 2025.
Lirer, L., Luongo, G., and Scandone, R.: On the volcanological evolution of Campi Flegrei, Eos T. Am. Geophys. Un., 68, 226–234, https://doi.org/10.1029/EO068i016p00226, 1987.
Lyell, C.: Principles of geology, 1st edition, vol. 1, John Murray, Albemarle-Street, London, 511 pp., https://library.si.edu/digital-library/book/principlesgeolovol1lyel (last access: 18 June 2025), 1830.
Mao, S., Hu, J., Zhang, Y., and Lü, M.: A predictive model for the PVTx properties of CO2–H2O–NaCl fluid mixture up to high temperature and high pressure, Appl. Geochem., 54, 54–64, https://doi.org/10.1016/j.apgeochem.2015.01.003, 2015.
Mather, A. E. and Franck, E. U.: Phase equilibria in the system carbon dioxide-water at elevated pressures, J. Phys. Chem., 96, 6–8, https://doi.org/10.1021/j100180a003, 1992.
Mogi, K.: Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, B. Earthq. Res. I. Tokyo, 36, 99–134, 1958.
Moretti, R., Troise, C., Sarno, F., and De Natale, G.: Caldera unrest driven by CO2-induced drying of the deep hydrothermal system, Sci. Rep., 8, 1–11, https://doi.org/10.1038/s41598-018-26610-2, 2018.
Moretti, R., De Natale, G., and Troise, C.: Hydrothermal versus magmatic: geochemical views and clues into the unrest dilemma at Campi Flegrei, edited by: De Vivo, B., Belkin, H. E., and Rolandi, G., Vesuvius, Campi Flegrei, and Campanian volcanism, Elsevier, Amsterdam, 371–406, https://doi.org/10.1016/B978-0-12-816454-9.00014-6, 2020.
Marini, L.: Geological Sequestration of Carbon Dioxide. Thermodynamics, Kinetics, and Reaction Path Modeling, Developments in Geochemistry, vol. 11, Elsevier, Amsterdam, The Netherlands, 453 pp., ISBN 9780444529503, 2007.
Marini, L. and Chiodini, G.: The role of carbon dioxide in the carbonate-evaporite geothermal systems of Tuscany and Latium (Italy), Acta Vulcanol., 5, 95–104, 1994.
Marini, L., Principe, C., and Lelli, M.: The Solfatara magmatic-hydrothermal system. Geochemistry, geothermometry and geobarometry of fumarolic fluids, Advances in Volcanology, Springer, Cham, Switzerland, 375 pp., https://doi.org/10.1007/978-3-030-98471-7, 2022.
Marini, L., Principe, C., and Lelli, M.: Closed-system magma degassing and disproportionation of SO2 revealed by changes in the concentration and δ34S value of H2S(g) in the Solfatara Fluids (Campi Flegrei, Italy), Geosciences, 15, 162, https://doi.org/10.3390/geosciences15050162, 2025.
Montanaro, C., Mick, E., Salas-Navarro, J., Caudron, C., Cronin, S. J., de Moor, J. M., Scheu, B., Stix, J., and Strehlow, K.: Phreatic and hydrothermal eruptions: from overlooked to looking over, B. Volcanol., 84, 64, https://doi.org/10.1007/s00445-022-01571-7, 2022.
Moretti, R., De Natale, G., and Troise, C.: A geochemical and geophysical reappraisal to the significance of the recent unrest at Campi Flegrei caldera (Southern Italy), Geochem. Geophy. Geosy., 18, 1244–1269, https://doi.org/10.1002/2016GC006569, 2017.
Nespoli, M., Tramelli, A., Belardinelli, M. E., and Bonafede M.: The effects of hot and pressurized fluid flow across a brittle layer on the recent seismicity and deformation in the Campi Flegrei caldera (Italy), J. Volcanol. Geotherm. Res., 443, 107930, https://doi.org/10.1016/j.jvolgeores.2023.107930, 2023.
Papale, P., Moretti, R., and Barbato, D.: The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts, Chem. Geol., 229, 78-95, https://doi.org/10.1016/j.chemgeo.2006.01.013, 2006.
Piochi, M., Mormone, A., Balassone, G., Strauss, H., Troise, C., and De Natale, G.: Native sulfur, sulfates and sulfides from the active Campi Flegrei volcano (southern Italy): Genetic environments and degassing dynamics revealed by mineralogy and isotope geochemistry, J. Volcanol. Geotherm. Res., 304, 180–193, https://doi.org/10.1016/j.jvolgeores.2015.08.017, 2015.
Principe, C.: Managing different eruptive scenarios at Phlegraean Fields and Vesuvius, EGU General Assembly 2024, Online, 14–19 April 2024, EGU24-22302, https://doi.org/10.5194/egusphere-egu24-22302, 2024.
Principe, C., Rosi, M., Sbrana, A., and Zan, L.: Geological and gravimetric map of Phlegrean Fields at the 1:15 000 scale, in: Phlegrean Fields, edited by: Rosi, M. and Sbrana, A., Quaderni de “La Scientifica”, CNR, Roma, Italy, 114, vol. 9, ISSN 0556-9664, 1987.
Ramos-Candelaria, M., Sanchez, D. R., and Salonga, N. D.: Magmatic contributions to Philippine hydrothermal systems, in: Proceedings of the world geothermal congress, Firenze, Italy, vol 2., 1337–1341, 1995.
Reinsch, T., Dobson, P., Asanuma, H., Huenges, E., Poletto, F., and Sanjuan, B.: Utilizing supercritical geothermal systems: a review of past ventures and ongoing research activities, Geotherm. Energy, 5, 16, https://doi.org/10.1186/s40517-017-0075-y, 2017.
Reyes, A. G., Giggenbach, W. F., Saleras, J. R., Salonga, N. D., and Vergara, M. C.: Petrology and geochemistry of Alto Peak, a vapor-cored hydrothermal system, Leyte Province, Philippines, Geothermics, 22, 479–519, https://doi.org/10.1016/0375-6505(93)90033-J, 1993.
Rittmann, A.: Sintesi geologica dei Campi Flegrei, Boll. Soc. Geol. Ital., 69, 117–128, 1950.
Rosi, M. and Sbrana, A.: Tectonics, in: Phlegrean Fields, edited by: Rosi, M. and Sbrana, A., Quaderni de “La Scientifica”, CNR, Roma, Italy, 114, vol. 9, 80–93, ISSN 0556-9664, 1987.
Rosi, M., Sbrana, A., and Principe, C.: The Phlegraean Fields: structural evolution, volcanic history and eruptive mechanisms, J. Volcanol. Geotherm. Res., 17, 273–288, https://doi.org/10.1016/0377-0273(83)90072-0, 1983.
Schmidt, C. and Bodnar, R. J.: Synthetic fluid inclusions: XVI. PVTX properties in the system H2O-NaCl-CO2 at elevated temperatures, pressures, and salinities, Geochim. Cosmochim. Ac., 64, 3853–3869, https://doi.org/10.1016/S0016-7037(00)00471-3, 2000.
Siniscalchi, A., Tripaldi, S., Romano, G., Chiodini, G., Improta, L., Petrillo, Z., D'Auria, L., Caliro, S., and Avino, R.: Reservoir structure and hydraulic properties of the Campi Flegrei geothermal system inferred by audiomagnetotelluric, geochemical, and seismicity study, J. Geophys. Res.-Sol. Ea., 124, 5336–5356, https://doi.org/10.1029/2018JB016514, 2019.
Smale, L.: A re-interpretation of long-term deformation at Campi Flegrei caldera, Italy and perceptions of the causes of caldera unrest, Ph.D. thesis, Department of Earth Sciences, University College London, UK, 340 pp., 2020.
Søreide, I. and Whitson, C. H.: Peng-Robinson predictions for hydrocarbons, CO2, N2, and H2S with pure water and NaCl brine, Fluid Phase Equilibr., 77, 217–240, https://doi.org/10.1016/0378-3812(92)85105-H, 1992.
Sourirajan, S. and Kennedy, G. C.: The system H2O-NaCl at elevated temperatures and pressures, Am. J. Sci., 260, 115–141, https://doi.org/10.2475/ajs.260.2.115, 1962.
Stevenson, D. S.: Physical models of fumarolic flow, J. Volcanol. Geotherm. Res., 57, 139–156, https://doi.org/10.1016/0377-0273(93)90009-G, 1993.
Sun, R. and Dubessy, J.: Prediction of vapor–liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part II: Application to H2O–NaCl and CO2–H2O–NaCl system, Geochim. Cosmochim. Ac., 88, 130–145, https://doi.org/10.1016/j.gca.2012.04.025, 2012.
Tanger IV, J. C. and Pitzer, K. S.: Thermodynamics of NaCl-H2O: A new equation of state for the near-critical region and comparisons with other equations for adjoining regions, Geochim. Cosmochim. Ac., 53, 973–987, https://doi.org/10.1016/0016-7037(89)90203-2, 1989.
Todesco, M.: Signals from the Campi Flegrei hydrothermal system: Role of a “magmatic” source of fluids, J. Geophys. Res.-Sol. Ea., 114, B05201, https://doi.org/10.1029/2008JB006134, 2009.
Tödheide, K. and Franck, E. U.: Das Zweiphasengebiet und die kritische Kurve im System Kohlendioxid–Wasser bis zu Drucken von 3500 bar, Z. Phys. Chem., 37, 387–401, https://doi.org/10.1524/zpch.1963.37.5_6.387, 1963.
Tramelli, A., Godano, C., Ricciolino, P., Giudicepietro, F., Caliro, S., Orazi, M., De Martino, P., and Chiodini, G.: Statistics of seismicity to investigate the Campi Flegrei caldera unrest, Sci. Rep.-UK, 11, 7211, https://doi.org/10.1038/s41598-021-86506-6, 2021.
Trasatti, E., Giunchi, C., and Bonafede, M.: Structural and rheological constraints on source depth and overpressure estimates at Campi Flegrei caldera, Italy, J. Volcanol. Geotherm. Res., 144, 105–118, https://doi.org/10.1016/j.jvolgeores.2004.11.019, 2005.
Truesdell, A. H. and White, D. E.: Production of superheated steam from vapor-dominated geothermal reservoirs, Geothermics, 2, 154–173, https://doi.org/10.1016/0375-6505(73)90022-9, 1973.
Turbeville, B. N.: Sidewall differentiation in an alkalic magma chamber: evidence from syenite xenoliths in tuffs of the Latera caldera, Italy, Geol. Mag., 130, 453–470, https://doi.org/10.1017/S0016756800020537, 1993.
Vanorio, T., Virieux, J., Capuano, P., and Russo, G.: Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera, J. Geophys. Res.-Sol. Ea., 110, B03201, https://doi.org/10.1029/2004JB003102, 2005.
Wagner, W. and Pruß, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data, 31, 387–535, https://doi.org/10.1063/1.1461829, 2002.
White, D. E., Muffler, L. J. P., and Truesdell, A. H.: Vapor-dominated hydrothermal systems compared with hot-water systems, Econ. Geol., 66, 75–97, https://doi.org/10.2113/gsecongeo.66.1.75, 1971.
Zollo, A., Judenherc, S., Auger, E., D'Auria, L., Virieux, J., Capuano, P., Chiarabba, C., de Franco, R., Makris, J., Michelini, A., and Musacchio, G.: Evidence for the buried rim of Campi Flegrei caldera from 3-d active seismic imaging, Geophys. Res. Lett., 30, 2002, https://doi.org/10.1029/2003GL018173, 2003.
Zollo, A., Maercklin, N., Vassallo, M., Dello Iacono, D., Virieux, J., and Gasparini, P.: Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera, Geophys. Res. Lett., 35, L12306, https://doi.org/10.1029/2008GL034242, 2008.
Short summary
We revised the conceptual model of the Solfatara magmatic–hydrothermal system and used new geothermometers and geobarometers, specifically calibrated for the Solfatara fluids, to monitor temperature, T, and total fluid pressure, P, in three distinct reservoirs at different depths, over ~40 years. The T and P changes in the intermediate reservoir (at 2.7–4 km depth) are of utmost interest because its pressurization–depressurization acts as the “engine” of bradyseism currently affecting the area.
We revised the conceptual model of the Solfatara magmatic–hydrothermal system and used new...