Articles | Volume 16, issue 9
https://doi.org/10.5194/se-16-841-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-841-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of accretionary orogenesis on subsequent rift dynamics
Geodynamic Modeling, GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
Tectonics and Geodynamics, RWTH Aachen University, Aachen, Germany
Susanne J. H. Buiter
Geodynamic Modeling, GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
Tectonics and Geodynamics, RWTH Aachen University, Aachen, Germany
Joya L. Tetreault
Geological Survey of Norway (NGU), Trondheim, Norway
Related authors
Natalie Hummel, Susanne Buiter, and Zoltán Erdős
Solid Earth, 15, 567–587, https://doi.org/10.5194/se-15-567-2024, https://doi.org/10.5194/se-15-567-2024, 2024
Short summary
Short summary
Simulations of subducting tectonic plates often use material properties extrapolated from the behavior of small rock samples in a laboratory to conditions found in the Earth. We explore several typical approaches to simulating these extrapolated material properties and show that they produce very rigid subducting plates with unrealistic dynamics. Our findings imply that subducting plates deform by additional mechanisms that are less commonly implemented in simulations.
Natalie Hummel, Susanne Buiter, and Zoltán Erdős
Solid Earth, 15, 567–587, https://doi.org/10.5194/se-15-567-2024, https://doi.org/10.5194/se-15-567-2024, 2024
Short summary
Short summary
Simulations of subducting tectonic plates often use material properties extrapolated from the behavior of small rock samples in a laboratory to conditions found in the Earth. We explore several typical approaches to simulating these extrapolated material properties and show that they produce very rigid subducting plates with unrealistic dynamics. Our findings imply that subducting plates deform by additional mechanisms that are less commonly implemented in simulations.
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023, https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
Nicolás Molnar and Susanne Buiter
Solid Earth, 14, 213–235, https://doi.org/10.5194/se-14-213-2023, https://doi.org/10.5194/se-14-213-2023, 2023
Short summary
Short summary
Progression of orogenic wedges over pre-existing extensional structures is common in nature, but deciphering the spatio-temporal evolution of deformation from the geological record remains challenging. Our laboratory experiments provide insights on how horizontal stresses are transferred across a heterogeneous crust, constrain which pre-shortening conditions can either favour or hinder the reactivatation of extensional structures, and explain what implications they have on critical taper theory.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Susanne J. H. Buiter, Sascha Brune, Derek Keir, and Gwenn Peron-Pinvidic
EGUsphere, https://doi.org/10.5194/egusphere-2022-139, https://doi.org/10.5194/egusphere-2022-139, 2022
Preprint archived
Short summary
Short summary
Continental rifts can form when and where continents are stretched. Rifts are characterised by faults, sedimentary basins, earthquakes and/or volcanism. If rifting can continue, a rift may break a continent into conjugate margins such as along the Atlantic and Indian Oceans. In some cases, however, rifting fails, such as in the West African Rift. We discuss continental rifting from inception to break-up, focussing on the processes at play, and illustrate these with several natural examples.
Hazel Gibson, Sam Illingworth, and Susanne Buiter
Geosci. Commun., 4, 437–451, https://doi.org/10.5194/gc-4-437-2021, https://doi.org/10.5194/gc-4-437-2021, 2021
Short summary
Short summary
In the spring of 2020, in response to the escalating global COVID-19 Coronavirus pandemic, the European Geosciences Union (EGU) moved its annual General Assembly online in a matter of weeks. This paper explores the feedback provided by participants who attended this experimental conference and identifies four key themes that emerged from analysis of the survey (connection, engagement, environment, and accessibility). The responses raise important questions about the format of future conferences.
Cited articles
Alappat, C., Basermann, A., Bishop, A. R., Fehske, H., Hager, G., Schenk, O., Thies, J., and Wellein, G.: A Recursive Algebraic Coloring Technique for Hardware-efficient Symmetric Sparse Matrix-vector Multiplication, ACM Trans. Parallel Comput., 7, 1–37, https://doi.org/10.1145/3399732, 2020.
Ali, M. Y. and Watts, A. B.: Subsidence history, crustal structure, and evolution of the Somaliland-Yemen conjugate margin, J. Geophys. Res.-Sol. Ea., 118, 1638–1649, https://doi.org/10.1002/jgrb.50113, 2013.
Andrés, J., Alcalde, J., Ayarza, P., Saura, E., Marzán, I., Martí, D., Martínez Catalán, J. R., Carbonell, R., Pérez-Estaún, A., García-Lobón, J. L., and Rubio, F. M.: Basement structure of the Hontomín CO2 storage site (Spain) determined by integration of microgravity and 3-D seismic data, Solid Earth, 7, 827–841, https://doi.org/10.5194/se-7-827-2016, 2016.
Bastow, I. D., Stuart, G. W., Kendall, J. M., and Ebinger, C. J.: Upper-mantle seismic structure in a region of incipient continental breakup: northern Ethiopian rift, Geophys. J. Int., 162, 479–493, https://doi.org/10.1111/j.1365-246X.2005.02666.x, 2005.
Bastow, I. D., Nyblade, A. A., Stuart, G. W., Rooney, T. O., and Benoit, M. H.: Upper mantle seismic structure beneath the Ethiopian hot spot: Rifting at the edge of the African low-velocity anomaly, Geochem. Geophy. Geosy., 9, https://doi.org/10.1029/2008gc002107, 2008.
Beaumont, C., Nguyen, M. H., Jamieson, R. A., and Ellis, S.: Crustal flow modes in large hot orogens, Geol. Soc. Spec. Publ., 268, 91–145, https://doi.org/10.1144/gsl.sp.2006.268.01.05, 2006
Behn, M. D. and Kelemen, P. B.: Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs, J. Geophys. Res.-Sol. Ea., 111, https://doi.org/10.1029/2006jb004327, 2006.
Bertrand, L., Jusseaume, J., Géraud, Y., Diraison, M., Damy, P.-C., Navelot, V., and Haffen, S.: Structural heritage, reactivation and distribution of fault and fracture network in a rifting context: Case study of the western shoulder of the Upper Rhine Graben, J. Struct. Geol., 108, 243–255, https://doi.org/10.1016/j.jsg.2017.09.006, 2018.
Bollhöfer, M., Eftekhari, A., Scheidegger, S., and Schenk, O.: Large-scale Sparse Inverse Covariance Matrix Estimation, SIAM J. Sci. Comput., 41, A380–A401, https://doi.org/10.1137/17m1147615, 2019.
Bollhöfer, M., Schenk, O., Janalik, R., Hamm, S., and Gullapalli, K.: State-of-the-Art Sparse Direct Solvers, in: Parallel Algorithms in Computational Science and Engineering, Modeling and Simulation in Science, Engineering and Technology, 3–33, https://doi.org/10.1007/978-3-030-43736-7_1, 2020.
Boniface, N. and Schenk, V.: Neoproterozoic eclogites in the Paleoproterozoic Ubendian Belt of Tanzania: Evidence for a Pan-African suture between the Bangweulu Block and the Tanzania Craton, Precambrian Res., 208–211, 72–89, https://doi.org/10.1016/j.precamres.2012.03.014, 2012.
Brune, S., Williams, S. E., Butterworth, N. P., and Muller, R. D.: Abrupt plate accelerations shape rifted continental margins, Nature, 536, 201–204, https://doi.org/10.1038/nature18319, 2016.
Buiter, S. J. H. and Torsvik, T. H.: A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures?, Gondwana Res., 26, 627–653, https://doi.org/10.1016/j.gr.2014.02.007, 2014.
Buiter, S. J. H., Brune, S., Keir, D., and Peron-Pinvidic, G.: Rifting Continents, in: Dynamics of Plate Tectonics and Mantle Convection, 459–481, https://doi.org/10.1016/b978-0-323-85733-8.00016-0, 2023.
Burkett, E. R. and Billen, M. I.: Three-dimensionality of slab detachment due to ridge-trench collision: Laterally simultaneous boudinage versus tear propagation, Geochem. Geophy. Geosy., 11, https://doi.org/10.1029/2010gc003286, 2010.
Butler, J. P. and Beaumont, C.: Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases, Earth Planet. Sc. Lett., 463, 101–117, https://doi.org/10.1016/j.epsl.2017.01.025, 2017.
Butler, J. P., Beaumont, C., and Jamieson, R. A.: Paradigm lost: Buoyancy thwarted by the strength of the Western Gneiss Region (ultra)high-pressure terrane, Norway, Lithosphere, 7, 379–407, https://doi.org/10.1130/l426.1, 2015.
Chenin, P., Jammes, S., Lavier, L. L., Manatschal, G., Picazo, S., Müntener, O., Karner, G. D., Figueredo, P. H., and Johnson, C.: Impact of Mafic Underplating and Mantle Depletion on Subsequent Rifting: A Numerical Modeling Study, Tectonics, 38, 2185–2207, https://doi.org/10.1029/2018tc005318, 2019.
Corti, G.: Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa, Earth-Sci. Rev., 96, 1–53, https://doi.org/10.1016/j.earscirev.2009.06.005, 2009.
Corti, G., van Wijk, J., Cloetingh, S., and Morley, C. K.: Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift system, Tectonics, 26, https://doi.org/10.1029/2006tc002086, 2007.
Daly, M. C.: Crustal Shear Zones in Central Africa: a Kinematic Approach to Proterozoic Tectonics, Episodes, 11, 5–11, https://doi.org/10.18814/epiiugs/1988/v11i1/003, 1988.
Daly, M. C., Chorowicz, J., and Fairhead, J. D.: Rift basin evolution in Africa: the influence of reactivated steep basement shear zones, Geol. Soc. Spec. Publ., 44, 309–334, https://doi.org/10.1144/gsl.Sp.1989.044.01.17, 1989.
Ellis, S. M., Little, T. A., Wallace, L. M., Hacker, B. R., and Buiter, S. J. H.: Feedback between rifting and diapirism can exhume ultrahigh-pressure rocks, Earth Planet. Sc. Lett., 311, 427–438, https://doi.org/10.1016/j.epsl.2011.09.031, 2011.
Erdős, Z., Huismans, R. S., Faccenna, C., and Wolf, S. G.: The Role of Subduction Interface and Upper Plate Strength on Back-Arc Extension: Application to Mediterranean Back-Arc Basins, Tectonics, 40, https://doi.org/10.1029/2021tc006795, 2021.
Erdős, Z., Buiter, S. J. H., and Tetreault, J.: The role of microcontinent strength and basal detachment in accretionary orogenesis: insights from numerical models, J. Geophys. Res.-Sol. Ea., 130, https://doi.org/10.1029/2024jb029509, 2025a.
Erdős, Z., Buiter, S., and Tetreault, J.: The influence of accretionary orogenesis on subsequent rift dynamics – Animations and data assembly, Zenodo [data set] and [code], https://doi.org/10.5281/zenodo.14980545, 2025b.
Fonseca, J.: The Sou Hills: A barrier to faulting in the central Nevada Seismic Belt, J. Geophys. Res.-Sol. Ea., 93, 475–489, https://doi.org/10.1029/JB093iB01p00475, 1988.
Fullsack, P.: An Arbitrary Lagrangian-Eulerian Formulation for Creeping Flows and Its Application in Tectonic Models, Geophys. J. Int., 120, 1–23, https://doi.org/10.1111/j.1365-246X.1995.tb05908.x, 1995.
Gleason, G. C. and Tullis, J.: A Flow Law for Dislocation Creep of Quartz Aggregates Determined with the Molten-Salt Cell, Tectonophysics, 247, 1–23, https://doi.org/10.1016/0040-1951(95)00011-B, 1995.
Glerum, A. C., Brune, S., Magnall, J. M., Weis, P., and Gleeson, S. A.: Geodynamic controls on clastic-dominated base metal deposits, Solid Earth, 15, 921–944, https://doi.org/10.5194/se-15-921-2024, 2024.
Hacker, B. R.: Eclogite formation and the Rheology, Buoyancy, Seismicity, and H2O Content of Oceanic Crust, in: Subduction Top to Bottom, edited by: Bebout, G. E., Scholl, D. W., Kirby, S. H., and Platt, J. P., Geophysical Monograph Series, 96, 337–346, https://doi.org/10.1029/GM096p0337, 1996.
Hassan, R., Williams, S. E., Gurnis, M., and Müller, D.: East African topography and volcanism explained by a single, migrating plume, Geosci. Front., 11, 1669–1680, https://doi.org/10.1016/j.gsf.2020.01.003, 2020.
Hecker, S., DeLong, S. B., and Schwartz, D. P.: Rapid strain release on the Bear River fault zone, Utah–Wyoming – The impact of preexisting structure on the rupture behavior of a new normal fault, Tectonophysics, 808, https://doi.org/10.1016/j.tecto.2021.228819, 2021.
Hirth, G. and Kohlstedt, D. L.: Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sc. Lett., 144, 93–108, https://doi.org/10.1016/0012-821x(96)00154-9, 1996
Huismans, R. S., Buiter, S. J. H., and Beaumont, C.: Effect of plastic-viscous layering and strain softening on mode selection during lithospheric extension, J. Geophys. Res.-Sol. Ea., 110, https://doi.org/10.1029/2004jb003114, 2005.
Jackson, J. A.: Reactivation of Basement Faults and Crustal Shortening in Orogenic Belts, Nature, 283, 343–346, https://doi.org/10.1038/283343a0, 1980.
Karato, S. and Wu, P.: Rheology of the upper mantle: a synthesis, Science, 260, 771–778, https://doi.org/10.1126/science.260.5109.771, 1993.
Kaus, B. J. P., Mühlhaus, H., and May, D. A.: A stabilization algorithm for geodynamic numerical simulations with a free surface, Phys. Earth Planet. In., 181, 12–20, https://doi.org/10.1016/j.pepi.2010.04.007, 2010.
Keranen, K. and Klemperer, S. L.: Discontinuous and diachronous evolution of the Main Ethiopian Rift: Implications for development of continental rifts, Earth Planet. Sc. Lett., 265, 96–111, https://doi.org/10.1016/j.epsl.2007.09.038, 2008.
Keranen, K. M., Klemperer, S. L., Julia, J., Lawrence, J. F., and Nyblade, A. A.: Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?, Geochem. Geophy. Geosy., 10, https://doi.org/10.1029/2008gc002293, 2009.
Kidane, T., Courtillot, V., Manighetti, I., Audin, L., Lahitte, P., Quidelleur, X., Gillot, P. Y., Gallet, Y., Carlut, J., and Haile, T.: New paleomagnetic and geochronologic results from Ethiopian Afar: Block rotations linked to rift overlap and propagation and determination of a ∼ 2 Ma reference pole for stable Africa, J. Geophys. Res.-Sol. Ea., 108, https://doi.org/10.1029/2001jb000645, 2003.
Kolawole, F., Phillips, T. B., Atekwana, E. A., and Jackson, C. A. L.: Structural Inheritance Controls Strain Distribution During Early Continental Rifting, Rukwa Rift, Front. Earth Sci., 9, https://doi.org/10.3389/feart.2021.707869, 2021.
Lavier, L. L. and Buck, R. W.: Half graben versus large-offset low-angle normal fault: Importance of keeping cool during normal faulting, J. Geophys. Res., 107, https://doi.org/10.1029/2001jb000513, 2002.
Lenoir, J. L., Liégeois, J. P., Theunissen, K., and Klerkx, J.: The Palaeoproterozoic Ubendian shear belt in Tanzania: geochronology and structure, J. Afr. Earth Sci., 19, 169–184, https://doi.org/10.1016/0899-5362(94)90059-0, 1994.
Manatschal, G., Lavier, L., and Chenin, P.: The role of inheritance in structuring hyperextended rift systems: Some considerations based on observations and numerical modeling, Gondwana Res., 27, 140–164, https://doi.org/10.1016/j.gr.2014.08.006, 2015.
Manatschal, G., Chenin, P., Lescoutre, R., Miró, J., Cadenas, P., Saspiturry, N., Masini, E., Chevrot, S., Ford, M., Jolivet, L., Mouthereau, F. d. r., Thinon, I., Issautier, B., Calassou, S., Tavani, S., Teixell, A., Pedreira, D., and Calassou, S.: The role of inheritance in forming rifts and rifted margins and building collisional orogens: a Biscay-Pyrenean perspective, BSGF – Earth Sciences Bulletin, 192, https://doi.org/10.1051/bsgf/2021042, 2021.
Manighetti, I., Tapponnier, P., Courtillot, V., Gruszow, S., and Gillot, P. Y.: Propagation of rifting along the Arabia-Somalia Plate Boundary: The Gulfs of Aden and Tadjoura, J. Geophys. Res.-Sol. Ea., 102, 2681–2710, https://doi.org/10.1029/96jb01185, 1997.
Manighetti, I., Tapponnier, P., Courtillot, V., Gallet, Y., Jacques, E., and Gillot, P. Y.: Strain transfer between disconnected, propagating rifts in Afar, J. Geophys. Res.-Sol. Ea., 106, 13613–13665, https://doi.org/10.1029/2000jb900454, 2001.
Mann, P. and Taira, A.: Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone, Tectonophysics, 389, 137–190, https://doi.org/10.1016/j.tecto.2003.10.024, 2004.
McConnell, R. B.: The East African Rift System, Nature, 215, 578–581, https://doi.org/10.1038/215578a0, 1967.
Molnar, N. E., Cruden, A. R., and Betts, P. G.: Unzipping continents and the birth of microcontinents, Geology, 46, 451–454, https://doi.org/10.1130/g40021.1, 2018.
Müller, R. D., Gaina, C., Roest, W. R., and Hansen, D. L.: A recipe for microcontinent formation, Geology, 29, 203–206, https://doi.org/10.1130/0091-7613(2001)029<0203:Arfmf>2.0.Co;2, 2001.
Naliboff, J. and Buiter, S. J. H.: Rift reactivation and migration during multiphase extension, Earth Planet. Sc. Lett., 421, 58–67, https://doi.org/10.1016/j.epsl.2015.03.050, 2015.
Naliboff, J. B., Buiter, S. J. H., Peron-Pinvidic, G., Osmundsen, P. T., and Tetreault, J.: Complex fault interaction controls continental rifting, Nat. Commun., 8, 1179, https://doi.org/10.1038/s41467-017-00904-x, 2017.
Nemčok, M., Sinha, S. T., Doré, A. G., Lundin, E. R., Mascle, J., and Rybár, S.: Mechanisms of microcontinent release associated with wrenching-involved continental break-up; a review, Geol. Soc. Spec. Publ., 431, 323–359, https://doi.org/10.1144/sp431.14, 2016.
Neuharth, D., Brune, S., Wrona, T., Glerum, A., Braun, J., and Yuan, X.: Evolution of Rift Systems and Their Fault Networks in Response to Surface Processes, Tectonics, 41, https://doi.org/10.1029/2021tc007166, 2022.
Pelletier, D., Fortin, A., and Camarero, R.: Are fem solutions of incompressible flows really incompressible? (or how simple flows can cause headaches!), Int. J. Numer. Meth. Fl., 9, 99–112, https://doi.org/10.1002/fld.1650090108, 1989.
Peron-Pinvidic, G., Fourel, L., and Buiter, S. J. H.: The influence of orogenic collision inheritance on rifted margin architecture: Insights from comparing numerical experiments to the Mid-Norwegian margin, Tectonophysics, 828, https://doi.org/10.1016/j.tecto.2022.229273, 2022.
Petersen, K. D. and Schiffer, C.: Wilson cycle passive margins: Control of orogenic inheritance on continental breakup, Gondwana Res., 39, 131–144, https://doi.org/10.1016/j.gr.2016.06.012, 2016.
Pysklywec, R. N. and Beaumont, C.: Intraplate tectonics: feedback between radioactive thermal weakening and crustal deformation driven by mantle lithosphere instabilities, Earth Planet. Sc. Lett., 221, 275–292, https://doi.org/10.1016/s0012-821x(04)00098-6, 2004.
Pysklywec, R. N., Beaumont, C., and Fullsack, P.: Lithospheric deformation during the early stages of continental collision: Numerical experiments and comparison with South Island, New Zealand, J. Geophys. Res.-Sol. Ea., 107, ETG 3-1–ETG 3-19, https://doi.org/10.1029/2001jb000252, 2002.
Rime, V., Foubert, A., Ruch, J., and Kidane, T.: Tectonostratigraphic evolution and significance of the Afar Depression, Earth-Sci. Rev., 244, https://doi.org/10.1016/j.earscirev.2023.104519, 2023.
Ring, U.: The influence of preexisting structure on the evolution of the Cenozoic Malawi rift (East African rift system), Tectonics, 13, 313–326, https://doi.org/10.1029/93tc03188, 2010.
Rosenbaum, G., Gasparon, M., Lucente, F. P., Peccerillo, A., and Miller, M. S.: Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism, Tectonics, 27, https://doi.org/10.1029/2007tc002143, 2008.
Rowland, J. V. and Sibson, R. H.: Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand, Geofluids, 4, 259–283, https://doi.org/10.1111/j.1468-8123.2004.00091.x, 2004.
Rybacki, E., Gottschalk, M., Wirth, R., and Dresen, G.: Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates, J. Geophys. Res.-Sol. Ea., 111, https://doi.org/10.1029/2005jb003663, 2006.
Salazar-Mora, C. A. and Sacek, V.: Effects of Tectonic Quiescence Between Orogeny and Rifting, Tectonics, 42, https://doi.org/10.1029/2022tc007492, 2023.
Salazar-Mora, C. A., Huismans, R. S., Fossen, H., and Egydio-Silva, M.: The Wilson Cycle and Effects of Tectonic Structural Inheritance on Rifted Passive Margin Formation, Tectonics, 37, 3085–3101, https://doi.org/10.1029/2018tc004962, 2018.
Samsu, A., Micklethwaite, S., Williams, J. N., Fagereng, Å., and Cruden, A. R.: Structural inheritance in amagmatic rift basins: Manifestations and mechanisms for how pre-existing structures influence rift-related faults, Earth-Sci. Rev., 246, https://doi.org/10.1016/j.earscirev.2023.104568, 2023.
Schubert, G. and Sandwell, D.: Crustal volumes of the continents and of oceanic and continental submarine plateaus, Earth Planet. Sc. Lett., 92, 234–246, https://doi.org/10.1016/0012-821x(89)90049-6, 1989.
Sternai, P.: Surface processes forcing on extensional rock melting, Sci. Rep., 10, 7711, https://doi.org/10.1038/s41598-020-63920-w, 2020.
Tavani, S., Granado, P., Corradetti, A., Camanni, G., Vignaroli, G., Manatschal, G., Mazzoli, S., Muñoz, J. A., and Parente, M.: Rift inheritance controls the switch from thin- to thick-skinned thrusting and basal décollement re-localization at the subduction-to-collision transition, GSA Bull., 133, 2157–2170, https://doi.org/10.1130/b35800.1, 2021.
Tetreault, J. L. and Buiter, S. J. H.: Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones, J. Geophys. Res.-Sol. Ea., 117, https://doi.org/10.1029/2012jb009316, 2012.
Tetreault, J. L. and Buiter, S. J. H.: Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments, Solid Earth, 5, 1243–1275, https://doi.org/10.5194/se-5-1243-2014, 2014.
Tetreault, J. L. and Buiter, S. J. H.: The influence of extension rate and crustal rheology on the evolution of passive margins from rifting to break-up, Tectonophysics, 746, 155–172, https://doi.org/10.1016/j.tecto.2017.08.029, 2018.
Thomas, W. A.: Tectonic inheritance at a continental margin, GSA Today, 16, https://doi.org/10.1130/1052-5173(2006)016[4:Tiaacm]2.0.Co;2, 2006.
Torsvik, T. H., Amundsen, H., Hartz, E. H., Corfu, F., Kusznir, N., Gaina, C., Doubrovine, P. V., Steinberger, B., Ashwal, L. D., and Jamtveit, B.: A Precambrian microcontinent in the Indian Ocean, Nat. Geosci., 6, 223–227, https://doi.org/10.1038/ngeo1736, 2013.
van Hunen, J. and Allen, M. B.: Continental collision and slab break-off: A comparison of 3-D numerical models with observations, Earth Planet. Sc. Lett., 302, 27–37, https://doi.org/10.1016/j.epsl.2010.11.035, 2011.
van Wijk, J. W. and Cloetingh, S. A. P. L.: Basin migration caused by slow lithospheric extension, Earth Planet. Sc. Lett., 198, 275–288, https://doi.org/10.1016/s0012-821x(02)00560-5, 2002.
Vasey, D. A., Naliboff, J. B., Cowgill, E., Brune, S., Glerum, A., and Zwaan, F.: Impact of rift history on the structural style of intracontinental rift-inversion orogens, Geology, 52, 429–434, https://doi.org/10.1130/g51489.1, 2024.
Warren, C. J., Beaumont, C., and Jamieson, R. A.: Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision, Earth Planet. Sc. Lett., 267, 129–145, https://doi.org/10.1016/j.epsl.2007.11.025, 2008.
Wedmore, L. N. J., Williams, J. N., Biggs, J., Fagereng, Å., Mphepo, F., Dulanya, Z., Willoughby, J., Mdala, H., and Adams, B. A.: Structural inheritance and border fault reactivation during active early-stage rifting along the Thyolo fault, Malawi, J. Struct. Geol., 139, https://doi.org/10.1016/j.jsg.2020.104097, 2020.
Whittaker, J. M., Williams, S. E., Halpin, J. A., Wild, T. J., Stilwell, J. D., Jourdan, F., and Daczko, N. R.: Eastern Indian Ocean microcontinent formation driven by plate motion changes, Earth Planet. Sc. Lett., 454, 203–212, https://doi.org/10.1016/j.epsl.2016.09.019, 2016.
Wilks, K. R. and Carter, N. L.: Rheology of some continental lower crustal rocks, Tectonophysics, 182, 57–77, https://doi.org/10.1016/0040-1951(90)90342-6, 1990.
Wilson, T. J.: Did the Atlantic close and then re-open?, Nature, 211, 676–681, 1966.
Wolf, S. G. and Huismans, R. S.: Mountain Building or Backarc Extension in Ocean-Continent Subduction Systems: A Function of Backarc Lithospheric Strength and Absolute Plate Velocities, J. Geophys. Res.-Sol. Ea., 124, 7461–7482, https://doi.org/10.1029/2018jb017171, 2019.
Yeomans, C., Shail, R., and Eyre, M.: The importance of tectonic inheritance and reactivation in geothermal energy exploration for EGS resources in SW England, World Geothermal Congress 2020, 2021.
Yoshioka, S. and Wortel, M. J. R.: Three-dimensional numerical modeling of detachment of subducted lithosphere, J. Geophys. Res.-Sol. Ea., 100, 20223–20244, https://doi.org/10.1029/94jb01258, 1995.
Zwaan, F., Brune, S., Glerum, A. C., Vasey, D. A., Naliboff, J. B., Manatschal, G., and Gaucher, E. C.: Rift-inversion orogens are potential hot spots for natural H(2) generation, Sci. Adv., 11, eadr3418, https://doi.org/10.1126/sciadv.adr3418, 2025.
Short summary
We used computer models to study how mountains formed by the collision of tectonic plates can later affect the breakup of these same plates. Our results show that in large, warm mountain belts, new faults form due to the orogen being weak overall, while in smaller, colder belts, breakup follows old fault zones. Microcontinents that were accreted during collision can create new continental fragments during extension. These findings help explain how past geological events shape continent margins.
We used computer models to study how mountains formed by the collision of tectonic plates can...