Articles | Volume 5, issue 2
https://doi.org/10.5194/se-5-1243-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/se-5-1243-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments
J. L. Tetreault
CORRESPONDING AUTHOR
Geodynamics Team, Geological Survey of Norway (NGU), Trondheim, Norway
S. J. H. Buiter
Geodynamics Team, Geological Survey of Norway (NGU), Trondheim, Norway
Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
Viewed
Total article views: 5,572 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Jul 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,596 | 2,622 | 354 | 5,572 | 232 | 241 |
- HTML: 2,596
- PDF: 2,622
- XML: 354
- Total: 5,572
- BibTeX: 232
- EndNote: 241
Total article views: 4,575 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Dec 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,211 | 2,039 | 325 | 4,575 | 220 | 231 |
- HTML: 2,211
- PDF: 2,039
- XML: 325
- Total: 4,575
- BibTeX: 220
- EndNote: 231
Total article views: 997 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Jul 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
385 | 583 | 29 | 997 | 12 | 10 |
- HTML: 385
- PDF: 583
- XML: 29
- Total: 997
- BibTeX: 12
- EndNote: 10
Cited
55 citations as recorded by crossref.
- Three stages to form a large batholith after terrane accretion – An example from the Svecofennian orogen K. Nikkilä et al. 10.1016/j.precamres.2016.06.018
- Sedimentary Record of Arc‐Continent Collision Along Mesozoic SW North America (Siuna Belt, Nicaragua) G. Andjić et al. 10.1029/2019TC005741
- Geodynamic model and geological effect of seamount accretion in West Junggar, NW China G. Yang et al. 10.1080/00206814.2019.1686661
- Subduction initiation triggered by collision: A review based on examples and models G. Yang 10.1016/j.earscirev.2022.104129
- Geodynamic Evolution of Intra-Oceanic Island‒Arc Systems: Expansive (Izu-Bonin‒Marian), Accretionary (Nemuro‒Olutorsky) and Stationary (Aleutian) Types V. Chekhovich & A. Sukhov 10.31857/S0016853X23040045
- Makran ophiolitic basalts (SE Iran) record Late Cretaceous Neotethys plume-ridge interaction R. Esmaeili et al. 10.1080/00206814.2019.1658232
- Collision of the Caribbean Large Igneous Province with the Americas: Earliest evidence from the forearc of Costa Rica G. Andjić et al. 10.1130/B35037.1
- How Aseismic Ridges Modify the Dynamics of Free Subduction: A 3-D Numerical Investigation L. Suchoy et al. 10.3389/feart.2022.852742
- About right: references in open-access EGU (European Geosciences Union) journals A. Pozzer 10.5194/gc-4-453-2021
- Timing of rifting of the Dongkaco microcontinent (Central Tibet) and implications for Neo-Tethyan evolution A. Ma et al. 10.1016/j.palaeo.2024.112054
- When plateau meets subduction zone: A review of numerical models Z. Liu et al. 10.1016/j.earscirev.2021.103556
- Structure of the Ecuadorian forearc from the joint inversion of receiver functions and ambient noise surface waves C. Koch et al. 10.1093/gji/ggaa237
- Cretaceous to Miocene magmatism, sedimentation, and exhumation within the Alaska Range suture zone: A polyphase reactivated terrane boundary J. Trop et al. 10.1130/GES02014.1
- Continental collision with a sandwiched accreted terrane: Insights into Himalayan–Tibetan lithospheric mantle tectonics? S. Kelly et al. 10.1016/j.epsl.2016.08.039
- Arc-crustal compression and its effects on the underlying mantle geometry as elucidated from the potential field signatures of the buckled Cretaceous Cebu lithosphere, Philippines N. Parcutela et al. 10.1016/j.tecto.2022.229341
- A geological map of the Scotia Sea area constrained by bathymetry, geological data, geophysical data and seismic tomography models from the deep mantle A. Beniest & W. Schellart 10.1016/j.earscirev.2020.103391
- Accretionary models for the Neoproterozoic evolution of the Borborema Province: advances and open questions L. Santos & F. Caxito 10.1590/2317-4889202120200104
- Forearc Crustal Structure of Ecuador Revealed by Gravity and Aeromagnetic Anomalies and Their Geodynamic Implications C. Aizprua et al. 10.2113/2020/2810692
- Can subduction initiation at a transform fault be spontaneous? D. Arcay et al. 10.5194/se-11-37-2020
- Seismic Imaging of the Subducted Australian Continental Margin Beneath Timor and the Banda Arc Collision Zone P. Zhang & M. Miller 10.1029/2020GL089632
- Numerical modeling of induced subduction initiation: Insights from the oceanic plateau accretion B. Sun et al. 10.1016/j.tecto.2023.230108
- Chapter 5 Regional tectonics, structure and evolution of the Andaman–Nicobar Islands from ophiolite formation and obduction to collision and back-arc spreading C. Morley & M. Searle 10.1144/M47.5
- Observations and modeling of flat subduction and its geological effects Z. Yan et al. 10.1007/s11430-019-9575-2
- Seamount subduction and accretion in West Junggar, NW China: A review G. Yang et al. 10.1016/j.geogeo.2022.100074
- Thermal architecture of the Salmon River suture zone, Idaho, USA: Implications for the structural evolution of a ductile accretionary complex during arc-continent collision S. Long et al. 10.1130/GES02621.1
- The effect of seamount chain subduction and accretion G. Yang et al. 10.1002/gj.4435
- Growth of primordial continents by cycles of oceanic lithosphere subductions: Evidence from tilted seismic anisotropy supported by geochemical and petrological findings V. Babuška & J. Plomerová 10.1016/j.sesci.2019.12.003
- Early Paleozoic S-type granites as the basement of Southern Qiantang Terrane, Tibet W. Dan et al. 10.1016/j.lithos.2020.105395
- Igneous rocks related to porphyry Cu‐Au mineralization at the Dizon mine, Philippines W. Midea et al. 10.1111/rge.12273
- Oceanic mafic magmatism in the Siletz terrane, NW North America: Fragments of an Eocene oceanic plateau? B. Phillips et al. 10.1016/j.lithos.2017.01.005
- Nature and evolution of the Precambrian lithosphere beneath the Arabian Shield of Saudi Arabia deduced from a suite of xenoliths from the Harrat Hutaymah Cenozoic volcanic field A. Ahmed et al. 10.1016/j.lithos.2019.06.012
- Self-replicating subduction zone initiation by polarity reversal J. Almeida et al. 10.1038/s43247-022-00380-2
- The Role of Crustal Radiogenic Heating in Ultra-High Temperature Metamorphism of Greater Himalayan Crystalline Complex: Insights from Numerical Modeling L. Zhang et al. 10.2139/ssrn.4167529
- Enhanced arc magmatic productivity of the Western Pacific island arcs deduced from gravity-derived arc crustal growth rates N. Parcutela et al. 10.3389/feart.2023.1107833
- The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision A. Rodríguez Corcho et al. 10.1029/2022GC010386
- Role of crustal radiogenic heating in ultra-high temperature metamorphism of the Greater Himalayan Crystalline complex: Phase equilibrium and numerical modelling Y. Fan et al. 10.1016/j.gr.2023.09.002
- Petrogenesis of Siletzia: The world's youngest oceanic plateau T. Ciborowski et al. 10.1016/j.ringeo.2020.100004
- Ophiolitic rocks and plagiorhyolites from SW Ecuador (Cerro San José): petrology, geochemistry and tectonic setting E. Berrezueta et al. 10.1007/s41513-020-00154-9
- Deep Structure of the North Natal Valley (Mozambique) Using Combined Wide‐Angle and Reflection Seismic Data A. Leprêtre et al. 10.1029/2020JB021171
- The Jan Mayen microplate complex and the Wilson cycle C. Schiffer et al. 10.1144/SP470.2
- Is plate tectonics a post-Archean phenomenon? A petrological perspective M. Brown et al. 10.1144/jgs2024-091
- Arc accretion and crustal reworking from late Archean to Neoproterozoic in Northeast Brazil A. Ferreira et al. 10.1038/s41598-020-64688-9
- Bathymetric Highs Control the Along-Strike Variations of the Manila Trench: 2D Numerical Modeling L. Ma et al. 10.3389/feart.2022.943147
- The Formation of Continental Fragments in Subduction Settings: The Importance of Structural Inheritance and Subduction System Dynamics J. van den Broek et al. 10.1029/2019JB018370
- The fate of oceanic plateaus: subduction versus accretion Z. Yan et al. 10.1093/gji/ggac266
- Seismic velocity structure beneath the Western Solomon Islands from the joint inversion of receiver functions and surface-wave dispersion curves C. Ku et al. 10.1016/j.jseaes.2020.104378
- Permian to recent tectonic evolution of the Palaeotethys suture zone in NE Iran M. Ershadinia et al. 10.1016/j.jseaes.2023.105658
- Reconstruction of the East Africa and Antarctica continental margins L. Nguyen et al. 10.1002/2015JB012776
- The odyssey of Tibetan Plateau accretion prior to Cenozoic India-Asia collision: Probing the Mesozoic tectonic evolution of the Bangong-Nujiang Suture Y. Peng et al. 10.1016/j.earscirev.2020.103376
- Caribbean plate tilted and actively dragged eastwards by low-viscosity asthenospheric flow Y. Chen et al. 10.1038/s41467-021-21723-1
- Geochemical and geochronological evidence for a Middle Permian oceanic plateau fragment in the Paleo-Tethyan suture zone of NE Iran G. Topuz et al. 10.1007/s00410-018-1506-x
- The Geodynamic Evolution of Intraoceanic Island‒Arc Systems: Expansive (Izu–Bonin‒Mariana), Accretionary (Nemur‒Olutor) and Stationary (Aleutian) Types V. Chekhovich & A. Sukhov 10.1134/S0016852123040040
- Accretion of oceanic plateaus at continental margins: Numerical modeling J. Tao et al. 10.1016/j.gr.2019.11.015
- The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust Z. Zhang et al. 10.1016/j.gr.2019.07.010
- Neoarchean microblock amalgamation in southern India: Evidence from the Nallamalai Suture Zone S. Li et al. 10.1016/j.precamres.2018.05.017
54 citations as recorded by crossref.
- Three stages to form a large batholith after terrane accretion – An example from the Svecofennian orogen K. Nikkilä et al. 10.1016/j.precamres.2016.06.018
- Sedimentary Record of Arc‐Continent Collision Along Mesozoic SW North America (Siuna Belt, Nicaragua) G. Andjić et al. 10.1029/2019TC005741
- Geodynamic model and geological effect of seamount accretion in West Junggar, NW China G. Yang et al. 10.1080/00206814.2019.1686661
- Subduction initiation triggered by collision: A review based on examples and models G. Yang 10.1016/j.earscirev.2022.104129
- Geodynamic Evolution of Intra-Oceanic Island‒Arc Systems: Expansive (Izu-Bonin‒Marian), Accretionary (Nemuro‒Olutorsky) and Stationary (Aleutian) Types V. Chekhovich & A. Sukhov 10.31857/S0016853X23040045
- Makran ophiolitic basalts (SE Iran) record Late Cretaceous Neotethys plume-ridge interaction R. Esmaeili et al. 10.1080/00206814.2019.1658232
- Collision of the Caribbean Large Igneous Province with the Americas: Earliest evidence from the forearc of Costa Rica G. Andjić et al. 10.1130/B35037.1
- How Aseismic Ridges Modify the Dynamics of Free Subduction: A 3-D Numerical Investigation L. Suchoy et al. 10.3389/feart.2022.852742
- About right: references in open-access EGU (European Geosciences Union) journals A. Pozzer 10.5194/gc-4-453-2021
- Timing of rifting of the Dongkaco microcontinent (Central Tibet) and implications for Neo-Tethyan evolution A. Ma et al. 10.1016/j.palaeo.2024.112054
- When plateau meets subduction zone: A review of numerical models Z. Liu et al. 10.1016/j.earscirev.2021.103556
- Structure of the Ecuadorian forearc from the joint inversion of receiver functions and ambient noise surface waves C. Koch et al. 10.1093/gji/ggaa237
- Cretaceous to Miocene magmatism, sedimentation, and exhumation within the Alaska Range suture zone: A polyphase reactivated terrane boundary J. Trop et al. 10.1130/GES02014.1
- Continental collision with a sandwiched accreted terrane: Insights into Himalayan–Tibetan lithospheric mantle tectonics? S. Kelly et al. 10.1016/j.epsl.2016.08.039
- Arc-crustal compression and its effects on the underlying mantle geometry as elucidated from the potential field signatures of the buckled Cretaceous Cebu lithosphere, Philippines N. Parcutela et al. 10.1016/j.tecto.2022.229341
- A geological map of the Scotia Sea area constrained by bathymetry, geological data, geophysical data and seismic tomography models from the deep mantle A. Beniest & W. Schellart 10.1016/j.earscirev.2020.103391
- Accretionary models for the Neoproterozoic evolution of the Borborema Province: advances and open questions L. Santos & F. Caxito 10.1590/2317-4889202120200104
- Forearc Crustal Structure of Ecuador Revealed by Gravity and Aeromagnetic Anomalies and Their Geodynamic Implications C. Aizprua et al. 10.2113/2020/2810692
- Can subduction initiation at a transform fault be spontaneous? D. Arcay et al. 10.5194/se-11-37-2020
- Seismic Imaging of the Subducted Australian Continental Margin Beneath Timor and the Banda Arc Collision Zone P. Zhang & M. Miller 10.1029/2020GL089632
- Numerical modeling of induced subduction initiation: Insights from the oceanic plateau accretion B. Sun et al. 10.1016/j.tecto.2023.230108
- Chapter 5 Regional tectonics, structure and evolution of the Andaman–Nicobar Islands from ophiolite formation and obduction to collision and back-arc spreading C. Morley & M. Searle 10.1144/M47.5
- Observations and modeling of flat subduction and its geological effects Z. Yan et al. 10.1007/s11430-019-9575-2
- Seamount subduction and accretion in West Junggar, NW China: A review G. Yang et al. 10.1016/j.geogeo.2022.100074
- Thermal architecture of the Salmon River suture zone, Idaho, USA: Implications for the structural evolution of a ductile accretionary complex during arc-continent collision S. Long et al. 10.1130/GES02621.1
- The effect of seamount chain subduction and accretion G. Yang et al. 10.1002/gj.4435
- Growth of primordial continents by cycles of oceanic lithosphere subductions: Evidence from tilted seismic anisotropy supported by geochemical and petrological findings V. Babuška & J. Plomerová 10.1016/j.sesci.2019.12.003
- Early Paleozoic S-type granites as the basement of Southern Qiantang Terrane, Tibet W. Dan et al. 10.1016/j.lithos.2020.105395
- Igneous rocks related to porphyry Cu‐Au mineralization at the Dizon mine, Philippines W. Midea et al. 10.1111/rge.12273
- Oceanic mafic magmatism in the Siletz terrane, NW North America: Fragments of an Eocene oceanic plateau? B. Phillips et al. 10.1016/j.lithos.2017.01.005
- Nature and evolution of the Precambrian lithosphere beneath the Arabian Shield of Saudi Arabia deduced from a suite of xenoliths from the Harrat Hutaymah Cenozoic volcanic field A. Ahmed et al. 10.1016/j.lithos.2019.06.012
- Self-replicating subduction zone initiation by polarity reversal J. Almeida et al. 10.1038/s43247-022-00380-2
- The Role of Crustal Radiogenic Heating in Ultra-High Temperature Metamorphism of Greater Himalayan Crystalline Complex: Insights from Numerical Modeling L. Zhang et al. 10.2139/ssrn.4167529
- Enhanced arc magmatic productivity of the Western Pacific island arcs deduced from gravity-derived arc crustal growth rates N. Parcutela et al. 10.3389/feart.2023.1107833
- The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision A. Rodríguez Corcho et al. 10.1029/2022GC010386
- Role of crustal radiogenic heating in ultra-high temperature metamorphism of the Greater Himalayan Crystalline complex: Phase equilibrium and numerical modelling Y. Fan et al. 10.1016/j.gr.2023.09.002
- Petrogenesis of Siletzia: The world's youngest oceanic plateau T. Ciborowski et al. 10.1016/j.ringeo.2020.100004
- Ophiolitic rocks and plagiorhyolites from SW Ecuador (Cerro San José): petrology, geochemistry and tectonic setting E. Berrezueta et al. 10.1007/s41513-020-00154-9
- Deep Structure of the North Natal Valley (Mozambique) Using Combined Wide‐Angle and Reflection Seismic Data A. Leprêtre et al. 10.1029/2020JB021171
- The Jan Mayen microplate complex and the Wilson cycle C. Schiffer et al. 10.1144/SP470.2
- Is plate tectonics a post-Archean phenomenon? A petrological perspective M. Brown et al. 10.1144/jgs2024-091
- Arc accretion and crustal reworking from late Archean to Neoproterozoic in Northeast Brazil A. Ferreira et al. 10.1038/s41598-020-64688-9
- Bathymetric Highs Control the Along-Strike Variations of the Manila Trench: 2D Numerical Modeling L. Ma et al. 10.3389/feart.2022.943147
- The Formation of Continental Fragments in Subduction Settings: The Importance of Structural Inheritance and Subduction System Dynamics J. van den Broek et al. 10.1029/2019JB018370
- The fate of oceanic plateaus: subduction versus accretion Z. Yan et al. 10.1093/gji/ggac266
- Seismic velocity structure beneath the Western Solomon Islands from the joint inversion of receiver functions and surface-wave dispersion curves C. Ku et al. 10.1016/j.jseaes.2020.104378
- Permian to recent tectonic evolution of the Palaeotethys suture zone in NE Iran M. Ershadinia et al. 10.1016/j.jseaes.2023.105658
- Reconstruction of the East Africa and Antarctica continental margins L. Nguyen et al. 10.1002/2015JB012776
- The odyssey of Tibetan Plateau accretion prior to Cenozoic India-Asia collision: Probing the Mesozoic tectonic evolution of the Bangong-Nujiang Suture Y. Peng et al. 10.1016/j.earscirev.2020.103376
- Caribbean plate tilted and actively dragged eastwards by low-viscosity asthenospheric flow Y. Chen et al. 10.1038/s41467-021-21723-1
- Geochemical and geochronological evidence for a Middle Permian oceanic plateau fragment in the Paleo-Tethyan suture zone of NE Iran G. Topuz et al. 10.1007/s00410-018-1506-x
- The Geodynamic Evolution of Intraoceanic Island‒Arc Systems: Expansive (Izu–Bonin‒Mariana), Accretionary (Nemur‒Olutor) and Stationary (Aleutian) Types V. Chekhovich & A. Sukhov 10.1134/S0016852123040040
- Accretion of oceanic plateaus at continental margins: Numerical modeling J. Tao et al. 10.1016/j.gr.2019.11.015
- The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust Z. Zhang et al. 10.1016/j.gr.2019.07.010
1 citations as recorded by crossref.
Saved (final revised paper)
Saved (preprint)
Discussed (final revised paper)
Latest update: 21 Nov 2024
Short summary
Continents are composed of a collage of accreted terranes: tectonically sutured crustal units of various origins. This review covers the cycle of terrane accretion from the original entity (modern-day oceanic island arcs, oceanic plateaus, submarine ridges, seamounts, continental fragments, and microcontinents) to present-day examples of terrane accretion to finally allochthonous accreted terranes.
Continents are composed of a collage of accreted terranes: tectonically sutured crustal units of...