Articles | Volume 8, issue 2
https://doi.org/10.5194/se-8-361-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/se-8-361-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Precise age for the Permian–Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age–depth modeling
Björn Baresel
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Geneva, Geneva, 1205, Switzerland
Hugo Bucher
Paleontological Institute and Museum, University of Zurich, Zurich, 8006, Switzerland
Morgane Brosse
Paleontological Institute and Museum, University of Zurich, Zurich, 8006, Switzerland
Fabrice Cordey
Laboratoire de Géologie de Lyon, CNRS-UMR 5265, Université Claude Bernard Lyon 1, Villeurbanne, 69622, France
Kuang Guodun
Guangxi Bureau of Geology and Mineral Resources, Nanning, 530023, China
Urs Schaltegger
Department of Earth Sciences, University of Geneva, Geneva, 1205, Switzerland
Related authors
No articles found.
Dawid Szymanowski, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Blair Schoene, Urs Schaltegger, Mark D. Schmitz, Ryan B. Ickert, Cyril Chelle-Michou, Kevin R. Chamberlain, James L. Crowley, Joshua H. F. L. Davies, Michael P. Eddy, Sean P. Gaynor, Alexandra Käßner, Michael T. Mohr, André N. Paul, Jahan Ramezani, Simon Tapster, Marion Tichomirowa, Albrecht von Quadt, and Corey J. Wall
EGUsphere, https://doi.org/10.5194/egusphere-2025-1001, https://doi.org/10.5194/egusphere-2025-1001, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
We present the first community evaluation of the reproducibility of U–Pb zircon geochronology by ID-TIMS. Eleven labs in the experiment analysed aliquots of the same, homogenised, pre-spiked solution of natural zircon. This removed geological bias inherent to using natural zircon grain populations and allowed focussing the study on final lab preparation and mass spectrometry. We discuss remaining sources of inter-lab bias and propose areas of improvement of analytical methods.
André Navin Paul, Anders Lindskog, and Urs Schaltegger
Geochronology, 6, 325–335, https://doi.org/10.5194/gchron-6-325-2024, https://doi.org/10.5194/gchron-6-325-2024, 2024
Short summary
Short summary
The “Likhall” bed helps to constrain the timing of increased meteorite bombardment of the Earth during the Ordovician period. It is important to understand the timing of this meteorite bombardment when attempting to correlate it with biodiversity changes during the Ordovician period. Calibrating a good age for the “Likhall” bed is, however, challenging and benefited in this study from advances in sample preparation.
Luis Lena, Rafael López-Martínez, Marina Lescano, Beatriz Aguire-Urreta, Andrea Concheyro, Verónica Vennari, Maximiliano Naipauer, Elias Samankassou, Márcio Pimentel, Victor A. Ramos, and Urs Schaltegger
Solid Earth, 10, 1–14, https://doi.org/10.5194/se-10-1-2019, https://doi.org/10.5194/se-10-1-2019, 2019
Short summary
Short summary
This paper investigates the numerical age of the J–K boundary that remains one of the last main Phanerozoic system boundaries without an adequate constraint by adequate radioisotopic ages. Here we find that there is potentially 4 Myr of difference between the current age of the J–K boundary and our data.
Related subject area
Geochronology
Insights into the tectonic evolution of the Svecofennian orogeny based on in situ Lu–Hf dating of garnet and apatite from Olkiluoto, southwestern Finland
Uplift and denudation history of the Ellsworth Mountains: insights from low-temperature thermochronology
Thermal history of the East European Platform margin in Poland based on apatite and zircon low-temperature thermochronology
Tectonic exhumation of the Central Alps recorded by detrital zircon in the Molasse Basin, Switzerland
Tracking geothermal anomalies along a crustal fault using (U − Th)∕He apatite thermochronology and rare-earth element (REE) analyses: the example of the Têt fault (Pyrenees, France)
Dating tectonic activity in the Lepontine Dome and Rhone-Simplon Fault regions through hydrothermal monazite-(Ce)
Temporospatial variation in the late Mesozoic volcanism in southeast China
Geochronological and thermometric evidence of unusually hot fluids in an Alpine fissure of Lauzière granite (Belledonne, Western Alps)
High-precision U–Pb ages in the early Tithonian to early Berriasian and implications for the numerical age of the Jurassic–Cretaceous boundary
Jon Engström, Kathryn Cutts, Stijn Glorie, Esa Heilimo, Ester M. Jolis, and Radoslaw M. Michallik
Solid Earth, 16, 97–117, https://doi.org/10.5194/se-16-97-2025, https://doi.org/10.5194/se-16-97-2025, 2025
Short summary
Short summary
This paper describes migmatites and associated rocks in SW Finland that have been studied using the new in situ garnet and apatite Lu–Hf geochronology method. The metamorphic constraints and age presented in this paper enhance our understanding of the geological evolution in SW Finland. The results reveal detailed temporal constraints for the tectonic evolution that can be linked to major events in adjacent tectonic blocks in both Finland and Sweden during the Svecofennian orogeny.
Joaquín Bastías-Silva, David Chew, Fernando Poblete, Paula Castillo, William Guenthner, Anne Grunow, Ian W. D. Dalziel, Airton N. C. Dias, Cristóbal Ramírez de Arellano, and Rodrigo Fernandez
Solid Earth, 15, 555–566, https://doi.org/10.5194/se-15-555-2024, https://doi.org/10.5194/se-15-555-2024, 2024
Short summary
Short summary
The Ellsworth Mountains, situated in a remote area of Antarctica, span 350 km in length and 50 km in width, encompassing Antarctica's tallest peak. Due to their isolated location, understanding their formation has been challenging and remains incomplete. Our analysis of zircon minerals from the Ellsworth Mountains indicates that the mountain chain formed between 180 and 100 million years ago, contributing to our understanding of their formation.
Dariusz Botor, Stanisław Mazur, Aneta A. Anczkiewicz, István Dunkl, and Jan Golonka
Solid Earth, 12, 1899–1930, https://doi.org/10.5194/se-12-1899-2021, https://doi.org/10.5194/se-12-1899-2021, 2021
Short summary
Short summary
The thermal evolution of the East European Platform is reconstructed by means of thermal maturity and low-temperature thermochronometry. Results showed that major heating occurred before the Permian, with maximum paleotemperatures in the earliest and latest Carboniferous for Baltic–Podlasie and Lublin basins, respectively. The Mesozoic thermal history was characterized by gradual cooling from peak temperatures at the transition from Triassic to Jurassic due to decreasing heat flow.
Owen A. Anfinson, Daniel F. Stockli, Joseph C. Miller, Andreas Möller, and Fritz Schlunegger
Solid Earth, 11, 2197–2220, https://doi.org/10.5194/se-11-2197-2020, https://doi.org/10.5194/se-11-2197-2020, 2020
Short summary
Short summary
We present new U–Pb age data to provide insights into the source of sediment for the Molasse Sedimentary Basin in Switzerland. The paper aims to help shed light on the processes that built the Central Alpine Mountains between ~35 and ~15 Ma. A primary conclusion drawn from the results is that at ~21 Ma there was a significant change in the sediment sources for the basin. We feel this change indicates major tectonic changes within the Central Alps.
Gaétan Milesi, Patrick Monié, Philippe Münch, Roger Soliva, Audrey Taillefer, Olivier Bruguier, Mathieu Bellanger, Michaël Bonno, and Céline Martin
Solid Earth, 11, 1747–1771, https://doi.org/10.5194/se-11-1747-2020, https://doi.org/10.5194/se-11-1747-2020, 2020
Short summary
Short summary
This study proposes a new way to highlight hydrothermal fluid circulations and thermal anomalies in the Earth's crust with a combined evaluation of the age of granite and gneiss apatites (< 200 µm) as well as the behaviour of their chemical elements. As an exploration tool, this approach is very promising and complementary to other geothermal exploration techniques based on numerical modelling. Moreover, it is a cost-effective tool as it allows for constraining geothermal models.
Christian A. Bergemann, Edwin Gnos, Alfons Berger, Emilie Janots, and Martin J. Whitehouse
Solid Earth, 11, 199–222, https://doi.org/10.5194/se-11-199-2020, https://doi.org/10.5194/se-11-199-2020, 2020
Short summary
Short summary
Metamorphic domes are areas in a mountain chain that were unburied and where deeper parts of the crust rose to the surface. The Lepontine Dome in the Swiss and Italian Alps is such a place, and it is additionally bordered on two sides by shear zones where crustal blocks moved past each other. To determine when these tectonic movements happened, we measured the ages of monazite crystals that form in fluid-filled pockets inside the rocks during these movements of exhumation and deformation.
Xianghui Li, Yongxiang Li, Jingyu Wang, Chaokai Zhang, Yin Wang, and Ling Liu
Solid Earth, 10, 2089–2101, https://doi.org/10.5194/se-10-2089-2019, https://doi.org/10.5194/se-10-2089-2019, 2019
Short summary
Short summary
Western Pacific plate subduction played a key role in the late Mesozoic geologic evolution and volcanism in East Asia. New and published zircon U–Pb ages of extrusive rocks are compiled in SE China. Results show that the volcanism mainly spanned ~95 Myr (mainly 70 Myr, Late Jurassic–Early Cretaceous) and migrated northwest from the coast inland, implying the Paleo-Pacific Plate subducted northwestward and the roll-back subduction did not begin until the Aptian (~125 Ma) of the mid-Cretaceous.
Emilie Janots, Alexis Grand'Homme, Matthias Bernet, Damien Guillaume, Edwin Gnos, Marie-Christine Boiron, Magali Rossi, Anne-Magali Seydoux-Guillaume, and Roger De Ascenção Guedes
Solid Earth, 10, 211–223, https://doi.org/10.5194/se-10-211-2019, https://doi.org/10.5194/se-10-211-2019, 2019
Short summary
Short summary
This geochronological and thermometric study reveals unusually hot fluids in an Alpine-type fissure of granite from the external crystalline massif (Western Alps). The fluid is estimated to be 150-250 °C hotter than the host rock and requires a dynamic fluid pathway at mid-crustal conditions in the ductile regime. This fluid circulation resets the zircon fission track thermochronometer, but only at the fissure contact. Thermal disturbances due to advective heating appear to be localized.
Luis Lena, Rafael López-Martínez, Marina Lescano, Beatriz Aguire-Urreta, Andrea Concheyro, Verónica Vennari, Maximiliano Naipauer, Elias Samankassou, Márcio Pimentel, Victor A. Ramos, and Urs Schaltegger
Solid Earth, 10, 1–14, https://doi.org/10.5194/se-10-1-2019, https://doi.org/10.5194/se-10-1-2019, 2019
Short summary
Short summary
This paper investigates the numerical age of the J–K boundary that remains one of the last main Phanerozoic system boundaries without an adequate constraint by adequate radioisotopic ages. Here we find that there is potentially 4 Myr of difference between the current age of the J–K boundary and our data.
Cited articles
Algeo, T. J. and Twitchett, R. J.: Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences, Geology, 38, 1023–1026, https://doi.org/10.1130/G31203.1, 2010.
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomasovych, A., and Visaggi, C. C.: Phanerozoic trends in the global diversity of marine invertebrates, Science, 321, 97–100, https://doi.org/10.1126/science.1156963, 2008.
Baresel, B., D'Abzac, F. X., Bucher, H., and Schaltegger, U.: High-precision time-space correlation through coupled apatite and zircon tephrochronology: an example from the Permian-Triassic boundary in South China, Geology, 45, 83–86, https://doi.org/10.1130/g38181.1, 2016.
Benton, M. J.: The origins of modern biodiversity on land, Philos. T. Roy. Soc. Lond. B, 365, 3667–3679, https://doi.org/10.1098/rstb.2010.0269, 2010.
Bowring, J. F., McLean, N. M., and Bowring, S. A.: Engineering cyber infrastructure for U-Pb geochronology: tripoli and U-Pb_Redux, Geochem. Geophys. Geosyst., 12, Q0AA19, https://doi.org/10.1029/2010gc003479, 2011.
Bowring, S. A., Erwin, D. H., Jing, G. Y., Martin, M. W., Davidek, K., and Wang, W.: U/Pb zircon geochronology and tempo of the end-Permian mass extinction, Science, 280, 1039–1045, https://doi.org/10.1126/science.280.5366.1039, 1998.
Broderick, C., Wotzlaw, J.-F., Frick, D., Gerdes, A., Günther, D., and Schaltegger, U.: Linking the thermal evolution and emplacement history of an upper-crustal pluton to its lower-crustal roots using zircon geochronology and geochemistry (southern Adamello batholith, N. Italy), Contrib. Mineral. Petr., 170, 28, https://doi.org/10.1007/s00410-015-1184-x, 2015.
Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (Eds.): Handbook of Markov Chain Monte Carlo, CRC Press, Boca Raton, Florida, USA, 619 pp., 2011.
Brosse, M., Bucher, H., and Goudemand, N.: Quantitative biochronology of the Permian-Triassic boundary in South China based on conodont Unitary Associations, Earth-Sci. Rev., 155, 153–171, https://doi.org/10.1016/j.earscirev.2016.02.003, 2016.
Burgess, S. D. and Bowring, S. A.: High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction, Sci. Adv., 1, 1–14, https://doi.org/10.1126/sciadv.1500470, 2015.
Burgess, S. D., Bowring, S. A., and Shen, S. Z.: High-precision timeline for Earth's most severe extinction, P. Natl. Acad. Sci. USA, 111, 3316–3321, https://doi.org/10.1073/pnas.1317692111, 2014.
Cao, C. Q., Wang, W., and Jin, Y.: Carbon isotope variation across Permian-Triassic boundary at Meishan section in Zhejiang province, China, Bulletin of Sciences (Chinese edition), 47, 302–306, https://doi.org/10.1360/02tb9252, 2002.
Chen, J., Beatty, T. W., Henderson, C. M., and Rowe, H.: Conodont biostratigraphy across the Permian-Triassic boundary at the Dawen section, Great Bank of Guizhou, Guizhou Province, South China: implications for the Late Permian extinction and correlation with Meishan, J. Asian Earth Sci., 36, 442–458, https://doi.org/10.1016/j.jseaes.2008.08.002, 2009.
Claoué-Long, J. C., Zhang, Z. C., Ma, G. G., and Du, S.H.: The age of the Permian-Triassic boundary, Earth Planet. Sci. Lett., 105, 182–190, https://doi.org/10.1016/0012-821x(91)90129-6, 1991.
Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A., and Parrish, R. R.: Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I), Geochim. Cosmochim. Ac., 164, 464–480, https://doi.org/10.1016/j.gca.2015.05.026, 2015.
Erwin, D. H.: The End-Permian Mass Extinction, Annu. Rev. Ecol. Syst., 21, 69–91, https://doi.org/10.1146/annurev.es.21.110190.000441, 1990.
Erwin, D. H., Bowring, S. A., and Jin, Y.-G.: End-Permian mass-extinctions: a review, in: Catastrophic events and mass extinctions: impacts and beyond, edited by: Koeberl, C. and MacLeod, K. G., Geol. S. Am. S., 356, 353–383, https://doi.org/10.1130/0-8137-2356-6.363, 2002.
Faure, M., Lin, W., Chu, Y., and Lepvrier, C.: Triassic tectonics of the southern margin of the South China Block, C. R. Geosci., 348, 5–14, https://doi.org/10.1016/j.crte.2015.06.012, 2016.
Feng, Q. L. and Algeo, T. J.: Evolution of oceanic redox conditions during the Permo-Triassic transition: Evidence from deepwater radiolarian facies, Earth-Sci. Rev., 137, 34–51, https://doi.org/10.1016/j.earscirev.2013.12.003, 2014.
Feng, Q. L., He, W. H., Gu, S. Z., Meng, Y. Y., Jin, Y. X., and Zhang, F.: Radiolarian evolution during the latest Permian in South China, Global Planet. Change, 55, 177–192, https://doi.org/10.1016/j.gloplacha.2006.06.012, 2007.
Feng, Z. Z., Bao, Z.-D., Zheng, X.-J., and Wang, Y.: There was no “Great Bank of Guizhou” in the Early Triassic in Guizhou Province, South China, J. Palaeogeogr., 4, 99–108, https://doi.org/10.3724/SP.J.1261.2015.00070, 2015.
Galfetti, T., Bucher, H., Ovtcharova, M., Schaltegger, U., Brayard, A., Brühwiler, T., Goudemand, N., Weissert, H., Hochuli, P. A., Cordey, F., and Guodun, K.: Timing of the Early Triassic carbon cycle perturbations inferred from new U–Pb ages and ammonoid biochronozones, Earth Planet. Sc. Lett., 258, 593–604, https://doi.org/10.1016/j.epsl.2007.04.023, 2007.
Galfetti, T., Bucher, H., Martini, R., Hochuli, P. A., Weissert, H., Crasquin-Soleau, S., Brayard, A., Goudemand, N., Brühwiler, T., and Guodun, K.: Evolution of Early Triassic outer platform paleoenvironments in the Nanpanjiang Basin (South China) and their significance for the biotic recovery, Sediment. Geol., 204, 36–60, https://doi.org/10.1016/j.sedgeo.2007.12.008, 2008.
Gao, Q., Zhang, N., Xia, W., Feng, Q., Chen, Z.-Q., Zheng, J., Griffin, W. L., O'Reilly, S. Y., Pearson, N. J., Wang, G., Wu, S., Zhong, W., and Sun, X.: Origin of volcanic ash beds across the Permian-Triassic boundary, Daxiakou, South China: Petrology and U-Pb age, trace elements and Hf-isotope composition of zircon, Chem. Geol., 360–361, 41–53, https://doi.org/10.1016/j.chemgeo.2013.09.020, 2013.
Golonka, J. and Ford, D.: Pangean (Late Carboniferous-Middle Jurassic) paleoenvironment and lithofacies, Palaeogeogr. Palaeocl., 161, 1–34, https://doi.org/10.1016/s0031-0182(00)00115-2, 2000.
Guizhou Bureau of Geology and Mineral Resources: Regional geology of Guizhou Province, scale 1 : 500 000, Geological Memoir, Beijing, 1, 700 pp., 1987 (in Chinese, with English summary).
Haslett, J. and Parnell, A.: A simple monotone process with application to radiocarbon-dated depth chronologies,J. Roy. Stat. Soc. C-App., 57, 399–418, https://doi.org/10.1111/j.1467-9876.2008.00623.x, 2008.
He, W. H., Shen, S. Z., Feng, Q. L., and Gu, S. Z.: A Late Changhsingian (Late Permian) deepwater brachiopod fauna from the Talung Formation at the Dongpan section, southern Guangxi, South China, J. Paleontol., 79, 927–938, https://doi.org/10.1666/0022-3360(2005)079[0927:ALCLPD]2.0.CO;2, 2005.
He, W. H., Shi, G. R., Feng, Q. L., Campi, M. J., Gu, S. Z., Bu, J. J., Peng, Y. Q., and Meng, Y. Y.: Brachiopod miniaturization and its possible causes during the Permian-Triassic crisis in deep water environments, South China, Palaeogeogr. Palaeocl., 252, 145–163, https://doi.org/10.1016/j.palaeo.2006.11.040, 2007.
Hiess, J., Condon, D. J., McLean, N., and Noble, S. R.: 238U/235U Systematics in terrestrial uranium-bearing minerals, Science, 335, 1610–1614, https://doi.org/10.1126/science.1215507, 2012.
Hochuli, P. A., Hermann, E., Vigran, J. S., Bucher, H., and Weissert, H.: Rapid demise and recovery of plant ecosystems across the end-Permian extinction event, Global Planet. Change, 74, 144–155, https://doi.org/10.1016/j.gloplacha.2010.10.004, 2010.
Huang, C., Tong, J., Hinnov, L., and Chen, Z. Q.: Did the great dying of life take 700 k.y.? Evidence from global astronomical correlation of the Permian-Triassic boundary interval, Geology, 39, 779–782, https://doi.org/10.1130/g32126.1, 2011.
Jiang, H., Lai, X., Yan, C., Aldridge, R. J., Wignall, P., and Sun, Y.: Revised conodont zonation and conodont evolution across the Permian-Triassic boundary at the Shangsi section, Guangyuan, Sichuan, South China, Global Planet. Change, 77, 102–115, https://doi.org/10.1016/j.gloplacha.2011.04.003, 2011.
Jin, Y. G., Shen, S. Z., Henderson, C. M., Wang, X. D., Wang, W., Wang, Y., Cao, C. Q., and Shang, Q. H.: The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian stage (Permian), Episodes, 29, 253–262, 2006.
Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., and Wijbrans, J. R.: Synchronizing Rock Clocks of Earth History, Science, 320, 500–504, https://doi.org/10.1126/science.1154339, 2008.
Lehrmann, D. J., Payne, J. L., Felix, S. V., Dillett, P. M., Wang, H., Yu, Y., and Wei, J.: Permian-Triassic Boundary Sections from Shallow-Marine Carbonate Platforms of the Nanpanjiang Basin, South China: Implications for Oceanic Conditions Associated with the End-Permian Extinction and Its Aftermath, Palaios, 18, 138–152, https://doi.org/10.1669/0883-1351(2003)18<138:pbsfsc>2.0.co;2, 2003.
Lehrmann, D. J., Pei, D., Enos, P., Ellwood, B. B., Zhang, J., Wei, J., Dillett, P., Koenig, J., Steffen, K., Druke, D., Gross, J., Kessel, B., and Newkirk, T.: Impact of differential tectonic subsidence on isolated carbonate platform evolution: Triassic of the Nanpanjiang basin, south China, Am. Assoc. Petr. Geol. B., 91, 287–320, https://doi.org/10.1306/10160606065, 2007.
Lehrmann, D. J., Stepchinski, L., Altiner, D., Orchard, M. J., Montgomery, P., Enos, P., Ellwood, B. B., Bowring, S. A., Ramezani, J., Wang, H., Wei, J., Yu, M., Griffiths, J. D., Minzo, M., Schaall, E. K., Lil, X., Meyerl, K. M., and Payne, J. L.: An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian-Upper Triassic strata of Guandao section, Nanpanjiang Basin, south China, J. Asian Earth Sci., 108, 117–135, https://doi.org/10.1016/j.jseaes.2015.04.030, 2015.
Li, M., Ogg, J., Zhang, Y., Huang, C., Hinnov, L., Chen, Z.-Q., and Zou, Z.: Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany, Earth Planet. Sc. Lett., 441, 10–25, https://doi.org/10.1016/j.epsl.2016.02.017, 2016.
Luo, G. M., Lai, X. L., Feng, Q. L., Jiang, H. S., Wignall, P., Zhang, K. X., Sun, Y. D., and Wu, J.: End-Permian conodont fauna from Dongpan section: Correlation between the deep- and shallow-water facies. Sci. China Ser. D, 51, 1611–1622, https://doi.org/10.1007/s11430-008-0125-1, 2008.
Luo, G. M., Wang, Y., Yang, H., Algeo, T. J., Kump, L. R., Huang, J., and Xie, S. C.: Stepwise and large-magnitude negative shift in δ13Ccarb preceded the main marine mass extinction of the Permian-Triassic crisis interval, Palaeogeogr. Palaeocl., 299, 70–82, https://doi.org/10.1016/j.palaeo.2010.10.035, 2011.
Mattinson, J. M.: Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages, Chem. Geol., 220, 47–66, https://doi.org/10.1016/j.chemgeo.2005.03.011, 2005.
McLean, N. M., Bowring, J. F., and Bowring, S. A.: An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation, Geochem. Geophys. Geosyst., 12, Q0AA18, https://doi.org/10.1029/2010gc003478, 2011.
Meng, Y. Y., Zhou, Q., and Li, Y. K.: The characteristics and controlling sedimentary facies and granitoid analysis of the middle part of Pingxing-Dongmeng large fault, Guangxi Geology, 15, 1–4, 2002 (in Chinese).
Mundil, R., Metcalfe, I., Ludwig, K. R., Renne, P. R., Oberli, F., and Nicoll, R. S.: Timing of the Permian-Triassic biotic crisis: Implications from new zircon U/Pb age data (and their limitations), Earth Planet. Sc. Lett., 187, 131–145, https://doi.org/10.1016/s0012-821x(01)00274-6, 2001.
Mundil, R., Ludwig, K. R., Metcalfe, I., and Renne, P. R.: Age and Timing of the Permian Mass Extinctions: U/Pb Dating of Closed-System Zircons, Science, 305, 1760–1763, https://doi.org/10.1126/science.1101012, 2004.
Ovtcharova, M., Bucher, H., Schaltegger, U., Galfetti, T., Brayard, A., and Guex, J.: New Early to Middle Triassic U-Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery, Earth Planet. Sc. Lett., 243, 463–475, https://doi.org/10.1016/j.epsl.2006.01.042, 2006.
Ovtcharova, M., Goudemand, N., Hammer, O., Guodun, K., Cordey, F., Galfetti, T., Schaltegger, U., and Bucher, H.: Developing a strategy for accurate definition of a geological boundary through radio-isotopic and biochronological dating: The Early–Middle Triassic boundary (South China), Earth-Sci. Rev., 146, 65–76, https://doi.org/10.1016/j.earscirev.2015.03.006, 2015.
Parnell, A. C., Haslett, J., Allen, J. R. M., Buck, C. E., and Huntley, B.: A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history, Quaternary Sci. Rev., 27, 1872–1885, https://doi.org/10.1016/j.quascirev.2008.07.009, 2008.
Parnell, A. C., Buck, C. E., and Doan, T. K.: A review of statistical chronology models for high-resolution, proxy-based Holocene palaeoenvironmental reconstruction, Quaternary Sci. Rev., 30, 2948–2960, https://doi.org/10.1016/j.quascirev.2011.07.024, 2011.
Payne, J. L., Turchyn, A. V., Paytan, A., DePaolo, D. J., Lehrmann, D. J., Yu, M. Y., and Wei, J. Y.: Calcium isotope constraints on the end-Permian mass extinction, P. Natl. Acad. Sci. USA, 107, 8543–8548, https://doi.org/10.1073/pnas.0914065107, 2010.
Peng, X. F., Feng, Q. L., Li, Z. B., and Meng, Y. Y.: High-resolution cyclostratigraphy of geochemical records from Permo-Triassic boundary section of Dongpan, southwestern Guangxi, South China, Sci. China Ser. D, 51, 187–193, 2008.
Raup, D. M.: Size of the Permo-Triassic bottleneck and its evolutionary implications, Science, 206, 217–218, https://doi.org/10.1126/science.206.4415.217, 1979.
Renne, P. R., Black, M. T., Zichao, Z., Richards, M. A., and Basu, A. R.: Synchrony and causal relations between Permian-Triassic Boundary crises and Siberian flood volcanism, Science, 269, 1413–1416, https://doi.org/10.1126/science.269.5229.1413, 1995.
Retallack, G. J. and Jahren, A. H.: Methane release from igneous intrusion of coal during Late Permian extinction events, J. Geol., 116, 1–20, https://doi.org/10.1086/524120, 2008.
Samperton, K. M., Schoene, B., Cottle, J. M., Keller, C. B., Crowley, J. L., and Schmitz, M. D.: Magma emplacement, differentiation and cooling in the middle crust: Integrated zircon geochronological-geochemical constraints from the Bergell Intrusion, Central Alps, Chem. Geol., 417, 322–340, https://doi.org/10.1016/j.chemgeo.2015.10.024, 2015.
Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D., and Bowring, S. A.: Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data, Geochim. Cosmochim. Ac., 70, 426–445, https://doi.org/10.1016/j.gca.2005.09.007, 2006.
Shang, Q. H., Vachard, D., and Caridroit, M.: Smaller foraminifera from the Late Changhsingian (Latest Permian) of Southern Guangxi and discussion on the Permian-Triassic boundary, Acta Micropalaeontologica Sinica, 20, 377–388, 2003.
Shen, J., Algeo, T. J., Zhou, L., Feng, Q., Yu, J., and Ellwood, B.: Volcanic perturbations of the marine environment in South China preceding the latest Permian mass extinction and their biotic effects, Geobiology, 10, 82–103, https://doi.org/10.1111/j.1472-4669.2011.00306.x, 2012.
Shen, J., Algeo, T. J., Hu, Q., Xu, G. Z., Zhou, L., and Feng, Q. L.: Volcanism in South China during the Late Permian and its relationship to marine ecosystem and environmental changes, Global Planet. Change, 105, 121–134, https://doi.org/10.1016/j.gloplacha.2012.02.011, 2013.
Shen, S. Z., Wang, Y., Henderson, C. M., Cao, C. Q., and Wang, W.: Biostratigraphy and lithofacies of the Permian System in the Laibin-Heshan area of Guangxi, South China, Palaeoworld, 16, 120–139, https://doi.org/10.1016/j.palwor.2007.05.005, 2007.
Shen, S. Z., Crowley, J. L., Wang, Y., Bowring, S. A., Erwin, D. H., Sadler, P. M., Cao, C. Q., Rothman, D. H., Henderson, C. M., Ramezani, J., Zhang, H., Shen, Y., Wang, X. D., Wang, W., Mu, L., Li, W. Z., Tang, Y. G., Liu, X. L., Liu, L. J., Zeng, Y., Jiang, Y. F., and Jin, Y. G.: Calibrating the end-Permian mass extinction, Science, 334, 1367–1372, https://doi.org/10.1126/science.1213454, 2011.
Shen, S. Z., Cao, C. Q., Zhang, H., Bowring, S. A., Henderson, C. M., Payne, J. L., Davydov, V. I., Chen, B., Yuan, D. X., Zhang, Y. C., Wang, W., and Zheng, Q. F.: High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran, Earth Planet. Sc. Lett., 375, 156–165, https://doi.org/10.1016/j.epsl.2013.05.020, 2013.
Stanley, S. M. and Yang, X.: A double mass extinction at the end of the Paleozoic era, Science, 266, 1340–1344, https://doi.org/10.1126/science.266.5189.1340, 1994.
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y., and Jamtveit, B.: Siberian gas venting and the end-Permian environmental crisis, Earth Planet. Sc. Lett., 277, 490–500, https://doi.org/10.1016/j.epsl.2008.11.015, 2009.
Van Valen, L.: A resetting of Phanerozoic community evolution, Nature, 307, 50–52, https://doi.org/10.1038/307050a0, 1984.
Wang, Y. and Jin, Y.: Permian palaeogeographic evolution of the Jiangnan Basin, South China, Palaeogeogr. Palaeocl., 160, 35–44, https://doi.org/10.1016/s0031-0182(00)00043-2, 2000.
Winguth, C. and Winguth, A. M. E.: Simulating Permian-Triassic oceanic anoxia distribution: implications for species extinction and recovery, Geology, 40, 127–130, https://doi.org/10.1130/g32453.1, 2012.
Wu, H., Zhang, S., Hinnov, L. A., Jiang, G., Feng, Q., Li, H., and Yang, T.: Time-calibrated Milankovitch cycles for the late Permian, Nat. Commun., 4, 2452, https://doi.org/10.1038/ncomms3452, 2013.
Wu, J., Feng, Q. L., Gui, B. W., and Liu, G. C.: Some new radiolarian species and genus from Upper Permian in Guangxi Province, South China, J. Paleontol., 84, 879–894, https://doi.org/10.1666/09-057.1, 2010.
Xia, W. C., Zhang, N., Wang, G. Q., and Kakuwa, Y.: Pelagic radiolarian and conodont biozonation in the Permo-Triassic boundary interval and correlation to the Meishan GSSP, Micropaleontology, 50, 27–44, https://doi.org/10.1661/0026-2803(2004)050[0027:pracbi]2.0.co;2, 2004.
Yin, H. F.: Bivalves near the Permian-Triassic boundary in South China, J. Paleontol., 59, 572–600, 1985.
Yin, H. F., Zhang, K. X., Tong, J. N., Yang, Z. Y., and Wu, S. B.: The global stratotype section and point (GSSP) of the Permian-Triassic boundary, Episodes, 24, 102–114, 2001.
Yin, H. F., Feng, Q. L., Lai, X. L., Baud, A., and Tong, J. N.: The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary, Global Planet. Change, 55, 1–20, https://doi.org/10.1016/j.gloplacha.2006.06.005, 2007.
Yin, H. F., Jiang, H. S., Xia, W. C. Feng, Q., Zhang, N., and Shen, J.: The end-Permian regression in South China and its implication on mass extinction, Earth-Sci. Rev., 137, 19–33, https://doi.org/10.1016/j.earscirev.2013.06.003, 2014.
Yuan, A., Crasquin-Soleau, S., Feng, Q. L., and Gu, S. Z.: Latest Permian deep-water ostracods from southwestern Guangxi, South China, J. Micropalaeontol., 26, 169–191, https://doi.org/10.1144/jm.26.2.169, 2007.
Yuan, D., Shen, S., Henderson, C. M., Chen, J., Zhang, H., and Feng, H.: Revised conodont-based integrated high-resolution timescale for the Changhsingian Stage and end-Permian extinction interval at the Meishan sections, South China, Lithos, 204, 220–245, https://doi.org/10.1016/j.lithos.2014.03.026, 2015.
Zhang, F., Feng, Q. L., He, W. H., Meng, Y. Y., and Gu, S. Z.: Multidisciplinary stratigraphy across the Permian-Triassic boundary in deep-water environment of Dongpan section, south China, Norw. J. Geol., 86, 125–131, 2006.
Zhao, J. K., Liang, X. L., and Zheng, Z. G.: Late Permian Cephalopods in South China, Science Press, Beijing, China, 1978 (in Chinese).
Ziegler, A. M., Hulver, M. L., and Rowley, D. B.: Permian World Topography and Climate, in: Late glacial and postglacial environmental changes: Quaternary, Carboniferous-Permian, and Proterozoic, edited by: Martini, I. P., Oxford University Press, New York, USA, 343 pp., 1997.
Short summary
This study re-evaluates the characterization of the Permian–Triassic boundary based on high-precision U-Pb geochronology from two marine sections (Dongpan and Penglaitan) with continuous and conformable stage boundaries in the Nanpanjiang Basin (southern China). These new dates provide the basis for a first proof-of-concept study utilizing a Bayesian statistic age–depth chronology comparing these two sections with the Global Stratotype Section and Point at Meishan (western China).
This study re-evaluates the characterization of the Permian–Triassic boundary based on...