Articles | Volume 8, issue 2
https://doi.org/10.5194/se-8-545-2017
https://doi.org/10.5194/se-8-545-2017
Research article
 | 
21 Apr 2017
Research article |  | 21 Apr 2017

Application of a new model using productivity coupled with hydrothermal factors (PCH) for evaluating net primary productivity of grassland in southern China

Zheng-Guo Sun, Jie Liu, and Hai-Yang Tang

Related subject area

Soil science
Soil erodibility and its influencing factors on the Loess Plateau of China: a case study in the Ansai watershed
Wenwu Zhao, Hui Wei, Lizhi Jia, Stefani Daryanto, Xiao Zhang, and Yanxu Liu
Solid Earth, 9, 1507–1516, https://doi.org/10.5194/se-9-1507-2018,https://doi.org/10.5194/se-9-1507-2018, 2018
Short summary
Stability of soil organic matter in Cryosols of the maritime Antarctic: insights from 13C NMR and electron spin resonance spectroscopy
Evgeny Abakumov and Ivan Alekseev
Solid Earth, 9, 1329–1339, https://doi.org/10.5194/se-9-1329-2018,https://doi.org/10.5194/se-9-1329-2018, 2018
Influence of slope aspect on the microbial properties of rhizospheric and non-rhizospheric soils on the Loess Plateau, China
Ze Min Ai, Jiao Yang Zhang, Hong Fei Liu, Sha Xue, and Guo Bin Liu
Solid Earth, 9, 1157–1168, https://doi.org/10.5194/se-9-1157-2018,https://doi.org/10.5194/se-9-1157-2018, 2018
Short summary
Assessment of soil erosion vulnerability in the heavily populated and ecologically fragile communities in Motozintla de Mendoza, Chiapas, Mexico
Selene B. González-Morales, Alex Mayer, and Neptalí Ramírez-Marcial
Solid Earth, 9, 745–757, https://doi.org/10.5194/se-9-745-2018,https://doi.org/10.5194/se-9-745-2018, 2018
Short summary
Simulating carbon sequestration using cellular automata and land use assessment for Karaj, Iran
Ali Khatibi, Sharareh Pourebrahim, and Mazlin Bin Mokhtar
Solid Earth, 9, 735–744, https://doi.org/10.5194/se-9-735-2018,https://doi.org/10.5194/se-9-735-2018, 2018
Short summary

Cited articles

Braswell, B. H., Schimel, D. S., Linder, E., and Moore III., B.: The response of global terrestrial ecosystems to interannual temperature variability, Science, 278, 870–872, https://doi.org/10.1126/science.278.5339.870, 1997.
Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., and Van Oost, K.: The interdisciplinary nature of SOIL, SOIL, 1, 117–129, https://doi.org/10.5194/soil-1-117-2015, 2015.
Cao, L., Xu, J., Chen, Y., Li, W., Yang, Y., Hong, Y., and Li, Z.: Understanding the dynamic coupling between vegetation cover and climatic factors in a semiarid region-a case study of Inner Mongolia, China, Ecohydrology, 6, 917–926, https://doi.org/10.1002/eco.1245, 2013.
Cao, M. K. and Woodward, F. I.: Dynamic responses of terrestrial ecosystem carbon cycling to global climate change, Nature, 393, 249–252, https://doi.org/10.1038/30460, 1998.
Chen, Z. X. and Zhang, X. S.: Value of ecosystem services in China, Chinese Sci. Bull., 45, 17–22, https://doi.org/10.1007/BF02886190, 2000.
Download
Short summary
To simulate grassland NPP in Southern China, a new model was built and validated based on data recorded from 2003 to 2014. There was a highly significant correlation between simulated and measured NPP. The NPP values had a decreasing trend from east to west and south to north. Mean NPP was 471.62 g C m−2 from 2003 to 2014. Additionally, the mean annual NPP presented a rising trend, increasing 3.49 g C m−2 yr−1.