Research article
11 Sep 2017
Research article
| 11 Sep 2017
Global patterns in Earth's dynamic topography since the Jurassic: the role of subducted slabs
Michael Rubey et al.
Viewed
Total article views: 4,040 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 Mar 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,262 | 1,615 | 163 | 4,040 | 468 | 136 | 162 |
- HTML: 2,262
- PDF: 1,615
- XML: 163
- Total: 4,040
- Supplement: 468
- BibTeX: 136
- EndNote: 162
Total article views: 2,797 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 Sep 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,431 | 1,220 | 146 | 2,797 | 365 | 131 | 138 |
- HTML: 1,431
- PDF: 1,220
- XML: 146
- Total: 2,797
- Supplement: 365
- BibTeX: 131
- EndNote: 138
Total article views: 1,243 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 Mar 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
831 | 395 | 17 | 1,243 | 103 | 5 | 24 |
- HTML: 831
- PDF: 395
- XML: 17
- Total: 1,243
- Supplement: 103
- BibTeX: 5
- EndNote: 24
Viewed (geographical distribution)
Total article views: 4,040 (including HTML, PDF, and XML)
Thereof 3,688 with geography defined
and 352 with unknown origin.
Total article views: 2,797 (including HTML, PDF, and XML)
Thereof 2,513 with geography defined
and 284 with unknown origin.
Total article views: 1,243 (including HTML, PDF, and XML)
Thereof 1,175 with geography defined
and 68 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
18 citations as recorded by crossref.
- Redox conditions, productivity, and volcanic input during deposition of uppermost Jurassic and Lower Cretaceous organic-rich siltstones in Spitsbergen, Norway M. Rakociński et al. 10.1016/j.cretres.2018.02.014
- Earth's surface responses during geodynamic evolution: Numerical insight from the southern East China Sea Continental Shelf Basin, West Pacific Z. Liu et al. 10.1016/j.gr.2020.12.011
- Global Models From Sparse Data: A Robust Estimate of Earth's Residual Topography Spectrum A. Valentine & D. Davies 10.1029/2020GC009240
- Constraining Plateau Uplift in Southern Africa by Combining Thermochronology, Sediment Flux, Topography, and Landscape Evolution Modeling J. Stanley et al. 10.1029/2020JB021243
- Drainage system organization after mantle plume impingement: The case of the Horn of Africa A. Sembroni et al. 10.1016/j.earscirev.2021.103582
- A Sequence Stratigraphic Framework for the Middle to Late Jurassic of the Sundance Seaway, Wyoming: Implications for Correlation, Basin Evolution, and Climate Change S. Danise & S. Holland 10.1086/697692
- Investigating the formation of the Cretaceous Western Interior Seaway using landscape evolution simulations C. Chang & L. Liu 10.1130/B35653.1
- The fate of the Farallon slab beneath Patagonia and its links to Cenozoic intraplate magmatism, marine transgressions and topographic uplift C. Navarrete et al. 10.1016/j.earscirev.2020.103379
- GPlates: Building a Virtual Earth Through Deep Time R. Müller et al. 10.1029/2018GC007584
- India‐Elan Bank‐East Antarctica Breakup, Crustal Architecture, and Margin Evolution: Results From Constrained Potential Field and Process‐Oriented Gravity Modeling of Conjugate Margin Segments G. Rao & M. Radhakrishna 10.1029/2019TC005804
- Neogene Retroarc Foreland Basin Evolution, Sediment Provenance, and Magmatism in Response to Flat Slab Subduction, Western Argentina T. Capaldi et al. 10.1029/2019TC005958
- Modelling Mie scattering in pyrolite in the laser-heated diamond anvil cell: Implications for the core-mantle boundary temperature determination S. Lobanov et al. 10.1016/j.pepi.2021.106773
- The assumed Aalenian stage-long eustatic lowstand did not exist: A review of the fresh evidence from Africa and other continents D. Ruban & E. Sallam 10.1016/j.jafrearsci.2017.12.022
- PyBacktrack 1.0: A Tool for Reconstructing Paleobathymetry on Oceanic and Continental Crust R. Müller et al. 10.1029/2017GC007313
- Earth’s multi-scale topographic response to global mantle flow D. Davies et al. 10.1038/s41561-019-0441-4
- Relative contributions of tectonics and dynamic topography to the Mesozoic-Cenozoic subsidence of southern Patagonia F. Dávila et al. 10.1016/j.jsames.2019.05.010
- Gravitational Potential Energy in Iberia: A Driver of Active Deformation in High-Topography Regions M. Neres et al. 10.1029/2017JB015002
- Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression S. Brune et al. 10.1002/2017TC004739
17 citations as recorded by crossref.
- Redox conditions, productivity, and volcanic input during deposition of uppermost Jurassic and Lower Cretaceous organic-rich siltstones in Spitsbergen, Norway M. Rakociński et al. 10.1016/j.cretres.2018.02.014
- Earth's surface responses during geodynamic evolution: Numerical insight from the southern East China Sea Continental Shelf Basin, West Pacific Z. Liu et al. 10.1016/j.gr.2020.12.011
- Global Models From Sparse Data: A Robust Estimate of Earth's Residual Topography Spectrum A. Valentine & D. Davies 10.1029/2020GC009240
- Constraining Plateau Uplift in Southern Africa by Combining Thermochronology, Sediment Flux, Topography, and Landscape Evolution Modeling J. Stanley et al. 10.1029/2020JB021243
- Drainage system organization after mantle plume impingement: The case of the Horn of Africa A. Sembroni et al. 10.1016/j.earscirev.2021.103582
- A Sequence Stratigraphic Framework for the Middle to Late Jurassic of the Sundance Seaway, Wyoming: Implications for Correlation, Basin Evolution, and Climate Change S. Danise & S. Holland 10.1086/697692
- Investigating the formation of the Cretaceous Western Interior Seaway using landscape evolution simulations C. Chang & L. Liu 10.1130/B35653.1
- The fate of the Farallon slab beneath Patagonia and its links to Cenozoic intraplate magmatism, marine transgressions and topographic uplift C. Navarrete et al. 10.1016/j.earscirev.2020.103379
- GPlates: Building a Virtual Earth Through Deep Time R. Müller et al. 10.1029/2018GC007584
- India‐Elan Bank‐East Antarctica Breakup, Crustal Architecture, and Margin Evolution: Results From Constrained Potential Field and Process‐Oriented Gravity Modeling of Conjugate Margin Segments G. Rao & M. Radhakrishna 10.1029/2019TC005804
- Neogene Retroarc Foreland Basin Evolution, Sediment Provenance, and Magmatism in Response to Flat Slab Subduction, Western Argentina T. Capaldi et al. 10.1029/2019TC005958
- Modelling Mie scattering in pyrolite in the laser-heated diamond anvil cell: Implications for the core-mantle boundary temperature determination S. Lobanov et al. 10.1016/j.pepi.2021.106773
- The assumed Aalenian stage-long eustatic lowstand did not exist: A review of the fresh evidence from Africa and other continents D. Ruban & E. Sallam 10.1016/j.jafrearsci.2017.12.022
- PyBacktrack 1.0: A Tool for Reconstructing Paleobathymetry on Oceanic and Continental Crust R. Müller et al. 10.1029/2017GC007313
- Earth’s multi-scale topographic response to global mantle flow D. Davies et al. 10.1038/s41561-019-0441-4
- Relative contributions of tectonics and dynamic topography to the Mesozoic-Cenozoic subsidence of southern Patagonia F. Dávila et al. 10.1016/j.jsames.2019.05.010
- Gravitational Potential Energy in Iberia: A Driver of Active Deformation in High-Topography Regions M. Neres et al. 10.1029/2017JB015002
Discussed (preprint)
Latest update: 09 Feb 2023
Short summary
Earth's surface is constantly warped up and down by the convecting mantle. Here we derive geodynamic rules for this so-called
dynamic topographyby employing high-resolution numerical models of global mantle convection. We define four types of dynamic topography history that are primarily controlled by the ever-changing pattern of Earth's subduction zones. Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution.
Earth's surface is constantly warped up and down by the convecting mantle. Here we derive...