Articles | Volume 8, issue 5
Solid Earth, 8, 899–919, 2017
Solid Earth, 8, 899–919, 2017
Research article
11 Sep 2017
Research article | 11 Sep 2017

Global patterns in Earth's dynamic topography since the Jurassic: the role of subducted slabs

Michael Rubey et al.

Related authors

A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution
R. Dietmar Müller, Nicolas Flament, John Cannon, Michael G. Tetley, Simon E. Williams, Xianzhi Cao, Ömer F. Bodur, Sabin Zahirovic, and Andrew Merdith
Solid Earth, 13, 1127–1159,,, 2022
Short summary
Towards automatic finite-element methods for geodynamics via Firedrake
D. Rhodri Davies, Stephan C. Kramer, Sia Ghelichkhan, and Angus Gibson
Geosci. Model Dev., 15, 5127–5166,,, 2022
Short summary
Rifting continents
Susanne J. H. Buiter, Sascha Brune, Derek Keir, and Gwenn Peron-Pinvidic
EGUsphere,,, 2022
Short summary
Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913,,, 2021
Short summary
Analytical solutions for mantle flow in cylindrical and spherical shells
Stephan C. Kramer, D. Rhodri Davies, and Cian R. Wilson
Geosci. Model Dev., 14, 1899–1919,,, 2021
Short summary

Related subject area

Thermal non-equilibrium of porous flow in a resting matrix applicable to melt migration: a parametric study
Laure Chevalier and Harro Schmeling
Solid Earth, 13, 1045–1063,,, 2022
Short summary
101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth
Iris van Zelst, Fabio Crameri, Adina E. Pusok, Anne Glerum, Juliane Dannberg, and Cedric Thieulot
Solid Earth, 13, 583–637,,, 2022
Short summary
Crustal structure of the Volgo–Uralian subcraton revealed by inverse and forward gravity modelling
Igor Ognev, Jörg Ebbing, and Peter Haas
Solid Earth, 13, 431–448,,, 2022
Short summary
On the choice of finite element for applications in geodynamics
Cedric Thieulot and Wolfgang Bangerth
Solid Earth, 13, 229–249,,, 2022
Short summary
A new finite element approach to model microscale strain localization within olivine aggregates
Jean Furstoss, Carole Petit, Clément Ganino, Marc Bernacki, and Daniel Pino-Muñoz
Solid Earth, 12, 2369–2385,,, 2021
Short summary

Cited articles

Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, National Geophysical Data Center, NOAA,, 2009.
Baumgardner, J. R.: Three-dimensional treatment of convective flow in the Earth's mantle, J. Stat. Phys., 39, 501–511,, 1985.
Boyden, J. A., Müller, R. D., Gurnis, M., Torsvik, T. H., Clark, J. A., Turner, M., Ivey-Law, H., Watson, R. J., and Cannon, J. S.: Next-generation plate-tectonic reconstructions using GPlates, in Geoinformatics, Cambridge University Press, 95–114,, 2011.
Braun, J., Guillocheau, F., Robin, C., Baby, G., and Jelsma, H.: Rapid erosion of the Southern African Plateau as it climbs over a mantle superswell, J. Geophys. Res.-Sol. Ea., 119, 6093–6112, 2014.
Bunge, H.-P., Richards, M. A., and Baumgardner, J. R.: A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change, J. Geophys. Res.-Sol. Ea., 102, 11991–12007,, 1997.
Short summary
Earth's surface is constantly warped up and down by the convecting mantle. Here we derive geodynamic rules for this so-called dynamic topography by employing high-resolution numerical models of global mantle convection. We define four types of dynamic topography history that are primarily controlled by the ever-changing pattern of Earth's subduction zones. Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution.