Articles | Volume 9, issue 3
https://doi.org/10.5194/se-9-713-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-9-713-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Boninite and boninite-series volcanics in northern Zambales ophiolite: doubly vergent subduction initiation along Philippine Sea plate margins
Americus Perez
CORRESPONDING AUTHOR
Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
Susumu Umino
Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
Graciano P. Yumul Jr.
Apex Mining Company Inc., Ortigas Center, Pasig City, 1605, Philippines
Osamu Ishizuka
Research Institute of Earthquake and Volcano Geology, Geological Survey of Japan, AIST, Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
Research and Development Center for Ocean Drilling Science, JAMSTEC, 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
Related authors
No articles found.
Susumu Umino, Gregory F. Moore, Brian Boston, Rosalind Coggon, Laura Crispini, Steven D'Hondt, Michael O. Garcia, Takeshi Hanyu, Frieder Klein, Nobukazu Seama, Damon A. H. Teagle, Masako Tominaga, Mikiya Yamashita, Michelle Harris, Benoit Ildefonse, Ikuo Katayama, Yuki Kusano, Yohey Suzuki, Elizabeth Trembath-Reichert, Yasuhiro Yamada, Natsue Abe, Nan Xiao, and Fumio Inagaki
Sci. Dril., 29, 69–82, https://doi.org/10.5194/sd-29-69-2021, https://doi.org/10.5194/sd-29-69-2021, 2021
Tomoaki Morishita, Susumu Umino, Jun-Ichi Kimura, Mikiya Yamashita, Shigeaki Ono, Katsuyoshi Michibayashi, Masako Tominaga, Frieder Klein, and Michael O. Garcia
Sci. Dril., 26, 47–58, https://doi.org/10.5194/sd-26-47-2019, https://doi.org/10.5194/sd-26-47-2019, 2019
Short summary
Short summary
The architecture, formation, and modification of oceanic plates are fundamental to our of understanding key geologic processes of the Earth. Geophysical surveys were conducted around a site near the Hawaiian Islands (northeastern Hawaiian North Arch region). This workshop report describes scientific targets for 2 km deep ocean drilling in the Hawaiian North Arch region in order to provide information about the lower crust from unrecovered age and spreading rate gaps in previous ocean drillings.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochemistry
Magnesium isotope fractionation processes during seafloor serpentinization and implications for serpentinite subduction
Epidote dissolution–precipitation during viscous granular flow: a micro-chemical and isotope study
Whole-rock and zircon evidence for evolution of the Late Jurassic high-Sr ∕ Y Zhoujiapuzi granite, Liaodong Peninsula, North China Craton
Comparative geochemical study on Furongian–earliest Ordovician (Toledanian) and Ordovician (Sardic) felsic magmatic events in south-western Europe: underplating of hot mafic magmas linked to the opening of the Rheic Ocean
Bromine speciation and partitioning in slab-derived aqueous fluids and silicate melts and implications for halogen transfer in subduction zones
Sune G. Nielsen, Frieder Klein, Horst R. Marschall, Philip A. E. Pogge von Strandmann, and Maureen Auro
Solid Earth, 15, 1143–1154, https://doi.org/10.5194/se-15-1143-2024, https://doi.org/10.5194/se-15-1143-2024, 2024
Short summary
Short summary
Magnesium isotope ratios of arc lavas have been proposed as a proxy for serpentinite subduction, but uncertainties remain regarding their utility. Here we show that bulk serpentinite Mg isotope ratios are identical to the mantle, whereas the serpentinite mineral brucite is enriched in heavy Mg isotopes. Thus, Mg isotope ratios may only be used as serpentinite subduction proxies if brucite is preferentially mobilized from the slab at pressures and temperatures within the arc magma source region.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Pierre Lanari, Igor Maria Villa, and Marco Herwegh
Solid Earth, 13, 1803–1821, https://doi.org/10.5194/se-13-1803-2022, https://doi.org/10.5194/se-13-1803-2022, 2022
Short summary
Short summary
This work studies the interplay of epidote dissolution–precipitation and quartz dynamic recrystallization during viscous granular flow in a deforming epidote–quartz vein. Pb and Sr isotope data indicate that epidote dissolution–precipitation is mediated by internal/recycled fluids with an additional external fluid component. Microstructures and geochemical data show that the epidote material is redistributed and chemically homogenized within the deforming vein via a dynamic granular fluid pump.
Renyu Zeng, Mark B. Allen, Xiancheng Mao, Jianqing Lai, Jie Yan, and Jianjun Wan
Solid Earth, 13, 1259–1280, https://doi.org/10.5194/se-13-1259-2022, https://doi.org/10.5194/se-13-1259-2022, 2022
Short summary
Short summary
In the Liaodong Peninsula, the widely exposed Jurassic high-Sr / Y rocks are generally considered to be derived from the thickened mafic crust. However, research on the Zhoujiapuzi granite in this study shows that there is at least one pluton with a high Sr / Y signature inherited from the source. Zircon growth in Zhoujiapuzi granite can be divided into two stages. The light-CL core was formed in a deeper, hotter magma chamber. The dark-CL rim formed from later, more evolved magma.
J. Javier Álvaro, Teresa Sánchez-García, Claudia Puddu, Josep Maria Casas, Alejandro Díez-Montes, Montserrat Liesa, and Giacomo Oggiano
Solid Earth, 11, 2377–2409, https://doi.org/10.5194/se-11-2377-2020, https://doi.org/10.5194/se-11-2377-2020, 2020
Short summary
Short summary
A geochemical comparison of early Palaeozoic felsic magmatic episodes throughout the south-western European margin of Gondwana is analysed and includes data from the Iberian Massif, the Eastern Pyrenees, southern France and Sardinia. This dataset favours partial melting of sediments and/or granitoids in the lower continental crust during extensional movements related to the opening of the Rheic Ocean.
Marion Louvel, Carmen Sanchez-Valle, Wim J. Malfait, Gleb S. Pokrovski, Camelia N. Borca, and Daniel Grolimund
Solid Earth, 11, 1145–1161, https://doi.org/10.5194/se-11-1145-2020, https://doi.org/10.5194/se-11-1145-2020, 2020
Short summary
Short summary
Here, we conducted spectroscopic measurements on high-pressure, high-temperature fluids and melts to study how halogens, in particular bromine, can be incorporated in subduction zone fluids and melts. We find that a gradual evolution of bromine speciation with liquid composition enables the incorporation of high amounts of Br in both phases. Thus, bromine and, by extension, chlorine are expected to be efficiently recycled from the slab towards the volcanic arc.
Cited articles
Abrajano, T. A., Pasteris, J. D., and Bacuta, G. C.: Zambales ophiolite, Philippines I. Geology and petrology of the critical zone of the Acoje massif, Tectonophysics, 168, 65–100, https://doi.org/10.1016/0040-1951(89)90369-7, 1989.
Arculus, R. J., Pearce, J. A., Murton, B. and van der Laan, S.: Igneous stratigraphy and major element geochemistry of Holes 786A and 786B, in: Proc. ODP Sci. Results, edited by: Fryer, P., Pearce, J. A., Stokking, L. B., 143–169, Ocean Drilling Program, College Station, TX (Ocean Drilling Program), USA, https://doi.org/10.2973/odp.proc.sr.125.137.1992, 1992.
Arculus, R. J., Ishizuka, O., Bogus, K. A., Gurnis, M., Hickey-Vargas, R., Aljahdali, M. H., Bandini-Maeder, A. N., Barth, A. P., Brandl, P. A., Drab, L., do Monte Guerra, R., Hamada, M., Jiang, F., Kanayama, K., Kender, S., Kusano, Y., Li, H., Loudin, L. C., Maffione, M., Marsaglia, K. M., McCarthy, A., Meffre, S., Morris, A., Neuhaus, M., Savov, I. P., Sena, C., Tepley III, F. J., van der Land, C., Yogodzinski, G. M., and Zhang, Z.: A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc, Nat. Geosci., 8, 728–733, https://doi.org/10.1038/ngeo2515, 2015.
Bachman, S. B., Lewis, S. D., and Schweller, W. J.: Evolution of a Forearc Basin, Luzon Central Valley, Philippines, Am. Assoc. Petr. Geol. B., 67, 1143–1162, 1983.
Bacuta, G. C., Kay, R. W., Gibbs, A. K., and Lipin, B. R.: Platinum-group element abundance and distribution in chromite deposits of the Acoje Block, Zambales Ophiolite Complex, Philippines, J. Geochemical Explor., 37, 113–145, https://doi.org/10.1016/0375-6742(90)90086-P, 1990.
Baes, M., Gerya, T., and Sobolev, S. V.: 3-D thermo-mechanical modeling of plume-induced subduction initiation, Earth Planet. Sc. Lett., 453, 193–203, https://doi.org/10.1016/J.EPSL.2016.08.023, 2016.
Barrat, J. A., Zanda, B., Moynier, F., Bollinger, C., Liorzou, C., and Bayon, G.: Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes, Geochim. Cosmochim. Ac., 83, 79–92, https://doi.org/10.1016/j.gca.2011.12.011, 2012.
Bedard, J. H.: Petrogenesis of Boninites from the Betts Cove Ophiolite, Newfoundland, Canada: Identification of Subducted Source Components, J. Petrol., 40, 1853–1889, https://doi.org/10.1093/petroj/40.12.1853, 1999.
Billedo, E., Stephan, J. F., Delteil, J., Bellon, H., Sajona, F. G., and Feraud, G.: The pre-Tertiary ophiolitic complex of Northeastern Luzon and the Polilio Group of Islands, Philippines, J. Geol. Soc. Philipp., 51, 95–114, 1996.
Blenkinsop, T. G.: Visualizing structural geology: From Excel to Google Earth, Comput. Geosci., 45, 52–56, https://doi.org/10.1016/j.cageo.2012.03.007, 2012.
Bloomer, S. H. and Hawkins, J. W.: Petrology and geochemistry of boninite series volcanic rocks from the Mariana trench, Contrib. Mineral. Petrol., 97, 361–377, https://doi.org/10.1007/BF00371999, 1987.
Boyden, J. A., Müller, R. D., Gurnis, M., Torsvik, T. H., Clark, J. A., Turner, M., Ivey-Law, H., Watson, R. J., and Cannon, J. S.: Next-generation plate-tectonic reconstructions using GPlates, in: Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences, edited by: Baru, C. and Keller, G. R., Cambridge University Press, Cambridge, UK, 95–114, 2011.
Brounce, M., Kelley, K. A., Cottrell, E., and Reagan, M. K.: Temporal evolution of mantle wedge oxygen fugacity during subduction initiation, Geology, 43, 775–778, https://doi.org/10.1130/G36742.1, 2015.
Cameron, W. E.: Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus, Contrib. Mineral. Petrol., 89, 239–255, https://doi.org/10.1007/BF00379457, 1985.
Cameron, W. E.: Contrasting boninite–tholeite associations from New Caledonia, in: Boninites and Related Rocks, edited by: Crawford, A. J., Unwin-Hyman, London, UK, 314–338, 1989.
Carter, L. B., Skora, S., Blundy, J. D., De Hoog, J. C. M., and Elliott, T.: An experimental study of trace element fluxes from subducted oceanic crust, J. Petrol., 56, 1585–1606, https://doi.org/10.1093/petrology/egv046, 2015.
Cluzel, D., Ulrich, M., Jourdan, F., Meffre, S., Paquette, J.-L., Audet, M.-A., Secchiari, A., and Maurizot, P.: Early Eocene clinoenstatite boninite and boninite-series dikes of the ophiolite of New Caledonia; a witness of slab-derived enrichment of the mantle wedge in a nascent volcanic arc, Lithos, 260, 429–442, https://doi.org/10.1016/j.lithos.2016.04.031, 2016.
Crameri, F. and Tackley, P. J.: Subduction initiation from a stagnant lid and global overturn: new insights from numerical models with a free surface, Prog. Earth Planet. Sci., 3, 1–19, https://doi.org/10.1186/s40645-016-0103-8, 2016.
Crawford, A. J., Falloon, T. J., and Green, D. H.: Classification, petrogenesis and tectonic setting of boninites, in: Boninites and Related Rocks, edited by: Crawford, A. J., Unwin-Hyman, London, UK, 1–49, 1989.
David, S., Stephan, J.-F., Delteil, J., Müller, C., Butterlin, J., Bellon, H., and Billedo, E.: Geology and tectonic history of Southeastern Luzon, Philippines, J. Asian Earth Sci., 15, 435–452, https://doi.org/10.1016/S0743-9547(97)00027-5, 1997.
Deschamps, A. and Lallemand, S.: The West Philippine Basin: An Eocene to early Oligocene back arc basin opened between two opposed subduction zones, J. Geophys. Res.-Sol. Ea., 107, EPM 1-1–EPM 1-24, https://doi.org/10.1029/2001JB001706, 2002.
Deschamps, A. and Lallemand, S.: Geodynamic setting of Izu-Bonin-Mariana boninites, Geol. Soc. London, Spec. Publ., 219, 163–185, https://doi.org/10.1144/GSL.SP.2003.219.01.08, 2003.
Dietrich, V., Emmermann, R., Oberhänsli, R., and Puchelt, H.: Geochemistry of basaltic and gabbroic rocks from the West Mariana basin and the Mariana trench, Earth Planet. Sc. Lett., 39, 127–144, https://doi.org/10.1016/0012-821X(78)90149-8, 1978.
Dobson, P. F., Blank, J. G., Maruyama, S., and Liou, J. G.: Petrology and geochemistry of boninite-series volcanic rocks, Chichi-Jima, Bonin Islands, Japan, Int. Geol. Rev., 48, 669–701, https://doi.org/10.2747/0020-6814.48.8.669, 2006.
Dulski, P.: Reference materials for geochemical studies: New analytical data by ICP-MS and critical discussion of reference values, Geostand. Newsl., 25, 87–125, https://doi.org/10.1111/j.1751-908X.2001.tb00790.x, 2001.
Elliott, T.: Tracers of the slab, in: Inside the Subduction Factory, vol. 138, edited by: Eiler, J., American Geophysical Union, Washington, D.C., USA, 23–45, 2003.
Encarnación, J.: Multiple ophiolite generation preserved in the northern Philippines and the growth of an island arc complex, Tectonophysics, 392, 103–130, https://doi.org/10.1016/J.TECTO.2004.04.010, 2004.
Encarnación, J., Mukasa, S. B., and Evans, C. A.: Subduction components and the generation of arc-like melts in the Zambales ophiolite, Philippines: Pb, Sr and Nd isotopic constraints, Chem. Geol., 156, 343–357, https://doi.org/10.1016/S0009-2541(98)00190-9, 1999.
Encarnación, J. P., Mukasa, S. B., and Obille, E. C.: Zircon U-Pb geochronology of the Zambales and Angat Ophiolites, Luzon, Philippines: Evidence for an Eocene arc-back arc pair, J. Geophys. Res.-Sol. Ea., 98, 19991–20004, https://doi.org/10.1029/93JB02167, 1993.
Evans, C. and Hawkins, J. W.: Compositional heterogeneities in upper mantle peridotites from the Zambales Range Ophiolite, Luzon, Philippines, Tectonophysics, 168, 23–41, https://doi.org/10.1016/0040-1951(89)90367-3, 1989.
Evans, C. A., Casteneda, G., and Franco, H.: Geochemical complexities preserved in the volcanic rocks of the Zambales Ophiolite, Philippines, J. Geophys. Res.-Sol. Ea., 96, 16251–16262, https://doi.org/10.1029/91JB01488, 1991.
Faccenna, C., Becker, T. W., Lallemand, S., Lagabrielle, Y., Funiciello, F., and Piromallo, C.: Subduction-triggered magmatic pulses: A new class of plumes?, Earth Planet. Sc. Lett., 299, 54–68, https://doi.org/10.1016/J.EPSL.2010.08.012, 2010.
Falloon, T. J. and Crawford, A. J.: The petrogenesis of high-calcium boninite lavas dredged from the northern Tonga ridge, Earth Planet. Sc. Lett., 102, 375–394, https://doi.org/10.1016/0012-821X(91)90030-L, 1991.
Falloon, T. J. and Danyushevsky, L. V: Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: Implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting, J. Petrol., 41, 257–283, https://doi.org/10.1093/petrology/41.2.257, 2000.
Falloon, T. J., Danyushevsky, L. V., Crawford, T. J., Maas, R., Woodhead, J. D., Eggins, S. M., Bloomer, S. H., Wright, D. J., Zlobin, S. K., and Stacey, A. R.: Multiple mantle plume components involved in the petrogenesis of subduction-related lavas from the northern termination of the Tonga Arc and northern Lau Basin: Evidence from the geochemistry of arc and backarc submarine volcanics, Geochem., Geophy. Geosy., 8, Q09003, https://doi.org/10.1029/2007GC001619, 2007.
Florendo, F. F. and Hawkins, J. W.: Comparison of the geochemistry of volcanic rocks of the Zambales Ophiolite, northern Luzon, Philippines: Implications for tectonic setting, Acta Geol. Taiwanica Sci. Reports Natl. Taiwan Univ., 30, 172–176, 1992.
Fuller, M., Haston, R., and Almasco, J.: Paleomagnetism of the Zambales ophiolite, Luzon, northern Philippines, Tectonophysics, 168, 171–203, https://doi.org/10.1016/0040-1951(89)90375-2, 1989.
Fuller, M., Haston, R., Lin, J. L., Richter, B., Schmidtke, E., and Almasco, J.: Tertiary paleomagnetism of regions around the South China Sea, J. Southe. Asian Earth, 6, 161–184, https://doi.org/10.1016/0743-9547(91)90065-6, 1991.
Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y., and Schilling, J. G.: The mean composition of ocean ridge basalts, Geochem. Geophy. Geosy., 14, 489–518, https://doi.org/10.1029/2012GC004334, 2013.
Geary, E. E., Kay, R. W., Reynolds, J. C., and Kay, S. M.: Geochemistry of mafic rocks from the Coto Block, Zambales ophiolite, Philippines: trace element evidence for two stages of crustal growth, Tectonophysics, 168, 43–63, https://doi.org/10.1016/0040-1951(89)90368-5, 1989.
Gerya, T. V., Connolly, J. A. D., and Yuen, D. A.: Why is terrestrial subduction one-sided?, Geology, 36, 43–46, https://doi.org/10.1130/G24060A.1, 2008.
Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V., and Whattam, S. A.: Plate tectonics on the Earth triggered by plume-induced subduction initiation, Nature, 527, 221–225, https://doi.org/10.1038/nature15752, 2015.
Ghiorso, M. S. and Gualda, G. A. R.: An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS, Contrib. Mineral. Petrol., 169, 1–30, https://doi.org/10.1007/s00410-015-1141-8, 2015.
Grove, T. L., Till, C. B., and Krawczynski, M. J.: The Role of H2O in Subduction Zone Magmatism, Annu. Rev. Earth Pl. Sc., 40, 413–439, https://doi.org/10.1146/annurev-earth-042711-105310, 2012.
Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L., and Müller, R. D.: Catastrophic initiation of subduction following forced convergence across fracture zones, Earth Planet. Sc. Lett., 212, 15–30, https://doi.org/10.1016/S0012-821X(03)00242-5, 2003.
Hall, R., Ali, J. R., Anderson, C. D., and Baker, S. J.: Origin and motion history of the Philippine Sea Plate, Tectonophysics, 251, 229–250, https://doi.org/10.1016/0040-1951(95)00038-0, 1995.
Haugen, E.: Magmatic Evolution of Early Subduction Zones: Geochemical Modeling and Chemical Stratigraphy of Boninite and Fore Arc Basalt from the Bonin Fore Arc, MSc Thesis, Utah State University., available at: http://digitalcommons.usu.edu/etd/5934, last access: 7 June 2017.
Hawkins, J. W. and Evans, C. A.: Geology of the Zambales Range, Luzon, Philippine Islands: Ophiolite Derived from an Island Arc-Back Arc Basin Pair, in: The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, Geophyical Monograph Series vol. 27, edited by: Hayes, D. E., American Geophysical Union, Washington, D.C., USA, 95–123, 1983.
Head, J. W. and Wilson, L.: Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits, J. Volcanol. Geotherm. Res., 121, 155–193, https://doi.org/10.1016/S0377-0273(02)00425-0, 2003.
Hickey-Vargas, R., Savov, I. P., Bizimis, M., Ishii, T., and Fujioka, K.: Origin of Diverse Geochemical Signatures in Igneous Rocks from the West Philippine Basin: Implications for Tectonic Models, American Geophysical Union, Washington, D.C., USA, 287–303, 2006.
Hickey-Vargas, R., Yogodzinski, G. M., Ishizuka, O., McCarthy, A., Bizimis, M., Kusano, Y., Savov, I. P., and Arculus, R.: Origin of depleted basalts during subduction initiation and early development of the Izu-Bonin-Mariana island arc: Evidence from IODP expedition 351 site U1438, Amami-Sankaku basin, Geochim. Cosmochim. Ac., 229, 85–111, https://doi.org/10.1016/J.GCA.2018.03.007, 2018.
Holt, A. F., Royden, L. H., and Becker, T. W.: The dynamics of double slab subduction, Geophys. J. Int., 209, 250–265, https://doi.org/10.1093/gji/ggw496, 2017.
Ishikawa, T., Nagaishi, K., and Umino, S.: Boninitic volcanism in the Oman ophiolite: Implications for thermal condition during transition from spreading ridge to arc, Geology, 30, 899–902, https://doi.org/10.1130/0091-7613(2002)030<0899:BVITOO>2.0.CO;2, 2002.
Ishizuka, O., Tani, K., Reagan, M. K., Kanayama, K., Umino, S., Harigane, Y., Sakamoto, I., Miyajima, Y., Yuasa, M., and Dunkley, D. J.: The timescales of subduction initiation and subsequent evolution of an oceanic island arc, Earth Planet. Sc. Lett., 306, 229–240, https://doi.org/10.1016/j.epsl.2011.04.006, 2011.
Ishizuka, O., Taylor, R. N., Ohara, Y., and Yuasa, M.: Upwelling, rifting, and age-progressive magmatism from the Oki-Daito mantle plume, Geology, 41, 1011–1014, https://doi.org/10.1130/G34525.1, 2013.
Ishizuka, O., Umino, S., Taylor, R. N., and Kanayama, K.: Evidence for hydrothermal activity in the earliest stages of intraoceanic arc formation: Implications for ophiolite-hosted hydrothermal activity, Econ. Geol., 109, 2159–2177, https://doi.org/10.2113/econgeo.109.8.2159, 2014.
Ishizuka, O., Hickey-Vargas, R., Arculus, R. J., Yogodzinski, G. M., Savov, I. P., Kusano, Y., Mccarthy, A., Brandl, P. A., and Sudo, M.: Age of Izu – Bonin – Mariana arc basement, Earth Planet. Sc. Lett., 481, 80–90, https://doi.org/10.1016/j.epsl.2017.10.023, 2018.
Jenner, F. E. and O'Neill, H. S. C.: Analysis of 60 elements in 616 ocean floor basaltic glasses, Geochem. Geophy. Geosy., 13, Q02005, https://doi.org/10.1029/2011GC004009, 2012.
Jenner, G. A.: Geochemistry of high-Mg andesites from Cape Vogel, Papua New Guinea, Chem. Geol., 33, 307–332, https://doi.org/10.1016/0009-2541(81)90106-6, 1981.
Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., Andreae, M. O., and Enzweiler, J.: Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials, Geostand. Geoanal. Res., 40, 333–350, https://doi.org/10.1111/j.1751-908X.2015.00392.x, 2016.
Kanayama, K., Umino, S., and Ishizuka, O.: Eocene volcanism during the incipient stage of Izu–Ogasawara Arc: Geology and petrology of the Mukojima Island Group, the Ogasawara Islands, Isl. Arc, 21, 288–316, https://doi.org/10.1111/iar.12000, 2012.
Kanayama, K., Kitamura, K., and Umino, S.: New geochemical classification of global boninites, in: IAVCEI 2013 Scientific Assembly, 20–24 July 2013, Kagoshima, Japan, p. 99, 2013.
Karig, D. E.: Accreted terranes in the northern part of the Philippine archipelago, Tectonics, 2, 211–236, https://doi.org/10.1029/TC002i002p00211, 1983.
Karig, D. E., Lagoe, M. B., Snow, J. K., Schweller, W. J., and Bacuta, G. C.: Stratigraphy along the Cabaluan River and geologic relations on the west flank of the Zambales Range, Luzon, Philippines, Philipp. Geol., 30, 1–20, 1986.
Keenan, T. E. and Encarnación, J.: Unclear causes for subduction, Nat. Geosci., 9(, 338–338, https://doi.org/10.1038/ngeo2703, 2016.
Keppler, H.: Fluids and trace element transport in subduction zones, Am. Mineral., 102, 5–20, https://doi.org/10.2138/am-2017-5716, 2017.
König, S., Münker, C., Schuth, S., and Garbe-Schönberg, D.: Mobility of tungsten in subduction zones, Earth Planet. Sc. Lett., 274, 82–92, https://doi.org/10.1016/j.epsl.2008.07.002, 2008.
König, S., Münker, C., Schuth, S., Luguet, A., Hoffmann, J. E., and Kuduon, J.: Boninites as windows into trace element mobility in subduction zones, Geochim. Cosmochim. Ac., 74, 684–704, https://doi.org/10.1016/j.gca.2009.10.011, 2010.
Kostopoulos, D. K. and Murton, B. J.: Origin and distribution of components in boninite genesis: significance of the OIB component, Geol. Soc. London, Spec. Publ., 60, 133–154, https://doi.org/10.1144/GSL.SP.1992.060.01.08, 1992.
Kuroda, N., Shiraki, K., and Urano, H.: Boninite as a possible calc-alkalic primary magma, B. Volcanol., 41, 563–575, https://doi.org/10.1007/BF02597387, 1978.
Kusano, Y., Hayashi, M., Adachi, Y., Umino, S., and Miyashita, S.: Evolution of volcanism and magmatism during initial arc stage: constraints on the tectonic setting of the Oman Ophiolite, Geol. Soc. London, Spec. Publ., 392, 177–193, https://doi.org/10.1144/SP392.9, 2014.
Kusano, Y., Umino, S., Shinjo, R., Ikei, A., Adachi, Y., Miyashita, S., and Arai, S.: Contribution of slab-derived fluid and sedimentary melt in the incipient arc magmas with development of the paleo-arc in the Oman Ophiolite, Chem. Geol., 449, 206–225, https://doi.org/10.1016/j.chemgeo.2016.12.012, 2017.
Lallemand, S.: Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction, Prog. Earth Planet. Sci., 3, 1–26, https://doi.org/10.1186/s40645-016-0085-6, 2016.
Le Maitre, R. W.: Igneous Rocks. A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, edited by: Le Maitre, R. W., Cambridge University Press, Cambridge, UK, New York, USA, Melbourne, Australia, 2002.
Leng, W. and Gurnis, M.: Subduction initiation at relic arcs, Geophys. Res. Lett., 42, 7014–7021, https://doi.org/10.1002/2015GL064985, 2015.
Leng, W., Gurnis, M., and Asimow, P.: From basalts to boninites: The geodynamics of volcanic expression during induced subduction initiation, Lithosphere, 4, 511–523, https://doi.org/10.1130/L215.1, 2012.
Li, Y. B., Kimura, J. I., Machida, S., Ishii, T., Ishiwatari, A., Maruyama, S., Qiu, H. N., Ishikawa, T., Kato, Y., Haraguchi, S., Takahata, N., Hirahara, Y., and Miyazaki, T.: High-Mg adakite and low-Ca boninite from a bonin fore-arc seamount: Implications for the reaction between slab melts and depleted mantle, J. Petrol., 54, 1149–1175, https://doi.org/10.1093/petrology/egt008, 2013.
Macpherson, C. G. and Hall, R.: Tectonic setting of Eocene boninite magmatism in the Izu–Bonin–Mariana forearc, Earth Planet. Sc. Lett., 186, 215–230, https://doi.org/10.1016/S0012-821X(01)00248-5, 2001.
Mallmann, G. and O'Neill, H. S. C.: The Crystal/Melt Partitioning of V during Mantle Melting as a Function of Oxygen Fugacity Compared with some other Elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb), J. Petrol., 50, 1765–1794, https://doi.org/10.1093/petrology/egp053, 2009.
Meijer, A.: Primitive arc volcanism and a boninite series; example from western Pacific Island arcs, in: The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, American Geophysical Union, Washington, D.C., USA, 269–282, 1980.
Meijer, A.: Petrology of volcanic rocks from the fore-arc sites, edited by: Anthony, E., Reagan, M., Lee, M., Powell, R., Hussong, D. M., Uyeda, S., Blanchet, R., Bleil, U., Ellis, C. H., Francis, T., Fryer, P., Horai, K.-I., Kling, S., Meijer, A., Nakamura, K., Natland, J. H., Packham, G. H., and Sharaskin, A. Y., Initial Reports Deep Sea Drill. Proj., 60, 709–729, https://doi.org/10.2973/dsdp.proc.60.138.1982, 1982.
Miyashiro, A.: Volcanic rock series in island arcs and active continental margins, Am. J. Sci., 274, 321–355, https://doi.org/10.2475/ajs.274.4.321, 1974.
Münker, C., Pfänder, J. A., Weyer, S., Büchl, A., Kleine, T., and Mezger, K.: Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics, Science, 301, 84–87, https://doi.org/10.1126/science.1084662, 2003.
Nagaishi, K.: Fluid transfer and magmatism in the initial stage of subduction: Inference from the Oman ophiolite, PhD Thesis, Shizuoka University, Shizuoka, Japan, available at: http://ir.lib.shizuoka.ac.jp/handle/10297/6386 (last access: 30 November 2017), 2008.
Natland, J. H.: Crystal Morphologies and Pyroxene Compositions in Boninites and Tholeiitic Basalts from Deep Sea Drilling Project Holes 458 and 459B in the Mariana Fore-Arc Region, Initial Reports Deep Sea Drill. Proj., 60, 681–707, https://doi.org/10.2973/dsdp.proc.60.137.1982, 1982.
Osozawa, S., Shinjo, R., Lo, C.-H., Jahn, B.-M., Hoang, N., Sasaki, M., Ishikawa, K., Kano, H., Hoshi, H., Xenophontos, C., and Wakabayashi, J.: Geochemistry and geochronology of the Troodos ophiolite: An SSZ ophiolite generated by subduction initiation and an extended episode of ridge subduction?, Lithosphere, 4, 497–510, https://doi.org/10.1130/L205.1, 2012.
Paringit, R.: Notes on the massive copper-pyrite deposits and exploration concepts applied at Barlo, Dasol, Pangasinan, J. Geol. Soc. Philipp., 31, 1–6, 1977.
Pearce, J. A. and Parkinson, I. J.: Trace element models for mantle melting: application to volcanic arc petrogenesis, Geol. Soc. London, Spec. Publ., 76, 373–403, https://doi.org/10.1144/GSL.SP.1993.076.01.19, 1993.
Pearce, J. A. and Robinson, P. T.: The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting, Gondwana Res., 18, 60–81, https://doi.org/10.1016/j.gr.2009.12.003, 2010.
Pearce, J. A., van der Laan, S. R., Arculus, R. J., Murton, B. J., Ishii, T., Peate, D. W., and Parkinson, I. J.: Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc); a case study of magma genesis during the initial stages of subduction, Proc. Ocean Drill. Program, Sci. Results, 125, 623–659, https://doi.org/10.2973/odp.proc.sr.125.172.1992, 1992.
Pearce, J. A., Stern, R. J., Bloomer, S. H., and Fryer, P.: Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components, Geochem. Geophy. Geosy., 6, Q07006, https://doi.org/10.1029/2004GC000895, 2005.
Plank, T.: Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continent, J. Petrol., 46, 921–944, https://doi.org/10.1093/petrology/egi005, 2005.
Plank, T.: 4.17 – The chemical composition of subducting sediments, in: Treatise on Geochemistry, Elsevier, Italy, 607–629, 2014.
Queano, K. L., Ali, J. R., Milsom, J., Aitchison, J. C., and Pubellier, M.: North Luzon and the Philippine Sea Plate motion model: Insights following paleomagnetic, structural, and age-dating investigations, J. Geophys. Res., 112, B05101, https://doi.org/10.1029/2006JB004506, 2007.
Queaño, K. L., Ali, J. R., Pubellier, M., Yumul, G. P., and Dimalanta, C. B.: Reconstructing the Mesozoic-early Cenozoic evolution of northern Philippines: clues from palaeomagnetic studies on the ophiolitic basement of the Central Cordillera, Geophys. J. Int., 178, 1317–1326, https://doi.org/10.1111/j.1365-246X.2009.04221.x, 2009.
Queaño, K. L., Marquez, E. J., Dimalanta, C. B., Aitchison, J. C., Ali, J. R., and Yumul, G. P.: Mesozoic radiolarian faunas from the northwest Ilocos Region, Luzon, Philippines and their tectonic significance, Isl. Arc, 26, e12195, https://doi.org/10.1111/iar.12195, 2017a.
Queaño, K. L., Dimalanta, C. B., Yumul, G. P., Marquez, E. J., Faustino-Eslava, D. V, Suzuki, S., and Ishida, K.: Stratigraphic units overlying the Zambales Ophiolite Complex (ZOC) in Luzon, (Philippines): Tectonostratigraphic significance and regional implications, J. Asian Earth Sci., 142, 20–31, https://doi.org/10.1016/j.jseaes.2016.06.011, 2017b.
Reagan, M. K. and Meijer, A. I.: Geology and geochemistry of early arc-volcanic rocks from Guam., Geol. Soc. Am. Bull., 95, 701–713, https://doi.org/10.1130/0016-7606(1984)95<701:GAGOEA>2.0.CO;2, 1984.
Reagan, M. K., Ishizuka, O., Stern, R. J., Kelley, K. A., Ohara, Y., Blichert-Toft, J., Bloomer, S. H., Cash, J., Fryer, P., Hanan, B. B., Hickey-Vargas, R., Ishii, T., Kimura, J.-I., Peate, D. W., Rowe, M. C., and Woods, M.: Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system, Geochem. Geophy. Geosy., 11, Q03X12, https://doi.org/10.1029/2009GC002871, 2010.
Reagan, M. K., Pearce, J. A., Petronotis, K., Almeev, R., Avery, A. J., Carvallo, C., Chapman, T., Christeson, G. L., Ferré, E. C., Godard, M., Heaton, D. E., Kirchenbaur, M., Kurz, W., Kutterolf, S., Hongyan, L., Yibing, L., Michibayashi, K., Morgan, S., Nelson, W. R., Prytulak, J., Python, M., Robertson, A. H. F., Ryan, J. G., Sager, W. W., Sakuyama, T., Shervais, J. W., Shimizu, K., and Whattam, S. A.: Expedition 352 summary, Proc. Int. Ocean Discov. Progr., 352, 1–32, https://doi.org/10.14379/iodp.proc.352.102.2015, 2015.
Reagan, M. K., Pearce, J. A., Petronotis, K., Almeev, R. R., Avery, A. J., Carvallo, C., Chapman, T., Christeson, G. L., Ferré, E. C., Godard, M., Heaton, D. E., Kirchenbaur, M., Kurz, W., Kutterolf, S., Li, H., Li, Y., Michibayashi, K., Morgan, S., Nelson, W. R., Prytulak, J., Python, M., Robertson, A. H. F., Ryan, J. G., Sager, W. W., Sakuyama, T., Shervais, J. W., Shimizu, K., and Whattam, S. A.: Subduction initiation and ophiolite crust: new insights from IODP drilling, Int. Geol. Rev., 59, 1439–1450, https://doi.org/10.1080/00206814.2016.1276482, 2017.
Ribeiro, J. M., Stern, R. J., Kelley, K. A., Shaw, A. M., Martinez, F., and Ohara, Y.: Composition of the slab-derived fluids released beneath the Mariana forearc: Evidence for shallow dehydration of the subducting plate, Earth Planet. Sc. Lett., 418, 136–148, https://doi.org/10.1016/j.epsl.2015.02.018, 2015.
Richter, C. and Ali, J. R.: Philippine Sea Plate motion history: Eocene-Recent record from ODP Site 1201, central West Philippine Basin, Earth Planet. Sc. Lett., 410, 165–173, https://doi.org/10.1016/j.epsl.2014.11.032, 2015.
Sajona, F. G.: Fusion de la croute oceanique en contexte de subduction/collision: Geochimie, geochronologie et petrologie du magmatisme Plioquaternaire de Mindanao (Philippines), PhD Thesis, Universite de Bretagne Occidentale, Brest, France, 1995.
Salapare, R. C., Dimalanta, C. B., Ramos, N. T., Manalo, P. C., Faustino-Eslava, D. V., Queano, K. L., and Yumul, G. P.: Upper crustal structure beneath the Zambales Ophiolite Complex, Luzon, Philippines inferred from integrated gravity, magnetic and geological data, Geophys. J. Int., 201, 1522–1533, https://doi.org/10.1093/gji/ggv094, 2015.
Savov, I. P., Hickey-Vargas, R., D'Antonio, M., Ryan, J, G., and Spadea, P.: Petrology and Geochemistry of West Philippine Basin Basalts and Early Palau–Kyushu Arc Volcanic Clasts from ODP Leg 195, Site 1201D: Implications for the Early History of the Izu–Bonin–Mariana Arc, J. Petrol., 47, 277–299, https://doi.org/10.1093/petrology/egi075, 2006.
Schweller, W. J. and Karig, D. E.: Emplacement of the Zambales Ophiolite into the West Luzon Margin, in: AAPG Memoir 34: Studies in Continental Margin Geology, edited by: Watkins, J. S. and Drake, C. L., American Association of Petroleum Geologists, Tulsa, Oklahoma, USA, 441–454, 1982.
Schweller, W. J., Roth, P. H., Karig, D. E., and Bachman, S. B.: Sedimentation history and biostratigraphy of ophiolite-related Tertiary sediments, Luzon, Philippines, Geol. Soc. Am. Bull., 95, 1333–1342, https://doi.org/10.1130/0016-7606(1984)95<1333:SHABOO>2.0.CO;2, 1984.
Serri, G., Spadea, P., Beccaluva, L., Civetta, L., Coltorti, M., Dostal, J., Sajona, F. G., Vaccaro, C., and Zeda, O.: Petrology of igneous rocks from the Celebes Sea basement, edited by: Spadea, P., Beccaluva, L., Civetta, L., Coltorti, M., Dostal, J., Sajona, F. G., Vaccaro, C., Zeda, O., Silver, E. A., Rangin, C., von Breymann, M. T., Berner, U., Bertrand, P., Betzler, C., Brass, G. W., Hsü, V., Huang, Z., Jarrard, R. D., Lewis, S. D., Linsley, B. K., Merrill, D. L., Müller, C. M., Nederbragt, A. J., Nichols, G. J., Pubellier, M., Sajona, F. G., Scherer, R. P., Sheu, D. D., Shibuya, H., Shyu, J.-P., Smith, R. B., Smith, T., Solidum, R. U., Spadea, P., Tannant, D. D., and Winkler, W. R., Proc. Ocean Drill. Program, Sci. Results, 124, 271–296, https://doi.org/10.2973/odp.proc.sr.124.160.1991, 1991.
Sharaskin, A. Y.: Petrography and geochemistry of basement rocks from five Leg 60 sites, Initial Reports Deep Sea Drill. Proj., 60, 647–656, https://doi.org/10.2973/dsdp.proc.60.134.1982, 1982.
Shervais, J. W.: TiV plots and the petrogenesis of modern and ophiolitic lavas, Earth Planet. Sc. Lett., 59, 101–118, https://doi.org/10.1016/0012-821X(82)90120-0, 1982.
Spadea, P., D'Antonio, M., and Thirlwall, M. F.: Source characteristics of the basement rocks from the Sulu and Celebes Basins (Western Pacific): chemical and isotopic evidence, Contrib. Mineral. Petrol., 123, 159–176, https://doi.org/10.1007/s004100050148, 1996.
Stern, R. J.: Subduction initiation: spontaneous and induced, Earth Planet. Sc. Lett., 226, 275–292, https://doi.org/10.1016/j.epsl.2004.08.007, 2004.
Stern, R. J., Reagan, M., Ishizuka, O., Ohara, Y., and Whattam, S.: To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites, Lithosphere, 4, 469–483, https://doi.org/10.1130/L183.1, 2012.
Takahashi, E.: Origin of basaltic magmas–implications from peridotite melting experiments and an olivine fractionation model, B. Volcanol. Soc. Japan, 30, S17–S40, 1986.
Tamayo, R. A., Maury, R. C., Yumul, G. P., Polvé, M., Cotten, J., Dimantala, C. B., and Olaguera, F. O.: Subduction-related magmatic imprint of most Philippine ophiolites: Implications on the early geodynamic evolution of the Philippine archipelago, Bull. Soc. Geol. Fr., 175, 443–460, https://doi.org/10.2113/175.5.443, 2004.
Tamayo Jr., R. A.: Caracterisation petrologique et geochemique, origines et evolutions geodynamiques des ophiolites des Philippines, PhD Thesis, Universite de Bretagne Occidentale, Brest, France, 2001.
Tani, K., Gabo, J. A. S., Horie, K., Ishizuka, O., Padrones, J., Payot, B., Tejada, M. L., Faustino-Eslava, D. V., Imai, A., Arai, S., Hokada, T., Yumul, Jr., G. P., and Dimalanta, C. B.: Temporal constraints for the tectonic development of the Philippine ophiolite belts from new zircon U-Pb ages, in: Japan Geoscience Union Meeting, Chiba, Japan, 2015.
Taylor, R. N., Nesbitt, R. W., Vidal, P., Harmon, R. S., Auvray, B., and Croudace, I. W.: Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan, J. Petrol., 35, 577–617, https://doi.org/10.1093/petrology/35.3.577, 1994.
Umino, S.: Magma mixing in boninite sequence of Chichijima, Bonin Islands, J. Volcanol. Geoth. Res., 29, 125–157, https://doi.org/10.1016/0377-0273(86)90042-9, 1986.
Umino, S. and Nakano, S.: Geology of the Chichijima Retto District, Quadrangle Series, 1 : 50 000, Geological Survey of Japan, AIST, Tsukuba, Japan, 71 pp., 2007 (in Japanese with English abstract).
Umino, S., Lipman, P. W., and Obata, S.: Subaqueous lava flow lobes, observed on ROV dives off Hawaii, Geology, 28, 503–506, https://doi.org/10.1130/0091-7613(2000)28<503:SLFLOO>2.0.CO;2, 2000.
Umino, S., Obata, S., Lipman, P., Smith, J. R., Shibata, T., Naka, J., and Trusdell, F.: Emplacement and inflation structures of submarine and subaerial from Hawaii, American Geophysical Union, Washington, D.C., USA, 85–101, 2002.
Umino, S., Nakano, S., Ishizuka, O., and Komazawa, M.: Geological map of Japan 1 : 200,000, Ogasawara Shoto, Geological Survey of Japan, AIST, Tsukuba, Japan, 46 pp., 2009 (in Japanese with English abstract).
Umino, S., Kitamura, K., Kanayama, K., Tamura, A., Sakamoto, N., Ishizuka, O., and Arai, S.: Thermal and chemical evolution of the subarc mantle revealed by spinel-hosted melt inclusions in boninite from the Ogasawara (Bonin) Archipelago, Japan, Geology, 43, 151–154, https://doi.org/10.1130/G36191.1, 2015.
Umino, S., Kanayama, K., Kitamura, K., Tamura, A., Ishizuka, O., Senda, R., and Arai, S.: Did boninite originate from the heterogeneous mantle with recycled ancient slab?, Isl. Arc, 27, e12221, https://doi.org/10.1111/iar.12221, 2018.
Vollmer, F.: Orient 3: a new integrated software program for orientation data analysis, kinematic analysis, spherical projections, and Schmidt plots, in: Geological Society of America Abstracts with Programs, Baltimore, Maryland, USA, vol. 47, p. 49, 2015.
Wada, I. and King, S.: Dynamics of Subducting Slabs: Numerical Modeling and Constraints from Seismology, Geoid, Topography, Geochemistry, and Petrology, in: Treatise on Geophysics, Elsevier, UK, 339–391, 2015.
Walker, G. P. L.: Morphometric study of pillow-size spectrum among pillow lavas, B. Volcanol., 54, 459–474, https://doi.org/10.1007/BF00301392, 1992.
Watanabe, A. and Kuroda, N.: Quartz-bearing boninite from northern Chichi-jima, Bonin Islands?: Magma mixing of boninite with quartz dacite, Geosci. Reports Shizuoka Univ., 27, 1–9, https://doi.org/10.14945/00000365, 2000.
Weyer, S., Münker, C., and Mezger, K.: Nb/Ta, Zr/Hf and REE in the depleted mantle: Implications for the differentiation history of the crust – mantle system, Earth Planet. Sc. Lett., 205, 309–324, https://doi.org/10.1016/S0012-821X(02)01059-2, 2003.
Whattam, S. A. and Stern, R. J.: The “subduction initiation rule”: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation, Contrib. Mineral. Petrol., 162, 1031–1045, https://doi.org/10.1007/s00410-011-0638-z, 2011.
Whattam, S. A. and Stern, R. J.: Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics, Gondwana Res., 27, 38–63, https://doi.org/10.1016/J.GR.2014.07.011, 2015.
Workman, R. K. and Hart, S. R.: Major and trace element composition of the depleted MORB mantle (DMM), Earth Planet. Sc. Lett., 231, 53–72, https://doi.org/10.1016/j.epsl.2004.12.005, 2005.
Wu, J., Suppe, J., Lu, R., and Kanda, R.: Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods, J. Geophys. Res.-Sol. Ea., 121, 4670–4741, https://doi.org/10.1002/2016JB012923, 2016.
Yajima, K. and Fujimaki, H.: High-Ca and low-Ca boninites from Chichijima, Bonin (Ogasawara) archipelago, Japanese Mag. Mineral. Petrol. Sci., 30, 217–236, https://doi.org/10.2465/gkk.30.217, 2001.
Yamazaki, T., Takahashi, M., Iryu, Y., Sato, T., Oda, M., Takayanagi, H., Chiyonobu, S., Nishimura, A., Nakazawa, T., and Ooka, T.: Philippine Sea Plate motion since the Eocene estimated from paleomagnetism of seafloor drill cores and gravity cores, Earth Planets Space, 62, 495–502, https://doi.org/10.5047/eps.2010.04.001, 2010.
Yumul, G. P.: Varying mantle sources of supra-subduction zone ophiolites: REE evidence from the Zambales Ophiolite Complex, Luzon, Philippines, Tectonophysics, 262, 243–262, https://doi.org/10.1016/0040-1951(96)00013-3, 1996.
Yumul, G. P., Dimalanta, C. B., and Jumawan, F. T.: Geology of the southern Zambales Ophiolite Complex, Luzon, Philippines, Isl. Arc, 9, 542–555, https://doi.org/10.1111/j.1440-1738.2000.00300.x, 2000.
Yumul Jr., G. P.: Multi-stage melting, evolving mantle sources and ophiolite generation: Constraints from the Zambales ophiolite complex, Philippines, PhD Thesis, University of Tokyo, Tokyo, Japan, 1990.
Yumul Jr., G. P., Datuin, R. T., and Manipon, J. C.: Geology and geochemistry of the Cabangan-San Antonio massifs, Zambales ophiolite complex, Philippines: Tectonically juxtaposed marginal basin-island arc terranes, J. Geol. Soc. Philipp., 45, 69–100, 1990.
Yumul Jr., G. P., Dimalanta, C. B., Faustino, D. V., and De Jesus, J. V: Translation and docking of an arc terrane: geological and geochemical evidence from the southern Zambales Ophiolite Complex, Philippines, Tectonophysics, 293, 255–272, https://doi.org/10.1016/S0040-1951(98)00096-1, 1998.
Zahirovic, S., Seton, M., and Müller, R. D.: The Cretaceous and Cenozoic tectonic evolution of Southeast Asia, Solid Earth, 5, 227–273, https://doi.org/10.5194/se-5-227-2014, 2014.
Zahirovic, S., Matthews, K. J., Flament, N., Müller, R. D., Hill, K. C., Seton, M., and Gurnis, M.: Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic, Earth-Sci. Rev., 162, 293–337, https://doi.org/10.1016/J.EARSCIREV.2016.09.005, 2016.
Zakariadze, G. S.: Petrology of basalts of holes 447A, 449, and 450, South Philippine Sea transect, Deep Sea Drilling Project Leg 59, edited by: Dmitriev, L. V., Sobolev, A. V., Sushchevskaya, N. M., Kroenke, L., Scott, R. B., Balshaw, K. M., Brassell, S. C., Chotin, P., Heiman, M. E., Ishii, T., Keating, B. H., Martini, E., Mattey, D. P., Rodolfo, K. S., Sartori, R., Theyer, F., Usher, J. L., Zakariadze, G., and Orlofsky, S., Initial Reports Deep Sea Drill. Proj., 59, 669–680, https://doi.org/10.2973/dsdp.proc.59.129.1981, 1981.
Zanetti, A., D'Antonio, M., Spadea, P., Raffone, N., Vannucci, R., and Bruguier, O.: Petrogenesis of mantle peridotites from the Izu-Bonin-Mariana (IBM) forearc, Ofioliti, 31, 189–206, https://doi.org/10.4454/ofioliti.v31i2.340, 2006.
Short summary
The occurrence of boninite in the northern Zambales ophiolite is reported. Boninite is a relatively rare high-magnesium andesite that is intimately associated with early arc volcanism and the initiation of subduction zones. Taken as a whole, the geological and geochemical characteristics of Zambales and Izu-Ogasawara–Mariana forearc volcanic sequences enables a refined geodynamic reconstruction of subduction initiation.
The occurrence of boninite in the northern Zambales ophiolite is reported. Boninite is a...