Blair, S. C., Berge, P. A., and Berryman, J. G.: Two-point correlation functions to characterize microgeometry and estimate permeabilities of synthetic and natural sandstones, Lawrence Livermore National Laboratory report, UCRL-LR-114182,
https://doi.org/10.2172/10182383, 1993.
a,
b
Brajanovski, M., Gurevich, B., and Schoenberg, M.: A model for P-wave attenuation and dispersion in a porous medium permeated by aligned fractures, Geophys. J. Int., 163, 372–384,
https://doi.org/10.1111/j.1365-246X.2005.02722.x, 2005.
a,
b,
c
Brajanovski, M., Müller, T. M., and Gurevich, B.: Characteristic frequencies of seismic attenuation due to wave-induced fluid flow in fractured porous media, Geophys. J. Int., 166, 574–578,
https://doi.org/10.1111/j.1365-246X.2006.03068.x, 2006.
a
Carcione, J. M., Gurevich, B., Santos J. E., and Picotti, S.: Angular and frequency-dependent wave velocity and attenuation in fractured porous media, Pure Appl. Geophys., 170, 1673–1683,
https://doi.org/10.1007/s00024-012-0636-8, 2013.
a
Caspari, E., Milani, M., Rubino, J. G., Müller, T. M., Quintal, B., and Holliger, K.: Numerical upscaling of frequency-dependent P- and S-wave moduli in fractured porous media, Geophys. Prospec., 64, 369–379,
https://doi.org/10.1111/1365-2478.12393, 2016.
a
Caspari, E., Novikov, M., Lisitsa, V., Barbosa, N. D., Quintal, B., Rubino, J. G., and Holliger, K.: Attenuation mechanisms in fractured fluid-saturated porous rocks:a numerical modelling study, Geophys. Prospec., 67, 935–955,
https://doi.org/10.1111/1365-2478.12667, 2019
a,
b
Guo, J., Rubino, J. G., Barbosa, N. D., Glubokovskikh, S., and Gurevich, B.: Seismic dispersion and attenuation in saturated porous rocks with aligned fractures of finite thickness: Theory and numerical simulations – Part 1: P-wave perpendicular to the fracture plane, Geophysics, 83, 49–62,
https://doi.org/10.1190/geo2017-0065.1, 2017.
a,
b
Gurevich, B., Brajanovski, M., Galvin, R. J., Müller, T. M., and Toms-Stewart, J.: P-wave dispersion and attenuation in fractured and porous reservoirs – poroelasticity approach, Geophys. Prospec., 57, 225–237,
https://doi.org/10.1111/j.1365-2478.2009.00785.x, 2009.
a
Hudson, J. A., Liu, E., and Crampin, S.: Transmission properties of a plane fault, Geophys. J. Int., 125, 559–566,
https://doi.org/10.1111/j.1365-246X.1996.tb00018.x, 1996.
a
Jaeger, J. C., Cook, N. G. W., and Zimmerman, R. W.: Fundamentals of rock mechanics, 4th edn., ISBN:978-0-632-05759-7, Fourth edition published 2007 by Blackwell Publishing Ltd
350 Main Street, Malden, MA 02148-5020, USA, 2007. a
Jänicke, R., Quintal, B., and Steeb, H.: Numerical homogenization of mesoscopic loss in poroelastic media, Eur. J. Mech. A-Solid, 49, 382–395,
https://doi.org/10.1016/j.euromechsol.2014.08.011, 2014.
a
Krzikalla, F. and Müller, T. M.: Anisotropic P-SV-wave dispersion and attenuation due to inter-layer flow in thinly layered porous rocks, Geophysics, 76, 135–145,
https://doi.org/10.1190/1.3555077, 2011.
a,
b
Lubbe, R., Sothcott, J., Worthington, M. H., and McCann, C.: Laboratory estimates of normal and shear fracture compliance, Geophys. Prospec., 56, 239–247,
https://doi.org/10.1111/j.1365-2478.2007.00688.x, 2008.
a
Masson, Y. J. and Pride, S. R.: Poroelastic finite difference modeling of seismic attenuation and dispersion due to mesoscopic-scale heterogeneity, J. Geophys. Res., 112, B03204,
https://doi.org/10.1029/2006JB004592, 2007.
a,
b
Masson, Y. J. and Pride, S. R.: On the correlation between material structure and seismic attenuation anisotropy in porous media, J. Geophys. Res., 119, 2848–2870,
https://doi.org/10.1002/2013JB010798, 2014.
a
Masson, Y. J. and Pride, S. R.: Mapping the mechanical properties of rocks using automated microindentation tests, J. Geophys. Res., 120, 7138–7155,
https://doi.org/10.1002/2015JB012248, 2015.
a
Maultzsch, S., Chapman, M., Liu, E., and Li, X. Y.: Modelling frequency-dependent seismic anisotropy in fluid-saturated rock with aligned fractures: implication of fracture size estimation from anisotropic measurements, Geophys. Prospec., 51, 381–392,
https://doi.org/10.1046/j.1365-2478.2003.00386.x, 2003.
a
Metz, B., Davidson, O., De Coninck, H., Loos, M., and Meyer, L.: Ipcc, 2005: IPCC special report on carbon dioxide capture and storage, Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, 2005. a
Milani, M., Rubino, J. G., Müller, T. M., Quintal, B., Caspari, E., and Holliger, K.: Representative elementary volumes for evaluating effective seismic properties of heterogeneous poroelastic media, Geophysics, 81, D21–D33,
https://doi.org/10.1190/geo2015-0173.1, 2016.
a,
b
Müller, T. M., Gurevich, B., and Lebedev, M.: Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks – A review, Geophysics, 75, 75–147,
https://doi.org/10.1190/1.3463417, 2010.
a
Nakagawa, S. and Schoenberg, M. A.: Poroelastic modeling of seismic boundary conditions across a fracture, J. Acoust. Soc. Am., 122, 831–847,
https://doi.org/10.1121/1.2747206, 2007.
a,
b
Nolte, D. and Pyrak-Nolte, L.: Stratified continuum percolation - Scaling geometry of hierarchical cascades, Phys. Rev. A, 44, 6320–6333,
https://doi.org/10.1103/PhysRevA.44.6320, 1991.
a,
b,
c,
d,
e
Pride, S. R. and Berryman, J. G.: Linear dynamics of double-porosity and dual-permeability materials, Part I: Governing equations and acoustic attenuation, Phys. Rev. E, 68, 036603,
https://doi.org/10.1103/PhysRevE.68.036603, 2003.
a
Pride, S. R., Berryman, J. G., and Harris, J. M.: Seismic attenuation due to wave-induced flow, J. Geophys. Res., 109, B01201,
https://doi.org/10.1029/2003JB002639, 2004.
a
Pyrak-Nolte, L. J. and Morris, J. P.: Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow, Int. J. Rock Mech. Min., 37, 245–262,
https://doi.org/10.1016/S1365-1609(99)00104-5, 2000.
a,
b,
c,
d,
e
Quintal, B., Steeb, H., Frehner, M., and Schmalholz, S. M.: Quasi-static finite-element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media, J. Geophys. Res., 81, 335–344,
https://doi.org/10.1029/2010JB007475, 2011.
a,
b,
c
Quintal, B., Jänicke, R., Rubino, J. G., Steeb, H., and Holliger, K.: Sensitivity of S-wave attenuation to the connectivity of fractures in fluid-saturated rocks, Geophysics, 79, 15–24,
https://doi.org/10.1190/geo2013-0409.1, 2014.
a,
b,
c
Quintal, B., Rubino, J. G., Caspari, E., and Holliger, K.: A simple hydromechanical approach for simulating squirt-type flow, Geophysics, 81, 335–344,
https://doi.org/10.1190/geo2015-0383.1, 2016.
a
Rubino, J. G., Ravazzoli, C. L., and Santos, J. E.: Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks, Geophysics, 74, N1–N13,
https://doi.org/10.1190/1.3008544, 2009.
a,
b
Rubino, J. G., Guarracino, L., Müller, T. M., and Holliger, K.: Do seismic waves sense fracture connectivity?, Geophys. Res. Lett., 40, 692–696,
https://doi.org/10.1002/grl.50127, 2013.
a,
b,
c
Rubino, J. G., Müller, T. M., Milani, M., and Holliger, K.: Seismic attenuation and velocity dispersion in fractured rocks: The role played by fracture contact areas, Geophys. Prospec., 62, 1278–1296,
https://doi.org/10.1111/1365-2478.12170, 2014.
a,
b
Rubino, J. G., Caspari, E., Müller, T. M., Milani, M., Barbosa, N. D., and Holliger, K.: Numerical upscaling in 2-D heterogeneous poroelastic rocks: Anisotropic attenuation and dispersion of seismic waves, J. Geophys. Res., 121, 6698–6721,
https://doi.org/10.1002/2016JB013165, 2016.
a,
b
Rubino, J. G., Caspari, E., Müller, T. M., and Holliger, K.: Fracture connectivity can reduce the velocity anisotropy
of seismic waves, Geophys. J. Int., 210, 223–227,
https://doi.org/10.1093/gji/ggx159, 2017.
a
Tester, J. W., Anderson, B. J., Batchelor, A. S., Blackwell, D. D., DiPippo, R., Drake, E. M., Garnish, J., Livesay, B., Moore, M. C., Nichols, K., Petty, S., Toksoz, M. N., Veatch, R. W., Baria, R., Augustine, C., Murphy, E., Negraru, P., and Richards, M.: Impact of enhanced geothermal systems on US energy supply in the twenty-first century, Philos. T. R. Soc. A, 365, 1057–1094,
https://doi.org/10.1098/rsta.2006.1964, 2007.
a
Tillotson, P., Chapman, M., Sothcott, J., Best, A. I., and Li, X.: Pore fluid viscosity effects on P- and S-wave
anisotropy in synthetic silica-cemented sandstone with aligned fractures, Geophys. Prospec., 62, 1238–1252,
https://doi.org/10.1111/1365-2478.12194, 2014.
a
White, J. E., Mikhaylova, N. G., and Lyakhovitsky, F. M.: Low frequency seismic waves in fluid-saturated layered rocks, J. Acoust. Soc. Am., 11, 654–659,
https://doi.org/10.1121/1.1995164, 1975.
a,
b,
c
Zhao, L., Yao, Q., Han, D., Yan, F., and Nasser, M.: Characterizing the effect of elastic interactions on the effective elastic properties of porous, cracked rocks, Geophys. Prospec., 64, 157–169,
https://doi.org/10.1111/1365-2478.12243, 2016.
a,
b