Articles | Volume 10, issue 4
https://doi.org/10.5194/se-10-1355-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-1355-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fault-controlled dolomitization in the Montagna dei Fiori Anticline (Central Apennines, Italy): record of a dominantly pre-orogenic fluid migration
Mahtab Mozafari
CORRESPONDING AUTHOR
NEXT – Natural and Experimental Tectonics Research Group – Department
of Chemistry, Life Sciences and Environmental Sustainability, University of
Parma, Italy
Rudy Swennen
Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Fabrizio Balsamo
NEXT – Natural and Experimental Tectonics Research Group – Department
of Chemistry, Life Sciences and Environmental Sustainability, University of
Parma, Italy
Hamdy El Desouky
Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Geology Department, Faculty of Science, Menoufia University, Menoufia,
Egypt
Fabrizio Storti
NEXT – Natural and Experimental Tectonics Research Group – Department
of Chemistry, Life Sciences and Environmental Sustainability, University of
Parma, Italy
Conxita Taberner
Shell Global Solutions International B.V., Amsterdam, the Netherlands
Related authors
No articles found.
Mattia Pizzati, Luciana Mantovani, Antonio Lisotti, Fabrizio Storti, and Fabrizio Balsamo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2636, https://doi.org/10.5194/egusphere-2023-2636, 2023
Preprint archived
Short summary
Short summary
This work proposes a new equation to calculate the 3D average particle diameter from 2D datasets acquired through image analysis technique applied on thin sectioned granular materials (loose sands with different textural and mineralogical features). The employed volume-weighted mean diameter equation provides matching results with data gained by laser granulometry and could be applied in many research areas spanning from Earth Sciences, Engineering and Material Sciences.
Andrea Bistacchi, Silvia Mittempergher, Mattia Martinelli, and Fabrizio Storti
Solid Earth, 11, 2535–2547, https://doi.org/10.5194/se-11-2535-2020, https://doi.org/10.5194/se-11-2535-2020, 2020
Short summary
Short summary
We present an innovative workflow for the statistical analysis of fracture data collected along scanlines. Our methodology is based on performing non-parametric statistical tests, which allow detection of important features of the spatial distribution of fractures, and on the analysis of the cumulative spacing function (CSF) and cumulative spacing derivative (CSD), which allows the boundaries of stationary domains to be defined in an objective way.
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
Related subject area
Subject area: Crustal structure and composition | Editorial team: Stratigraphy, sedimentology, geomorphology, morphotectonics, and palaeontology | Discipline: Sedimentology
Fold localization at pre-existing normal faults: field observations and analogue modelling of the Achental structure, Northern Calcareous Alps, Austria
High-resolution analysis of the physicochemical characteristics of sandstone media at the lithofacies scale
Willemijn Sarah Maria Theresia van Kooten, Hugo Ortner, Ernst Willingshofer, Dimitrios Sokoutis, Alfred Gruber, and Thomas Sausgruber
Solid Earth, 15, 91–120, https://doi.org/10.5194/se-15-91-2024, https://doi.org/10.5194/se-15-91-2024, 2024
Short summary
Short summary
Extensional deformation creates structures that may be reactivated during subsequent shortening. The Achental structure within the Northern Calcareous Alps fold-and-thrust belt is a natural example of a basin margin that was inverted during Alpine orogeny. We have studied the influence of such inherited inhomogeneities in the field and as an analogue model. We find that oblique shortening can create structures outlining pre-existing faults within a single deformation event.
Adrian Linsel, Sebastian Wiesler, Jens Hornung, and Matthias Hinderer
Solid Earth, 11, 1511–1526, https://doi.org/10.5194/se-11-1511-2020, https://doi.org/10.5194/se-11-1511-2020, 2020
Short summary
Short summary
We present a high-resolution 3D analysis of the physicochemical characteristics of two sandstone cubes at the submeter scale. Our study provides insight into the spatial distribution and the controlling factors of small-scale heterogeneity in sandstone media. A comprehensive physicochemical data set is provided, which may help to evaluate the degree of uncertainty that should be considered in field-scale property models.
Cited articles
Adabi, M. H.: Multistage dolomitization of upper jurassic mozduran
formation, Kopet-Dagh Basin, NE Iran, Carbonate. Evaporite., 24, 16–32,
https://doi.org/10.1007/BF03228054, 2009.
Alvarez, W.: Evolution of the Monte Nerone Seamount in the Umbria-Marches
Apennines; I, Jurassic-Tertiary stratigraphy, B. Soc. Geol. Ital., 108,
3–21, 1989.
Amieux, P.: La cathodoluminescence: méthode d'étude
sédimentologique des carbonates, B. Cent. Rech. Expl., 6, 437–483, 1982.
Artoni, A.: Messinian events within the tectono-stratigraphic evolution of
the Southern Laga Basin (Central Apennines, Italy), B. Soc. Geol. Ital., 122,
447–466, 2003.
Artoni, A.: The Pliocene-Pleistocene stratigraphic and tectonic evolution of
the central sector of the Western Periadriatic Basin of Italy, Mar. Petrol.
Geol., 42, 82–106, https://doi.org/10.1016/j.marpetgeo.2012.10.005, 2013.
Banner, J. L.: Radiogenic isotopes: systematics and applications to earth
surface processes and chemical stratigraphy, Earth. Sci. Rev., 65, 141–194,
https://doi.org/10.1016/S0012-8252(03)00086-2, 2004.
Barchi, M., Minelli, G., and Pialli G.: The CROP 03 profile: a synthesis of
results of deep structures of the Northern Apennines, Mem. Soc. Geol. It.,
52, 383–400, 1998.
Barker, S. L. and Cox, S. F.: Evolution of fluid chemistry and fluid-flow
pathways during folding and faulting: an example from Taemas, NSW,
Australia, Geol. Soc. London Spec. Publ., 359, 203–227,
https://doi.org/10.1144/SP359.12, 2011.
Bassetti, M. A., Ricci Lucchi, F., Roveri, M., and Taviani, M.: Messinian facies
in a critical section of northern Apennines (Montepetra-Perticara, Pesaro),
Giorn. Geol., 60, 261–263, 1998.
Bistacchi, A., Balsamo, F., Storti, F., Mozafari, M., Swennen, R., Solum, J., Tueckmantel, C., and Taberner, C.: Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: Innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy), Geosphere, 11, 2031–2048, https://doi.org/10.1130/GES01005.1, 2015.
Bathurst, R. G. C.: Deep crustal diagenesis in limestones: Revista del
Instituto de Investigaciones Geologicas, Deputacion Provincial, Universidad
Barcelona, 34, 89–100, 1980.
Bernoulli, D., Kälin, O., and Patacca, E.: A sunken continental margin
of the Mesozoic Tethys: The Northern and Central Apennines, Symposium
Sédimentation jurassique W Européen, Spec. Publ. Ass. Sedim.
Francis, 1, 179–210, 1979.
Bodnar, R. J.: Revised equation and table for determining the freezing point
depression of H2O-NaCl solutions, Geochim. Cosmochim. Ac., 57,
683–684, https://doi.org/10.1016/0016-7037(93)90378-A, 1993.
Boles, J. R. and Franks, S. G.: Clay diagenesis in Wilcox Sandstone of
southwest Texas: Implications of smectite diagenesis and sandstone
cementation, J. Sediment. Petrol., 49, 55–70,
https://doi.org/10.1306/212F76BC-2B24-11D7-8648000102C1865D, 1979.
Bollati, A., Corrado, S., and Marino, M.: Inheritance of Jurassic rifted
margin architecture into the Apennines Neogene mountain building: a case
history from the Lucretili Mts. (Latium, Central Italy), Int. J. Earth Sci.,
101, 1011–1031, https://doi.org/10.1007/s00531-011-0694-7, 2012.
Bosence, D., Procter, E., Aurell, M., Kahla, A. B., Boudagher-Fadel, M.,
Casaglia, F., Cirilli, S., Mehdie, M., Nieto, L., Rey, J., Scherreiks, R.,
Soussi, M., and Waltham, D.: A dominant tectonic signal in high-frequency,
peritidal carbonate cycles? A regional analysis of Liassic platforms from
western Tethys, J. Sediment. Res., 79, 389–415,
https://doi.org/10.2110/jsr.2009.038, 2009.
Boschetti, T., Venturelli, G., Toscani, L., Barbieri, M., and Mucchino, C.:
The Bagni di Lucca thermal waters (Tuscany, Italy): an example of CaSO4
waters with high Na/Cl and low Ca/SO4 ratios, J. Hydrol., 307, 270–293,
https://doi.org/10.1016/j.jhydrol.2004.10.015, 2005.
Brandano, M., Cornacchia, I., Raffi, I., and Tomassetti, L.: The
Oligocene-Miocene stratigraphic evolution of the Majella carbonate platform
(Central Apennines, Italy), Sediment. Geol., 333, 1–14,
https://doi.org/10.1016/j.sedgeo.2015.12.002, 2016.
Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson,
H. F., and Otto, J. B.: Variation of seawater 87Sr∕86Sr throughout
Phanerozoic time, Geology, 10, 516–519,
https://doi.org/10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2, 1982.
Burkhard, M.: Calcite twins, their geometry, appearance and significance as
stress-strain markers and indicators of tectonic regime: a review, J.
Struct. Geol., 15, 351–368, https://doi.org/10.1016/0191-8141(93)90132-T,
1993.
Calamita, F., Cello, G., Deiana, G., and Paltrinieri, W.: Structural styles,
chronology rates of deformation, and time-space relationships in the
Umbria-Marche thrust system (central Apennines, Italy), Tectonics, 13,
873–881, https://doi.org/10.1029/94TC00276, 1994.
Cardello, G. L. and Doglioni, C.: From mesozoic rifting to Apennine
orogeny: the gran Sasso range (Italy), Gondwana Res., 27, 1307–1334,
https://doi.org/10.1016/j.gr.2014.09.009, 2015.
Carpenter, B.: Origin and chemical evolution of brines in sedimentary
basins, Oklahoma Geol. Surv., 79, 60–77, https://doi.org/10.2118/7504-MS,
1978.
Clemenzi, L., Storti, F., Balsamo, F., Molli, G., Ellam, R., Muchez, P., and
Swennen, R.: Fluid pressure cycles, variations in permeability, and
weakening mechanisms along low-angle normal faults: The Tellaro detachment,
Italy, Am. Assoc. Petr. Geol. B., 127, 1689–1710,
https://doi.org/10.1130/B31203.1, 2015.
Colacicchi, R., Passeri, L., and Pialli, G.: Evidences of tidal environment
deposition in the Calcare Massiccio formation (Central Apennines-Lower
Lias), in: Tidal Deposits, edited by: Ginsburg, R. N., Springer, Berlin,
Heidelberg, Germany, 345–353, https://doi.org/10.1007/978-3-642-88494-8,
1975.
Cooper, J. C. and Burbi, L.: The geology of the central Sibillini
Mountains, Mem. Soc. Geol. It., 35, 323–347, 1986.
Crescenti, U.: Serie stratigrafiche della serie calcarea dal Lias al Miocene
nella regione Marchigiano Abruzzese: parte I and II, Mem. Soc. Geol. It., 8,
155–420, 1969.
Davies, G. R. and Smith, L. B. J.: Structurally controlled hydrothermal
dolomite reservoir facies: an overview, Am. Assoc. Petr. Geol. B., 90,
1641–1690, 2006.
Del Moro, A., Puxeddu, M., Radicati di Brozolo, F., and Villa, I. M.: Rb-Sr
and K-Ar ages of minerals at temperatures of 300–400∘ C from deep
wells in the Larderello geothermal field (Italy), Contrib. Mineral. Petr.,
81, 349–349, https://doi.org/10.1007/BF00371688, 1982.
Dewey, J. F., Helman, M. L., Turco, E., Hutton, D. H. W., and Knott, S. D.:
Kinematics of the western Mediterranean, in: Alpine Tectonics, edited by:
Coward, M. P., Dietrich, D., and Park, R. G., Geol. Soc. London Spec. Publ., 45,
265–283, https://doi.org/10.1144/GSL.SP.1989.045.01.15, 1989.
Dewit, J., Foubert, A., El Desouky, H. A., Muchez, P., Hunt, D., Vanhaecke,
F., and Swennen, R.: Characteristics, genesis and parameters controlling the
development of a large stratabound HTD body at Matienzo (Ramales Platform,
Basque-Cantabrian Basin, northern Spain), Mar. Petrol. Geol., 55, 6–25,
https://doi.org/10.1016/j.marpetgeo.2013.12.021, 2014.
Dickson, J. A. D.: Carbonate identification and genesis as revealed by
staining, J. Sediment. Petrol., 36, 491–505,
https://doi.org/10.1306/74D714F6-2B21-11D7-8648000102C1865D, 1966.
Di Francesco, L., Fabbi, S., Santantonio, M., Bigi, S., and Poblet, J.:
Contribution of different kinematic models and a complex Jurassic
stratigraphy in the construction of a forward model for the Montagna dei
Fiori fault-related fold (Central Apennines, Italy), Geol. J., 45, 489–505,
https://doi.org/10.1002/gj.1191, 2010.
Eichhubl, P. and Boles, J. R.: Rates of fluid flow in fault systems;
evidence for episodic rapid fluid flow in the Miocene Monterey Formation,
coastal California, Am. J. Sci., 300, 571–600, https://doi.org/10.2475/ajs.300.7.571,
2000.
Elter, P., Giglia, G., Tongiorgi, M., and Trevisan, L.: Tensional and
contractional areas in the recent (Tortonian to Present) evolution of the
Northern Apennines, B. Geofis. Teor. Appl., 17, 3–18, 1975.
Emery, D. and Robinson, A. (Eds.): Inorganic Geochemistry: Applications to
Petroleum Geology, Blackwell Science, Oxford, UK, 101–128, 1993.
Fantoni, R. and Franciosi, R.: Tectono-sedimentary setting of the Po Plain
and Adriatic foreland, Rend. Lincei, 21, 197–209,
https://doi.org/10.1007/s12210-010-0102-4, 2010.
Ferraro, F., Agosta, F., Ukar, E., Grieco, D. S., Cavalcante, F., Belviso,
C., and Prosser, G.: Structural diagenesis of carbonate fault rocks exhumed
from shallow crustal depths: An example from the central-southern Apennines,
Italy, J. Struct. Geol., 122, 58–80,
https://doi.org/10.1016/j.jsg.2019.02.008, 2019.
Friedman, I.: Some investigations of the deposition of travertine from Hot
Springs-I. The isotopic chemistry of a travertine-depositing spring,
Geochim. Cosmochim. Ac., 34, 1303–1315,
https://doi.org/10.1016/0016-7037(70)90043-8, 1970.
Gale, J. F., Laubach, S. E., Marrett, R. A., Olson, J. E., Holder, J., and
Reed, R. M.: Predicting and characterizing fractures in dolostone
reservoirs: Using the link between diagenesis and fracturing, Geol. Soc.
London Spec. Publ., 235, 177–192,
https://doi.org/10.1144/GSL.SP.2004.235.01.08, 2004.
Ghisetti, F. and Vezzani, L.: Interfering paths of deformation and
development of arcs in the fold-and-thrust belt of the central Apennines
(Italy), Tectonics, 16, 523–536, https://doi.org/10.1029/97TC00117, 1997.
Ghisetti, F. and Vezzani, L.: Detachments and normal faulting in the Marche
fold-and-thrust belt (Central Apennines, Italy): inferences on fluid
migration paths, J. Geodyn., 29, 345–369,
https://doi.org/10.1016/S0264-3707(99)00057-5, 2000.
Giacometti, A. and Ronchi, P.: Early Lias Carbonate Platform: Facies and
Diagenesis Analogies between the Calcare Massiccio (Umbro-Marchean
Apennines) and the Inici Fm. (Sicily Channel), Mem. Soc. Geol. It., 55,
271–278, 2000.
Goldstein, R. H.: Petrographic and geochemical evidence for origin of paleospeleothems, New Mexico: Implications for the application of fluid inclusions to studies of diagenesis, J. Sediment. Petrol., 60, 282–292, https://doi.org/10.1306/212F9174-2B24-11D7-8648000102C1865D, 1990.
Goldstein, R. H. and Reynolds, T. J.: Systematics of Fluid Inclusions in
Diagenetic Minerals, Soc. Sediment. Geol., 31, 199 pp., 1994.
Habermann, D., Meijer, J., Neuser, R. D., Richter, D. K., Rolfs, C., and Stephan, A.: Micro-PIXE and quantitative cathodolumin- escence spectroscopy: combined high resolution trace element analyses in minerals, Nuclear Instruments and Methods in Physics Research Section B, 150, 470–477, https://doi.org/10.1016/S0168-583X(98)00926-4, 1999.
Hendry, J. P., Gregg, J. M., Shelton, K. L., Somerville, I. D., and Crowley,
S. F.: Origin, characteristics and distribution of fault-related and
fracture-related dolomitization: Insights from Mississippian carbonates,
Isle of Man, Sedimentology, 62, 717–752, https://doi.org/10.1111/sed.12160,
2015.
Hiemstra, E. J. and Goldstein, R. H.: Repeated injection of hydrothermal
fluids into downdip carbonates: a diagenetic and stratigraphic mechanism for
localization of reservoir porosity, Indian Basin Field, New Mexico, USA,
Geol. Soc. London Spec. Publ., 406, 141–177,
https://doi.org/10.1144/SP406.1, 2015.
Hollis, C., Bastesen, E., Boyce, A., Corlett, H., Gawthorpe, R., Hirani, J.
Rotevatn, A., and Whitaker, F.: Fault-controlled dolomitization in a rift
basin, Geology, 45, 219–222, https://doi.org/10.1130/G38s394.1, 2017.
Horita, J.: Oxygen and carbon isotope fractionation in the system
dolomite-water-CO2 to elevated temperatures, Geochim. Cosmochim. Ac., 129,
111–124, https://doi.org/10.1016/j.gca.2013.12.027, 2014.
Hudson, J. D.: Stable isotopes and limestone lithification, Geol. Soc.
London, 133, 637–660, https://doi.org/10.1144/gsjgs.133.6.0637, 1977.
Koopman, A.: Detachment tectonics in the central Apennines, Italy, PhD
thesis, Utrecht University, the Netherlands, 155 pp., 1983.
Land, L. S.: The isotopic and trace element geochemistry of dolomite: the
state of the art, in: Concepts and Models of dolomitization, edited by:
Zenger D. H., Dunham J. B., and Ethington R. L., Soc. Econ. Paleontol.
Mineral., Spec. Pub., 28, 87–110, 1980.
Land, L. S.: The application of stable isotopes to studies of the origin of
dolomite and to problems of diagenesis of clastic sediments, in: Stable
Isotopes in Sedimentary Geology, edited by: Arthur M. A., Soc. Econ.
Paleontol. Mineral., 10, 4–1, 1983.
Land, L. S.: The origin of massive dolomite, J. Geol. Educ., 33, 112–125,
1985.
Laubach, S. E., Eichhubl, P., Hilgers, C., and Lander, R. H.: Structural
diagenesis, J. Struct. Geol., 32, 1866–1872,
https://doi.org/10.1016/j.jsg.2010.10.001, 2010.
Li, Z., Goldstein, R. H., and Franseen, E. K.: Meteoric calcite cementation:
diagenetic response to relative fall in sea-level and effect on porosity and
permeability, Las Negras area, southeastern Spain, Sediment. Geol., 348,
1–18, https://doi.org/10.1016/j.sedgeo.2016.12.002, 2017.
Lind, I. L., Berger, W. H., and Kroenke, L. W.: Stylolites in chalk from leg
130, Ontong Java Plateau, Proceedings of the Ocean Drilling Program,
Scientific Results, 445–451, 1993.
Lobato, L. M., Forman, J. M. A., Fazikawa, K., Fyfe, W. S., and Kerrich, R.:
Uranium in overthrust Archean basement, Bahia, Brazil, Can. Mineral.,
21, 647–654, 1983.
Lonnee, J. S.: Sedimentology, dolomitization and diagenetic fluid evolution
of the Middle Devonian Sulphur Point Formation, northwestern Alberta, PhD
thesis, University of Windsor, Canada, 133 pp., 1999.
Luczaj, J. A. and Goldstein, R. H.: Diagenesis of the Lower Permian Krider
Member, southwest Kansas, USA: fluid-inclusion, U-Pb, and fission-track
evidence for reflux dolomitization during latest Permian time, J. Sediment.
Res., 70, 762–773,
https://doi.org/10.1306/2DC40936-0E47-11D7-8643000102C1865D, 2000.
Machel, H. G.: Effects of groundwater flow on mineral diagenesis, with
emphasis on carbonate aquifers, Hydrol. J., 7, 94–107,
https://doi.org/10.1007/s100400050182, 1999.
Machel, H. G. and Cavell, P. A.: Low-flux, tectonically-induced squeegee
fluid flow, B. Can. Petrol. Geol., 47, 510–533, 1999.
Machel, H. G., Mason, R. A., Mariano, A. N., and Mucci, A.: Causes and
emission of luminescence in calcite and dolomite, in: Luminescence
microscopy and spectroscopy: Qualitative and quantitative applications,
edited by: Barker, C. E. and Kopp, O. C., Soc. Sediment. Geol., 25, 9–25, 1991.
Major, R. P., Lloyd, R. M., and Lucia, F. J.: Oxygen isotope composition of
Holocene dolomite formed in a humid hypersaline setting, Geology, 20,
586–588, https://doi.org/10.1130/0091-7613(1992)020<0586:OICOHD>2.3.CO;2, 1992.
Marino, M. and Santantonio, M.: Understanding the geological record of
carbonate platform drowning across rifted Tethyan margins: Examples from the
Lower Jurassic of the Apennines and Sicily (Italy), Sediment. Geol., 225,
116–137, https://doi.org/10.1016/j.sedgeo.2010.02.002, 2010.
Marshall, J. D.: Climatic and oceanographic isotopic signals from the
carbonate rock record and their preservation, Geol. Mag., 129, 143–160,
https://doi.org/10.1017/S0016756800008244, 1992.
Mattei, M.: Analisi geologico-strutturale della Montagna dei Fiori (Ascoli
Piceno, Italia Centrale), Geol. Romana, 26, 327–347, 1987.
Mazzoli, S., Deiana, G., Galdenzi, S., and Cello, G.: Miocene
fault-controlled sedimentation and thrust propagation in the previously
faulted external zones of the Umbria-Marche Apennines, Italy, EGU Stephan
Mueller Spec. Publ. Ser., 1, 195–209, 2002.
Mazzullo, S. J.: Geochemical and neomorphic alteration of dolomite: a
review, Carbonates Evaporites, 7, 21–37, https://doi.org/10.1007/BF03175390,
1992.
McArthur, J. M., Howarth, R. J., and Shields, G. A.: Strontium isotope
stratigraphy, in: The Geologic Time Scale 2012, edited by: Gradstein, F. M.,
Ogg, J. G., Schmitz, M., and Ogg, G., Elsevier, 127–144,
https://doi.org/10.1016/C2011-1-08249-8, 2012.
McCaffrey, M. A., Lazar, B., and Holland, H. D.: The evaporation path of
seawater and the coprecipitation of Br- and Kþ with halite, J. Sediment.
Res., 57, 928–937,
https://doi.org/10.1306/212F8CAB-2B24-11D7-8648000102C1865D, 1987.
McCaig, A. M.: Deep fluid circulation in fault zones, Geology, 16, 867–870,
https://doi.org/10.1130/0091-7613(1988)016<0867:DFCIFZ>2.3.CO;2, 1988.
McCaig, A. M., Wickham, S. M., and Taylor, H. P.: Deep fluid circulation in
alpine shear zones, Pyrenees, France: field and oxygen isotope studies,
Contrib. Mineral. Petr., 106, 41–60, https://doi.org/10.1007/BF00306407,
1990.
Montanez, I. P.: Late diagenetic dolomitization of Lower Ordovician, upper
Knox carbonates: A record of the hydrodynamic evolution of the southern
Appalachian Basin, Am. Assoc. Petr. Geol. B., 78, 1210–1239, 1994.
Moore, C. H. (Ed.): Carbonate diagenesis and porosity, Dev. Sedimentol.,
46, Elsevier Sci. Publ., Amsterdam, the Netherlands, 338 pp., 1989.
Morettini, E., Santantonio, M., Bartolini, A., Cecca, F., Baumgartner, P.
O., and Hunziker, J. C.: Carbon isotope stratigraphy and carbonate
production during the Early-Middle Jurassic: examples from the
Umbria-Marche-Sabina Apennines (central Italy), Palaeogeogr. Palaeocl.,
184, 251–273, https://doi.org/10.1016/S0031-0182(02)00258-4, 2002.
Mountjoy, E. W., Machel, H. G., Green, D., Duggan, J., and Williams-Jones,
A. E.: Devonian matrix dolomites and deep burial carbonate cements: a
comparison between the Rimbey-Meadowbrook reef trend and the deep basin of
west-central Alberta, B. Can. Petrol. Geol., 47, 487–509, 1999.
Murgia, M. V., Ronchi, P., and Ceriani, A.: Dolomitization processes and
their relationships with the evolution of an orogenic belt (Central
Apennines and peri-adriatic foreland, Italy), AAPG Hedberg series, 1,
277–294, https://doi.org/10.1306/1025695H13121, 2004.
Nelson, R. A: Significance of fracture sets associated with stylolite zones,
Am. Assoc. Petr. Geol. B., 65, 2417–2425, 1981.
Parotto, M. and Praturlon, A.: Geological summary of the Central Apennines,
Quad. Ric. Sci., 90, 257–311, 1975.
Patacca, E., Sartori, R., and Scandone, P.: Tyrrhenian basin and Apenninic arcs: Kinematic relations since late Tortonian times, Mem. Soc. Geol. It., 45, 425–451,1992.
Pialli, G.: Facies di piana cotidale nel Calcare Massiccio dell'Appennino
umbro marchigiano, Boll. Soc. Geol. It., 90, 481–507, 1971.
Pierantoni, P., Deiana, G., and Galdenzi, S.: Stratigraphic and structural
features of the Sibillini Mountains (Umbria-Marche Apennines, Italy), Ital.
J. Geosci., 132, 497–520, https://doi.org/10.3301/IJG.2013.08, 2013.
Purser, B., Tucker, M., and Zenger, D.: Problems, progress and future
research concerning dolomites and dolomitization, in: Dolomites: a Volume in
Honour of Dolomieu, edited by: Purser, B., Tucker, M., and Zenger, D., IAS
Spec. Publ., 21, 3–20, 1994.
Qing, H. and Mountjoy, E. W.: Multistage dolomitization in Rainbow
buildups, Middle Devonian Keg River Formation, Alberta, Can. J.
Sediment. Res., 59, 114–126,
https://doi.org/10.1306/212F8F30-2B24-11D7-8648000102C1865D, 1989.
Radke, B. M. and Mathis, R. L.: On the formation and occurrence of saddle
dolomite, J. Sediment. Res., 50, 1149–1168,
https://doi.org/10.1306/212F7B9E-2B24-11D7-8648000102C1865D, 1980.
Ronchi, P., Casaglia, F., and Ceriani, A.: The multiphase dolomitization of
the Liassic Calcare Massiccio and Corniola successions (Montagna dei Fiori,
Northern Apennines, Italy), Boll. Soc. Geol. It., 122, 157–172, 2003.
Rosenbaum, J. and Sheppard, S. M.: An isotopic study of siderites,
dolomites, and ankerites at high temperatures, Geochim. Cosmochim. Ac., 50,
1147–1150, https://doi.org/10.1016/0016-7037(86)90396-0, 1986.
Roveri, M., Bassetti, M. A., and Lucchi, F. R.: The Mediterranean Messinian
salinity crisis: an Apennine foredeep perspective, Sediment. Geol., 140,
201–214, https://doi.org/10.1016/S0037-0738(00)00183-4, 2001.
Saelen, G., Doyle, P., and Talbot, M. R.: Stable-isotope analyses of
belemnite rostra from the Whitby Mudstone Fm., England: Surface water
conditions during deposition of a marine black shale, Palaios, 11, 97–117,
https://doi.org/10.2307/3515065, 1996.
Santantonio, M. and Carminati, E.: Jurassic rifting evolution of the
Apennines and Southern Alps (Italy): Parallels and differences, Geol. Soc.
Am. B., 123, 464–484, https://doi.org/10.1130/B30104.1, 2011.
Schulz, H. M., Wirth, R., and Schreiber, A.: Organic-inorganic rock-fluid
interactions in stylolitic micro-environments of carbonate rocks: a FIB-TEM
study combined with a hydrogeochemical modelling approach, Geofluids, 16,
909–924, https://doi.org/10.1111/gfl.12195, 2016.
Scisciani V., Tavarnelli, E., and Calamita, F.: The interaction of
extensional and contractional deformations in the outer zones of the Central
Apennines, Italy, J. Struct. Geol., 24, 1647–1658,
https://doi.org/10.1016/S0191-8141(01)00164-X, 2002.
Shackleton, N. J. and Kennett, J. P.: Paleotemperature History of the
Cenozoic and the Initiation of Antartic Glaciation Oxygen and Carbon Isotope
Analyses in DSDP Sites 277, 279, and 281, Initial reports of Deep Sea
Drilling Project, 29, 743–755, 1975.
Sharp, I., Gillespie, P., Morsalnezhad, D., Taberner, C., Karpuz, R.,
Vergés, J., Horbury, A., Pickard, N., J. Garland, J., and Hunt, D.:
Stratigraphic architecture and fracture-controlled dolomitization of the
Cretaceous Khami and Bangestan groups: an outcrop case study, Zagros
Mountains, Iran, Geol. Soc. London Spec. Publ., 329, 343–396,
https://doi.org/10.1144/SP329.14, 2010.
Shepherd, T., Rankin, A. H., and Alderton, D. H. M. (Eds.): A Practical
Guide to Fluid Inclusion Studies, Glasgow, Blackie, 239 pp., 1985.
Sibley, D. F. and Gregg, J. M.: Classification of dolomite rock textures,
J. Sediment. Petrol., 57, 967–975,
https://doi.org/10.1306/212F8CBA-2B24-11D7-8648000102C1865D, 1987.
Sibson, R. H.: Fluid flow accompanying faulting: field evidence and models,
Earthquake prediction: an international review, AGU, 4, 593–603,
https://doi.org/10.1029/ME004p0593, 1981.
Slobodník, M., Muchez, P., Kral, J., and Keppens, E.: Variscan veins:
record of fluid circulation and Variscan tectonothermal events in Upper
Palaeozoic limestones of the Moravian Karst, Czech Republic, Geol. Mag.,
143, 491–508, https://doi.org/10.1017/S0016756806001981, 2006.
Smith, R. E. and Wiltschko, D. V.: Generation and maintenance of abnormal fluid
pressures beneath a ramping thrust sheet: isotropic permeability
experiments, J. Struct. Geol., 18, 951–970,
https://doi.org/10.1016/0191-8141(96)00023-5, 1996.
Sommer, S. E.: Cathodoluminescence of carbonates, 1. Characterization of
cathodoluminescence from carbonate solid solutions, Chem. Geol., 9,
257–273, https://doi.org/10.1016/0009-2541(72)90064-2, 1972.
Steiger, R. and Jäger, E.: Subcommission on geochronology: convention
on the use of decay constants in geo and cosmochronology, Earth Planet. Sc.
Lett., 36, 359–362, https://doi.org/10.1016/0012-821X(77)90060-7, 1977.
Storti, F., Balsamo, F., and Koopman, A.: Geological map of the partially
dolomitized Jurassic succession exposed in the core of the Montagna dei
Fiori Anticline, Central Apennines, Italy, Ital. J. Geosci., 136, 125–135,
https://doi.org/10.3301/IJG.2016.05, 2017a.
Storti F., Balsamo, F., and Koopman, A.: Reply to: discussion on
“Geological map of the partially dolomitized Jurassic succession exposed in
the central sector of the Montagna dei Fiori Anticline, Central Apennines,
Italy” by Santantonio, M., Fabbi, S. and Bigi, S., Ital. J. Geosci., 136,
317–319, https://doi.org/10.3301/IJG.2017.04, 2017b.
Storti, F., Balsamo F., Mozafari M., Koopman A., Swennen R., and Taberner C.:
Syn-contractional overprinting between extension and shortening along the
Montagna dei Fiori Fault during Plio-Pleistocene antiformal stacking at the
Central Apennines thrust wedge toe, Tectonics,
37, 1–31, https://doi.org/10.1029/2018TC005072, 2018.
Stueber, A. M., Pushkar, P., and Baldwin, A. D., JR.: Survey of
87Sr∕86Sr ratios and total strontium concentrations in Ohio stream
and ground waters, Ohio J. Sci., 72, 98–104, 1972.
Swennen, R., Dewit, J., Fierens, E., Muchez, Ph., Shah, M., Nader, F. H.,
and Hunt, D.: Multiple dolomitisation events along the Ranero fault (Pozalagua
Quarry, BasqueeCantabrian Basin): episodic earthquake activity,
Sedimentology, 59, 1345–1374,
https://doi.org/10.1111/j.1365-3091.2011.01309.x, 2012.
Tavani, S., Storti, F., Salvini, F., and Toscano, C.: Stratigraphic versus
structural control on the deformation pattern associated with the evolution
of the Mt. Catria anticline, Italy, J. Struct. Geol., 30, 664–681,
https://doi.org/10.1016/j.jsg.2008.01.011, 2008.
Taylor, H. P.: Oxygen and hydrogen isotope relationships in hydrothermal
mineral deposits, in: Geochemistry of hydrothermal ore deposits, edited by:
Barnes, H. L., Wiley and Sons, New York, 229–302, 1997.
Thirlwall, M. F.: Long-term reproducibility of multicollector Sr and Nd
isotope ratio analysis, Chem. Geol., 94, 85–104,
https://doi.org/10.1016/S0009-2541(10)80021-X, 1991.
Tongiorgi, M., Rau, A., and Martini, I. P.: Sedimentology of early-alpine,
fluvio-marine, clastic deposits (Verrucano, Triassic) in the Monti Pisani
(Italy), Sediment. Geol., 17, 311–332,
https://doi.org/10.1016/0037-0738(77)90051-3, 1977.
Ukar, E. and Laubach, S. E.: Syn-and postkinematic cement textures in
fractured carbonate rocks: Insights from advanced cathodoluminescence
imaging, Tectonophysics, 690, 190–205,
https://doi.org/10.1016/j.tecto.2016.05.001, 2016.
Vai, G. B. and Ricci Lucchi, F.: Algal crusts, autochthonous and clastic
gypsum in a cannibalistic evaporite basin: a case history from the Messinian
of northern Apennines, Sedimentology, 24, 221–244,
https://doi.org/10.1111/j.1365-3091.1977.tb00255.x, 1977.
Vandeginste, V., Swennen, R., Gleeson, S. A., Ellam, R. M., Osadetz, K., and
Roure, F.: Zebra dolomitization as a result of focused fluid flow in the
Rocky Mountains Fold and Thrust Belt, Canada, Sedimentology, 52, 1067–1095,
https://doi.org/10.1111/j.1365-3091.2005.00724.x, 2005.
Veizer, J., Ala, D., Azmy, K., Bruckshen, P., Buhl, D., Bruhn, F., Carden,
G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C.,
Pawellek, F., Podlaha, O. G., and Strauss, H.: 87Sr∕86Sr, δ13C and
evolution of Phanerozoic seawater, Chem. Geol., 161, 59–88,
https://doi.org/10.1016/S0009-2541(99)00081-9, 1999.
Walker, G., Abumere, O. E., and Kamaluddin, B.: Luminescence spectroscopy of
Mn2 rock-forming carbonates, Mineral. Mag., 53, 201–11,
10.1180/minmag.1989.053.370.07, 1989.
Wenzhi, Z., Anjiang, S., Suyun, H., Baomin, Z., Wenqing, P., Jingao, Z., and
Zecheng, W.: Geological conditions and distributional features of
large-scale carbonate reservoirs onshore China, Petrol. Explor. Dev.,
39, 1–14, https://doi.org/10.1016/S1876-3804(12)60010-X, 2012.
Wilson, A. and Ruppel, C.: Salt tectonics and shallow subsea floor fluid
convection: models of coupled fluid-heat-salt transport, Geofluids, 7,
377–386, https://doi.org/10.1111/j.1468-8123.2007.00191.x, 2007.
Wilson, M. E. J., Evans, M. J., Oxtoby, N. H., Nas, D. S., Donnelly, T., and
Thirlwall, M.: Reservoir quality, textural evolution, and origin of
fault-associated dolomites, AAPB Bull., 91, 1247–1272, 2007.
Woodcock, N. H. and Mort, K.: Classification of fault breccias and related
fault rocks, Geol. Mag., 145, 435–440,
https://doi.org/10.1017/S0016756808004883, 2008.
Woody, R. E., Gregg, J. M., and Koederitz, L. F.: Effect of texture on
petrophysical properties of dolomite: Evidence from the Cambrian-Ordovician
of Southeastern Missouri, AAPG Bull., 80, 119–131, 1996.
Zempolich, W. G. and Hardie, L. A.: Geometry of dolomite bodies within
deep-water resedimented oolite of the Middle Jurassic Vajont Limestone,
Venetian Alps, Italy: Analogs for hydrocarbon reservoirs created through
fault-related burial dolomitization, in: Reservoir quality prediction in
sandstones and carbonates, edited by: Kupecz, A., Gluyas, J., and Bloch, S.,
AAPG Memoir., 69, 127–162, 1997.
Short summary
The dolomitized intervals of the Lower Jurassic deposits exposed in the Montagna dei Fiori Anticline (Central Apennines, Italy) have been investigated. Accordingly, two fault-related dolomitization events were recognised and interpreted as having occurred before and during the Apenninic orogeny. The analyses suggest significant involvement of evaporitic fluids in both events, most likely derived from the underlying Upper Triassic Burano Formation in the detachment level.
The dolomitized intervals of the Lower Jurassic deposits exposed in the Montagna dei Fiori...