Articles | Volume 10, issue 6
https://doi.org/10.5194/se-10-1921-2019
https://doi.org/10.5194/se-10-1921-2019
Method article
 | 
11 Nov 2019
Method article |  | 11 Nov 2019

A Python framework for efficient use of pre-computed Green's functions in seismological and other physical forward and inverse source problems

Sebastian Heimann, Hannes Vasyura-Bathke, Henriette Sudhaus, Marius Paul Isken, Marius Kriegerowski, Andreas Steinberg, and Torsten Dahm

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Sebastian Heimann on behalf of the Authors (28 Aug 2019)  Manuscript 
ED: Publish as is (02 Sep 2019) by Caroline Beghein
ED: Publish as is (10 Sep 2019) by Susanne Buiter (Executive editor)
AR by Sebastian Heimann on behalf of the Authors (15 Sep 2019)  Manuscript 
Download
Short summary
We present an open-source software framework for fast and flexible forward modelling of seismic and acoustic wave phenomena and elastic deformation. It supports a wide range of applications across volcanology, seismology, and geodesy to study earthquakes, volcanic processes, landslides, explosions, mine collapses, ground shaking, and aseismic faulting. The framework stimulates reproducible research and open science through the exchange of pre-calculated Green's functions on an open platform.