Articles | Volume 10, issue 6
https://doi.org/10.5194/se-10-2001-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-2001-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A multi-phasic approach for estimating the Biot coefficient for Grimsel granite
Patrick Selvadurai
CORRESPONDING AUTHOR
Department of Civil Engineering and Applied Mechanics, McGill University, Montréal, QC, H3A 0C3, Canada
Paul A. Selvadurai
Swiss Seismological Service (SED) at ETH Zurich, Zurich, Switzerland
Morteza Nejati
Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Related authors
A. P. S. Selvadurai, A. P. Suvorov, and P. A. Selvadurai
Geosci. Model Dev., 8, 2167–2185, https://doi.org/10.5194/gmd-8-2167-2015, https://doi.org/10.5194/gmd-8-2167-2015, 2015
Short summary
Short summary
The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach.
Miriam Larissa Schwarz, Hansruedi Maurer, Anne Christine Obermann, Paul Antony Selvadurai, Alexis Shakas, Stefan Wiemer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1094, https://doi.org/10.5194/egusphere-2025-1094, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
This study applied fat ray travel time tomography to image the geothermal testbed at the BedrettoLab. An active seismic crosshole survey provided a dataset of 42'843 manually picked first breaks. The complex major fault zone was successfully imaged by a 3D velocity model and validated with wireline logs and geological observations. Seismic events from hydraulic stimulation correlated with velocity structures, "avoiding" very high and low velocities, speculatively due to stress gradients.
Valentin Samuel Gischig, Antonio Pio Rinaldi, Andres Alcolea, Falko Bethman, Marco Broccardo, Kai Erich Norbert Bröker, Raymi Castilla, Federico Ciardo, Victor Clasen Repollés, Virginie Durand, Nima Gholizadeh Doonechaly, Marian Hertrich, Rebecca Hochreutener, Philipp Kästli, Dimitrios Karvounis, Xiaodong Ma, Men-Andrin Meier, Peter Meier, Maria Mesimeri, Arnaud Mignan, Anne Obermann, Katrin Plenkers, Martina Rosskopf, Francisco Serbeto, Paul Antony Selvadurai, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Jordan Aaron, Hansruedi Maurer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2024-3882, https://doi.org/10.5194/egusphere-2024-3882, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
Induced earthquakes present a major obstacle for developing geoenergy resources. These occur during hydraulic stimulations that enhance fluid pathways in the rock. In the Bedretto Underground Laboratory, hydraulic stimulations are investigated in a downscaled manner. A workflow to analyse the hazard of induced earthquakes is applied at different stages of the test program. The hazard estimates illustrate the difficulty to reduce the uncertainty owing to the variable seismogenic responses.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Linus Villiger, Valentin Samuel Gischig, Joseph Doetsch, Hannes Krietsch, Nathan Oliver Dutler, Mohammadreza Jalali, Benoît Valley, Paul Antony Selvadurai, Arnaud Mignan, Katrin Plenkers, Domenico Giardini, Florian Amann, and Stefan Wiemer
Solid Earth, 11, 627–655, https://doi.org/10.5194/se-11-627-2020, https://doi.org/10.5194/se-11-627-2020, 2020
Short summary
Short summary
Hydraulic stimulation summarizes fracture initiation and reactivation due to high-pressure fluid injection. Several borehole intervals covering intact rock and pre-existing fractures were targets for high-pressure fluid injections within a decameter-scale, crystalline rock volume. The observed induced seismicity strongly depends on the target geology. In addition, the severity of the induced seismicity per experiment counter correlates with the observed transmissivity enhancement.
Valentin Samuel Gischig, Joseph Doetsch, Hansruedi Maurer, Hannes Krietsch, Florian Amann, Keith Frederick Evans, Morteza Nejati, Mohammadreza Jalali, Benoît Valley, Anne Christine Obermann, Stefan Wiemer, and Domenico Giardini
Solid Earth, 9, 39–61, https://doi.org/10.5194/se-9-39-2018, https://doi.org/10.5194/se-9-39-2018, 2018
A. P. S. Selvadurai, A. P. Suvorov, and P. A. Selvadurai
Geosci. Model Dev., 8, 2167–2185, https://doi.org/10.5194/gmd-8-2167-2015, https://doi.org/10.5194/gmd-8-2167-2015, 2015
Short summary
Short summary
The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Rock deformation, geomorphology, morphotectonics, and paleoseismology | Discipline: Mineral and rock physics
Reconstructing post-Jurassic overburden in central Europe: new insights from mudstone compaction and thermal history analyses of the Franconian Alb, SE Germany
Hydromechanical processes and their influence on the stimulation effected volume: observations from a decameter-scale hydraulic stimulation project
Bilinear pressure diffusion and termination of bilinear flow in a vertically fractured well injecting at constant pressure
Stress characterization and temporal evolution of borehole failure at the Rittershoffen geothermal project
Geomechanical modelling of sinkhole development using distinct elements: model verification for a single void space and application to the Dead Sea area
Enhanced pore space analysis by use of μ-CT, MIP, NMR, and SIP
Simon Freitag, Michael Drews, Wolfgang Bauer, Florian Duschl, David Misch, and Harald Stollhofen
Solid Earth, 13, 1003–1026, https://doi.org/10.5194/se-13-1003-2022, https://doi.org/10.5194/se-13-1003-2022, 2022
Short summary
Short summary
The carbonates of the Malm are the main reservoir rocks for hydrothermal heat and power generation in southern Germany. To better understand these buried rocks, the carbonates exposed in northern Bavaria are often investigated. As the petrophysical properties of carbonates strongly depend on their subsidence history and maximum burial depth, we will investigate this issue by analyzing mudstones, which indirectly store this type of information and are found just below the Malm carbonates.
Hannes Krietsch, Valentin S. Gischig, Joseph Doetsch, Keith F. Evans, Linus Villiger, Mohammadreza Jalali, Benoît Valley, Simon Löw, and Florian Amann
Solid Earth, 11, 1699–1729, https://doi.org/10.5194/se-11-1699-2020, https://doi.org/10.5194/se-11-1699-2020, 2020
Patricio-Ignacio Pérez Donoso, Adrián-Enrique Ortiz Rojas, and Ernesto Meneses Rioseco
Solid Earth, 11, 1423–1440, https://doi.org/10.5194/se-11-1423-2020, https://doi.org/10.5194/se-11-1423-2020, 2020
Short summary
Short summary
This work studies intensively the flow in fractures with finite hydraulic conductivity intersected by a well injecting/producing at constant pressure. We demonstrated that during the bilinear flow regime the transient propagation of isobars along the fracture is proportional to the fourth root of time. Moreover, we present relations to calculate the termination time of bilinear flow under constant injection/production well pressure. Our results can be utilized to estimate the fracture length.
Jérôme Azzola, Benoît Valley, Jean Schmittbuhl, and Albert Genter
Solid Earth, 10, 1155–1180, https://doi.org/10.5194/se-10-1155-2019, https://doi.org/10.5194/se-10-1155-2019, 2019
Short summary
Short summary
In projects based on enhanced geothermal system (EGS) technology, knowledge of the in situ stress state is of central importance to predict the response of the rock mass to different stimulation programs. We propose a characterization of the in situ stress state from the analysis of ultrasonic borehole imager (UBI) data acquired at different key moments of the reservoir. We discuss a significant stress rotation at depth and the absence of a significant change in the stress magnitude.
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Martin P. J. Schöpfer, Sacha Emam, and Torsten Dahm
Solid Earth, 9, 1341–1373, https://doi.org/10.5194/se-9-1341-2018, https://doi.org/10.5194/se-9-1341-2018, 2018
Short summary
Short summary
Sinkholes are round depression features in the ground that can cause high economic and life loss. On the Dead Sea shoreline, hundreds of sinkholes form each year driven by the fall of the water level and subsequent out-washing and dissolution of loose sediments. This study investigates the mechanical formation of sinkholes by numerical modelling. It highlights the role of material strength in the formation of dangerous collapse sinkholes and compares it to findings from a field site in Jordan.
Zeyu Zhang, Sabine Kruschwitz, Andreas Weller, and Matthias Halisch
Solid Earth, 9, 1225–1238, https://doi.org/10.5194/se-9-1225-2018, https://doi.org/10.5194/se-9-1225-2018, 2018
Short summary
Short summary
We investigate the pore space of rock samples with respect to different petrophysical parameters using various methods, which provide data on pore size distributions. The resulting cumulative distributions of pore volume as a function of pore size are compared. Considering that the methods differ with regard to their limits of resolution, a multiple-length-scale characterization of the pore space geometry is proposed that is based on a combination of the results from all of these methods.
Cited articles
Alam, M. M., Borre, M. K., Fabricius, I. L., Hedegaard, K., Røgen, B.,
Hossain, Z., and Krogsbøll, A. S.: Biot's coefficient as an indicator of
strength and porosity reduction: Calcareous sediments from Kerguelen
Plateau, J. Petrol. Sci. Eng., 70, 282–297,
https://doi.org/10.1016/j.petrol.2009.11.021, 2010. a
Alexandrov, K. S., Rhyzova, T. V., and Beliko, B. P.: The elastic properties
of pyroxenes, Sov. Phys. Crystallogr., 8, 589–591, 1964. a
Alonso, E. E., Alcoverro, J., Coste, F., Malinsky, L., Merrien-Soukatchoff, V.,
Kadiri, I., Nowak, T., Shao, H., Nguyen, T. S., Selvadurai, A. P. S., Armand,
G., Sobolik, S. R., Itamura, M., Stone, C. M., Webb, S. W., Rejeb, A.,
Tijani, M., Maouche, Z., Kobayashi, A., Kurikami, H., Ito, A., Sugita, Y.,
Chijimatsu, M., Börgesson, L., Hernelind, J., Rutqvist, J., Tsang,
C. F., and Jussila, P.: The FEBEX benchmark test: Case definition and
comparison of modelling approaches, Int. J. Rock Mech.
Min., 42, 611–638, 2005. a, b, c, d, e
Amann, F., Gischig, V., Evans, K., Doetsch, J., Jalali, R., Valley, B., Krietsch, H., Dutler, N., Villiger, L., Brixel, B., Klepikova, M., Kittilä, A., Madonna, C., Wiemer, S., Saar, M. O., Loew, S., Driesner, T., Maurer, H., and Giardini, D.: The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment, Solid Earth, 9, 115–137, https://doi.org/10.5194/se-9-115-2018, 2018. a
Anderson, O. L. and Nafe, J. E.: The bulk modulus-volume relationship for
oxide compounds and related geophysical problems, J. Geophys.
Res., 70, 3951–3963, https://doi.org/10.1029/sp026p0153, 1965. a
Belmokhtar, M., Delage, P., Ghabezloo, S., and Conil, N.: Drained Triaxial
Tests in Low-Permeability Shales: Application to the Callovo-Oxfordian
Claystone, Rock Mech. Rock Eng., 51, 1979–1993,
https://doi.org/10.1007/s00603-018-1442-0, 2018. a
Biot, M. A.: General theory of three-dimensional consolidation, J.
Appl. Phys., 12, 155–164, https://doi.org/10.1063/1.1712886, 1941. a
Brace, W., Walsh, J., and Frangos, W.: Permeability of Granite under High
Pressure, J. Geophys. Res., 73, 2225–2236, 1968. a
Carmichael, R. S. (Ed.): Practical Handbook of Physical Properties of Rocks and
Minerals, CRC Press, Boca Raton, FL, 756 pp., 1990. a
Chen, Y., Selvadurai, A. P. S., and Liang, W.: Computational Modelling of
Groundwater Inflow During a Longwall Coal Mining Advance: A Case Study from
the Shanxi Province, China, Rock Mech. Rock Eng., 52,
917–934, 2019. a
Cohen, L. and Ishai, O.: The elastic properties of three-phase composites,
J. Compos. Mater., 1, 390–403, 1967. a
David, C., Wassermann, J., Amann, F., Klaver, J., Davy, C., Sarout, J.,
Esteban, L., Rutter, E. H., Hu, Q., Louis, L., Delage, P., Lockner, D. A.,
Selvadurai, A. P. S., Vanorio, T., Hildenbrand, A. A., Meredith, P. G.,
Browning, J., Mitchell, T. M., Madonna, C., Billiotte, J., Reuschlé,
T., Lasseux, D., Fortin, J., Lenormand, R., Loggia, D., Nono, F., Boitnott,
G., Jahns, E., Fleury, M., Berthe, G., Braun, P., Grégoire, D.,
Perrier, L., Polito, P., Jannot, Y., Sommier, A., Krooss, B., Fink, R., and
Clark, A.: KG2B, a collaborative benchmarking exercise for estimating the
permeability of the Grimsel granodiorite – Part 2: Modelling, microstructures
and complementary data, Geophys. J. Int., 215, 825–843,
https://doi.org/10.1093/GJI/GGY305, 2018a. a
David, C., Wassermann, J., Amann, F., Lockner, D. A., Rutter, E. H., Vanorio,
T., Hildenbrand, A. A., Billiotte, J., Reuschlé, T., Lasseux, D.,
Fortin, J., Lenormand, R., Selvadurai, A. P. S., Meredith, P. G., Browning,
J., Mitchell, T. M., Loggia, D., Nono, F., Sarout, J., Esteban, L., Davy, C.,
Louis, L., Boitnott, G., Madonna, C., Jahns, E., Fleury, M., Berthe, G.,
Delage, P., Braun, P., Grégoire, D., Perrier, L., Polito, P., Jannot,
Y., Sommier, A., Krooss, B., Fink, R., Hu, Q., Klaver, J., and Clark, A.:
KG2B, a collaborative benchmarking exercise for estimating the permeability
of the Grimsel granodiorite – Part 1: Measurements, pressure dependence and
pore-fluid effects, Geophys. J. Int., 215, 799–824,
https://doi.org/10.1093/GJI/GGY304, 2018b. a
Davis, R. O. and Selvadurai, A. P. S.: Elasticity and Geomechanics, Cambridge
University Press, Cambridge, 198 pp., 1996. a
Doetsch, J., Gischig, V., Villiger, L., Krietsch, H., Nejati, M., Amann, F.,
Jalali, M., Madonna, C., Maurer, H., Wiemer, S., Driesner, T., and Giardini,
D.: Subsurface fluid pressure and rock deformation monitoring using seismic
velocity observations, Geophys. Res. Lett., 45, https://doi.org/10.1029/2018GL079009, 2018. a
Dupray, F., François, B., and Laloui, L.: Analysis of the FEBEX
multi-barrier system including thermoplasticity of unsaturated bentonite,
Int. J. Numer. Anal. Meth. Geomech.,
37, 399–422, 2013. a
Dutler, N., Nejati, M., Valley, B., Amann, F., and Molinari, G.: On the link
between fracture toughness, tensile strength, and fracture process zone in
anisotropic rocks, Eng. Fract. Mech., 201, 56–79, 2018. a
Francfort, G. A. and Murat, F.: Homogenization and optimal bounds in linear
elasticity, Arch. Ration. Mech. An., 94, 307–334,
https://doi.org/10.1007/BF00280908, 1986. a
Garralón, A., Gómez, P., Turrero, M. J., Torres, E., Buil, B., and
Peña, J.: Hydrogeochemical characterization of the groundwater in the FEBEX
gallery, National Cooperative for the Disposal of Radioactive Waste, Tech.
Rep., NAGRA Arbeitsbericht, NAB 16-14, Wettingen, Switzerland, 125 pp., 2017. a
Gens, A., Garcia-Molina, A. J., Olivella, S., Alonso, E. E., and Huertas, F.:
Analysis of a full scale in situ testing simulating repository conditions,
Int. J. Numer. Anal. Met.,
22, 515–548,
https://doi.org/10.1002/(SICI)1096-9853(199807)22:7<515::AID-NAG926>3.0.CO;2-8, 1998. a
Gischig, V. S., Doetsch, J., Maurer, H., Krietsch, H., Amann, F., Evans, K. F., Nejati, M., Jalali, M., Valley, B., Obermann, A. C., Wiemer, S., and Giardini, D.: On the link between stress field and small-scale hydraulic fracture growth in anisotropic rock derived from microseismicity, Solid Earth, 9, 39–61, https://doi.org/10.5194/se-9-39-2018, 2018. a
Goncalves, P., Oliot, E., Marquer, D., and Connolly, J. A.: Role of chemical
processes on shear zone formation: An example from the grimsel
metagranodiorite (Aar massif, Central Alps), J. Metamorph. Geol.,
30, 703–722, https://doi.org/10.1111/j.1525-1314.2012.00991.x, 2012. a
Hashin, Z. and Shtrikman, S.: A variational approach to the theory of the
elastic behaviour of multiphase materials, J. Mech.
Phys. Solids, 11, 127–140, 1963. a
Hearmon, R. F. S.: An Introduction to Applied Anisotropic Elasticity, Clarendon
Press, Oxford, 136 pp., 1961. a
Jalali, M., Gischig, V., Doetsch, J., Naf, R., Krietsch, H., Klepikova, M.,
Amann, F., and Giardini, D.: Transmissivity changes and microseismicity
induced by small-scale hydraulic fracturing tests in crystalline rock,
Geophys. Res. Lett., 45, 2265–2273, 2018. a
Jokelainen, L., Meski, T., Lindberg, A., Soler, J. M., Siitari-Kauppi, M.,
Martin, A., and Eikenberg, J.: The determination of 134Cs and 22Na diffusion
profiles in granodiorite using gamma spectroscopy, J.
Radioan. Nucl. Ch. Ar., 295, 2153–2161,
https://doi.org/10.1007/s10967-012-2268-y, 2013. a, b
Ju, J. W. and Chen, T. M.: Effective elastic moduli of two-phase composites
containing randomly dispersed spherical inhomogeneities, Acta Mech.,
103, 123–144, https://doi.org/10.1007/BF01180222, 1994a. a
Ju, J. W. and Chen, T. M.: Micromechanics and effective moduli of elastic
composites containing randomly dispersed ellipsoidal inhomogeneities, Acta
Mech., 103, 103–121, https://doi.org/10.1007/BF01180221, 1994b. a
Kant, M. A., Ammann, J., Rossi, E., Madonna, C., Höser, D., and Rudolf
von Rohr, P.: Thermal properties of Central Aare granite for temperatures
up to 500 ∘C: Irreversible changes due to thermal crack formation,
Geophys. Res. Lett., 44, 771–776, https://doi.org/10.1002/2016GL070990, 2017. a
Krietsch, H., Gischig, V., Evans, K., Doetsch, J., Dutler, N. O., Valley, B.,
and Amann, F.: Stress Measurements for an In Situ Stimulation Experiment in
Crystalline Rock: Integration of Induced Seismicity, Stress Relief and
Hydraulic Methods, Rock Mech. Rock Eng., 52, 517–542, 2019. a, b, c, d, e, f, g
Lau, J. S. O. and Chandler, N. A.: Innovative laboratory testing,
Int. J. Rock Mech. Min., 41, 1427–1445,
2004. a
Lekhnitskii, S. G.: Theory of Elasticity of an Anisotropic Elastic Body,
Holden-Day, San Francisco, 404 pp., 1963. a
Lin, C. C.: Elasticity of calcite: Thermal evolution, Phys. Chem. Miner., 40, 157–166, https://doi.org/10.1007/s00269-012-0555-3, 2013. a
Lin, P. J. and Ju, J. W.: Effective elastic moduli of three-phase composites
with randomly located and interacting spherical particles of distinct
properties, Acta Mech., 208, 11–26, https://doi.org/10.1007/s00707-008-0114-7,
2009. a
Mavko, G. M., Dvorkin, J., and Mukerji, T.: The Rock Physics Handbook, Tools
for seismic analysis of porous media, Cambridge University Press, Cambridge, 571 pp.,
2009. a
Missana, T. and Garcia-Gutiérrez, M.: Comparison of the Cesium adsorption
on different crystalline rocks, in 1st Workshop Proceedings of the
Collaborative Project “Crystalline Rock Retention Processses”, (7th EC
FP CP CROCK), edited by: Rabung, T., Molinero, J., Garcia, D., and Montoya, V., KIT
Scientific Publishing, Barcelona, Spain, 121–130, 2012. a, b
Moos, D., Dvorkin, J., and Hooks, A. J.: Application of theoretically derived
rock physics relationships, Los Angeles “Critical porosity”,
Geophys. Res. Lett., 24, 329–332, 1997. a
Möri, A., Mazurek, M., Adler, M., Schild, M., Siegesmund, S., Vollbrecht,
A., Ota, K., Ando, T., Alexander, R., Smith, P. A., Haag, P., and Buehler, Ch.:
The Nagra-JNC in situ study of safety relevanr radionuclide retardation in
fractured crystalline rock, IV: The in situ study of matrix porosity in the
vicinity of a water conducting fracture, Tech. Rep., NAGRA Technical Report,
00-08, Baden, Switzerland, 115 pp., 2003. a
Moulu, J. C., Kalaydjian, F., Tsakiroglou, C. D., Burganos, V. N., Payatakes,
A. C., Yao, J., Thovert, J.-F., and Adler, P.-M.: Characterization,
reconstruction and transport properties of the Vosges sandstone, Revue de
L'Institut Francais du Petrole, 52, 3–21, 1997. a
Nermoen, A., Korsnes, R., Christensen, H. F., Trads, N., Hiorth, A., and
Madland, M. V.: Measuring the Biot stress coefficient and its implications
on the effective stress estimate, Proc. 47th US Rock Mech./Geomech.
Symposium, San Francisco, CA, USA, ARMA, p. 282, 2013. a
Nguyen, T. S., Selvadurai, A. P. S., and Armand, G.: Modelling the FEBEX THM
experiment using a state surface approach, Int. J. Rock
Mech. Min., 42, 639–651,
https://doi.org/10.1016/j.ijrmms.2005.03.005, 2005. a
Rabung, T., Molinero, J., Garcia, D., and Montoya, V.: 1st Workshop
Proceedings of the Collaborative Project “Crystalline Rock Retention
Processses”, (7th EC FP CP CROCK), KIT Scientific Publishing, Barcelona,
Spain, 206 pp., 2012. a
Redfern, S. A. and Angel, R. J.: High-pressure behaviour and equation of state
of calcite, CaCO3, Contrib. Mineral. Petr., 134, 102–106,
https://doi.org/10.1007/s004100050471, 1999. a
Rutqvist, J., Rejeb, A., M., T., and Tsang, C.-F.: Analyses of coupled
hydrological-mechanical effects during drilling of the FEBEX tunnel at
Grimsel, in: Proceedings of
GeoProc 2003, edited by: Stephansson, O., Hudson, J. A., and Jing, L., Stockholm, 196, 13–15 October 2003, 44, 114–119, 2003. a
Schaltegger, U.: The Central Aar Granite: highly differentiated calc-alkaline
magmatism in the Aar Massif (Central Alps, Switzerland), Eur. J.
Mineral., 2, 254–259, 1990a. a
Schaltegger, U.: Post-magmatic resetting of Rb-Sr whole rock ages – a study in
the Central Aar Granite (Central Alps, Switzerland), Geol. Rundsch.,
79, 709–724, 1990b. a
Schaltegger, U. and Corfu, F.: The age and source of late Hercynian
magmatization in the central Alps: evidence from precise U-Pb ages and
initial Hf isotopes, Contrib. Mineral. Petr., 111,
329–344, 1992. a
Schild, M., Siegesmund, S., Vollbrecht, A., and Mazurek, M.: Characterization
of granite matrix porosity and pore-space geometry by in situ and laboratory
methods, Geophys. J. Int., 146, 111–125, 2001. a
Schilling, F. R., Sinogeikin, S. V., Hauser, M., and Bass, J. D.: Elastic
properties of model basaltic melt compositions at high temperatures, J. Geophys. Res.-Solid Ea., 108, 2304, https://doi.org/10.1029/2001jb000517,
2003. a
Selvadurai, A. P. S.: Mechanics of Poroelastic Media, Kluwer Academic
Publishers, the Netherlands, 394 pp., 1996. a
Selvadurai, A. P. S.: Partial Differential Equations in Mechanics, Vol. 2, The
Bi-harmonic Equation, Poisson's equation, Springer-Verlag, Berlin, 698 pp., 2000. a
Selvadurai, A. P. S.: Stationary damage modelling of poroelastic contact,
Int. J. Solids Struct., 41, 2043–2064,
https://doi.org/10.1016/j.ijsolstr.2003.08.023, 2004. a
Selvadurai, A. P. S.: The Analytical Method in Geomechanics, Appl.
Mechan. Rev., 60, 87–106, https://doi.org/10.1115/1.2730845, 2007. a
Selvadurai, A. P. S.: Influence of residual hydraulic gradients on decay
curves for one-dimensional hydraulic pulse tests, Geophys. J.
Int., 177, 1357–1365, https://doi.org/10.1111/j.1365-246X.2008.04047.x, 2009. a
Selvadurai, A. P. S.: The Biot coefficient for a low permeability
heterogeneous limestone, Continuum Mech. Therm., 31, 939–953,
https://doi.org/10.1007/s00161-018-0653-7, 2019. a
Selvadurai, A. P. S. and Carnaffan, P.: A transient pressure pulse method for
the mesurement of permeability of a cement grout, Can. J. Civil
Eng., 24, 489–502, https://doi.org/10.1139/l96-132, 1997. a
Selvadurai, A. P. S. and Glowacki, A.: Evolution of permeability hysteresis of
Indiana Limestone during isotropic compression, Ground Water, 46, 113–119,
2008. a
Selvadurai, A. P. S. and Głowacki, A.: Stress-Induced Permeability
Alterations in an Argillaceous Limestone, Rock Mech. Rock
Eng., 50, 1079–1096, https://doi.org/10.1007/s00603-016-1153-3, 2017. a
Selvadurai, A. P. S. and Głowacki, A.: Estimates for the local permeability
of the Cobourg limestone, J. Rock Mech. Geotech.
Eng., 10, 1009–1019, 2018. a
Selvadurai, A. P. S. and Najari, M.: Laboratory-scale hydraulic pulse testing:
influence of air fraction in cavity on estimation of permeability,
Géotechnique, 65, 126–134, https://doi.org/10.1680/geot.14.p.174, 2015. a
Selvadurai, A. P. S. and Selvadurai, P. A.: Surface permeability tests:
Experiments and modelling for estimating effective permeability, P. Roy. Soc. A, 466,
2819–2846, https://doi.org/10.1098/rspa.2009.0475, 2010. a
Selvadurai, A. P. S. and Shirazi, A.: Mandel-Cryer effects in fluid inclusions
in damage-susceptible poroelastic geologic media, Comput. Geotech.,
31, 285–300, https://doi.org/10.1016/j.compgeo.2004.02.008, 2004. a
Selvadurai, A. P. S. and Shirazi, A.: An elliptical disc anchor in a
damage-susceptible poroelastic medium, Int. J. Num.
Meth. Eng., 63, 2017–2039, https://doi.org/10.1002/nme.1354, 2005. a
Selvadurai, A. P. S. and Suvorov, A. P.: Boundary heating of poro-elastic and
poro-elasto-plastic spheres, P. Roy. Soc. A, 468, 2779–2806, 2012. a
Selvadurai, A. P. S. and Suvorov, A. P.: Thermo-poromechanics of
afluid-filledcavityina fluid-saturated geomaterial, P.
Roy. Soc. A, 470, 20130634, https://doi.org/10.1098/rspa.2013.0634, 2014. a
Selvadurai, A. P. S. and Suvorov, A. P.: Thermo-poroelasticity and
Geomechanics, Cambridge University Press, Cambridge, 250 pp., 2016. a
Selvadurai, A. P. S., Letendre, A., and Hekimi, B.: Axial flow hydraulic pulse
testing of an argillaceous limestone, Environ. Earth Sci., 64,
2047–2058, https://doi.org/10.1007/s12665-011-1027-7, 2011. a, b
Selvadurai, A. P. S., Suvorov, A. P., and Selvadurai, P. A.:
Thermo-hydro-mechanical processes in fractured rock formations during a
glacial advance, Geosci. Model Dev., 8, 2167–2185,
https://doi.org/10.5194/gmd-8-2167-2015, 2015. a, b
Sisodia, P. and Verma, M. P.: Polycrystalline elastic moduli of some hexagonal
and tetragonal materials, Phys. Status Solidi, 122, 525–534, 1990. a
Stalder, H. A.: Petrographische und mineralogiche Untersuchungen im
Grimselgebeit, Schweiz. Miner. Petrog., 44, 187–398, 1964. a
Steck, A. and Burri, G.: Chemismus und paragenesen von granaten aud
granitgneisen der Grünschiefer – und amphibolitfazies der Zentralapen,
Schweiz. Miner. Petrog., 51, 534–538,
1971. a
Talbot, D. R., Willis, J. R., and Nesi, V.: On improving the hashin-shtrikman
bounds for the effective properties of three-phase composite media, IMA
J. Appl. Math., 54, 97–107, https://doi.org/10.1093/imamat/54.1.97, 1995. a
Terzaghi, K.: Die Berechnung der Durchlassigkeitsziffer des Tones aus Dem
Verlauf der Hydrodynamischen Spannungserscheinungen, Akad. Wissensch., Wien
Sitzungsber Mathnaturwissensch Klasse IIa, 142, 125–138, 1923. a
Ting, T. C. T.: Anisotropic Elasticity: Theory and Applications, Oxford
University Press, Oxford, 570 pp., 1996. a
Verruijt, A.: Theory and Problems of Poroelasticity, Delft University of
Technology, the Netherlands, 266 pp., 2015. a
Walpole, L.: On bounds for the overall elastic moduli of inhomogeneous
systems – I, J. Mech. Phys. Solids, 14, 151–162,
1966. a
Wenning, Q. C., Madonna, C., de Haller, A., and Burg, J.-P.: Permeability and seismic velocity anisotropy across a ductile-brittle fault zone in crystalline rock, Solid Earth, 9, 683–698, https://doi.org/10.5194/se-9-683-2018, 2018. a, b, c, d
Wüthrich, H.: Rb-Sr-Altcrsbestimmungen am alpin überprägten Aarmassiv,
Schweiz. Miner. Petrogr., 45, 876–971,
1965. a
Yue, Z. Q. and Selvadurai, A. P. S.: On the mechanics of a rigid disc
inclusion embedded in a fluid saturated poroelastic medium, Int.
J. Eng. Sci., 33, 1633–1662, 1995. a
Zhu, W., Hughes, J. J., Bicanic, N., and Pearce, C. J.: Nanoindentation
mapping of mechanical properties of cement paste and natural rocks,
Mater. Charact., 58, 1189–1198, 2007. a
Zimmerman, R. W.: Compressibility of Sandstones, Developments in Petroleum Science, Elsevier, Amsterdam, 1991. a
Short summary
The paper presents an alternative technique for estimating the Biot coefficient, which governs the partitioning of stresses between a porous skeleton and the saturating pore fluid of a fluid-saturated rock.
The paper presents an alternative technique for estimating the Biot coefficient, which governs...