Articles | Volume 11, issue 4
https://doi.org/10.5194/se-11-1275-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-1275-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mantle flow below the central and greater Alpine region: insights from SKS anisotropy analysis at AlpArray and permanent stations
Laura Petrescu
Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
National Institute for Earth Physics, Bucharest, Romania
Silvia Pondrelli
CORRESPONDING AUTHOR
Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
Simone Salimbeni
Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
Manuele Faccenda
Department of Geoscience, University of Padua, Padua, Italy
For further information regarding the team, please visit the link which appears at the end of the paper.
Related authors
No articles found.
Manuele Faccenda, Brandon P. VanderBeek, Albert de Montserrat, Jianfeng Yang, Francesco Rappisi, and Neil Ribe
Solid Earth, 15, 1241–1264, https://doi.org/10.5194/se-15-1241-2024, https://doi.org/10.5194/se-15-1241-2024, 2024
Short summary
Short summary
The Earth's internal dynamics and structure can be well understood by combining seismological and geodynamic modelling with mineral physics, an approach that has been poorly adopted in the past. To this end we have developed ECOMAN, an open-source software package that is intended to overcome the computationally intensive nature of this multidisciplinary methodology and the lack of a dedicated and comprehensive computational framework.
Silvia Pondrelli, Simone Salimbeni, Judith M. Confal, Marco G. Malusà, Anne Paul, Stephane Guillot, Stefano Solarino, Elena Eva, Coralie Aubert, and Liang Zhao
Solid Earth, 15, 827–835, https://doi.org/10.5194/se-15-827-2024, https://doi.org/10.5194/se-15-827-2024, 2024
Short summary
Short summary
We analyse and interpret seismic anisotropy from CIFALPS2 data that fill the gaps in the Western Alps and support a new hypothesis. Instead of a continuous mantle flow parallel to the belt, here we find a N–S mantle deformation pattern that merges first with a mantle deformed by slab steepening beneath the Central Alps and then merges with an asthenospheric flow sourced beneath the Massif Central. This new sketch supports the extinction of slab retreat beneath the Western Alps.
Konstantinos Michailos, György Hetényi, Matteo Scarponi, Josip Stipčević, Irene Bianchi, Luciana Bonatto, Wojciech Czuba, Massimo Di Bona, Aladino Govoni, Katrin Hannemann, Tomasz Janik, Dániel Kalmár, Rainer Kind, Frederik Link, Francesco Pio Lucente, Stephen Monna, Caterina Montuori, Stefan Mroczek, Anne Paul, Claudia Piromallo, Jaroslava Plomerová, Julia Rewers, Simone Salimbeni, Frederik Tilmann, Piotr Środa, Jérôme Vergne, and the AlpArray-PACASE Working Group
Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023, https://doi.org/10.5194/essd-15-2117-2023, 2023
Short summary
Short summary
We examine the spatial variability of the crustal thickness beneath the broader European Alpine region by using teleseismic earthquake information (receiver functions) on a large amount of seismic waveform data. We compile a new Moho depth map of the broader European Alps and make our results freely available. We anticipate that our results can potentially provide helpful hints for interdisciplinary imaging and numerical modeling studies.
Francesco Visini, Carlo Meletti, Andrea Rovida, Vera D'Amico, Bruno Pace, and Silvia Pondrelli
Nat. Hazards Earth Syst. Sci., 22, 2807–2827, https://doi.org/10.5194/nhess-22-2807-2022, https://doi.org/10.5194/nhess-22-2807-2022, 2022
Short summary
Short summary
As new data are collected, seismic hazard models can be updated and improved. In the framework of a project aimed to update the Italian seismic hazard model, we proposed a model based on the definition and parametrization of area sources. Using geological data, seismicity and other geophysical constraints, we delineated three-dimensional boundaries and activity rates of a seismotectonic zoning and explored the epistemic uncertainty by means of a logic-tree approach.
Stefania Danesi, Simone Salimbeni, Alessandra Borghi, Stefano Urbini, and Massimo Frezzotti
EGUsphere, https://doi.org/10.5194/egusphere-2022-29, https://doi.org/10.5194/egusphere-2022-29, 2022
Preprint archived
Short summary
Short summary
Clusters of low-energy seismic events, concentrated in space and time, characterized by highly correlated waveforms (cross-correlation coefficient ≥ 0.95), occur at the floating area of a major ice stream in Antarctica (David Glacier, North Victoria Land). The transient injection of fluids from the David catchment into the regional subglacial hydrographic network, observed by GRACE measurements, is indicated as the main trigger for clustered and repeated seismic occurrences.
Silvia Pondrelli, Francesco Visini, Andrea Rovida, Vera D'Amico, Bruno Pace, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 20, 3577–3592, https://doi.org/10.5194/nhess-20-3577-2020, https://doi.org/10.5194/nhess-20-3577-2020, 2020
Short summary
Short summary
We used 100 years of seismicity in Italy to predict the hypothetical tectonic style of future earthquakes, with the purpose of using this information in a new seismic hazard model. To squeeze all possible information out of the available data, we created a chain of criteria to be applied in the input and output selection processes. The result is a list of cases from very clear ones, e.g., extensional tectonics in the central Apennines, to completely random tectonics for future seismic events.
Aladino Govoni, Luciana Bonatto, Marco Capello, Adriano Cavaliere, Claudio Chiarabba, Ezio D'Alema, Stefania Danesi, Sara Lovati, Lucia Margheriti, Marco Massa, Salvatore Mazza, Francesco Mazzarini, Stephen Monna, Milena Moretti, Anna Nardi, Davide Piccinini, Claudia Piromallo, Silvia Pondrelli, Simone Salimbeni, Enrico Serpelloni, Stefano Solarino, Massimiliano Vallocchia, Marco Santulin, and the AlpArray Working Group
Adv. Geosci., 43, 39–52, https://doi.org/10.5194/adgeo-43-39-2017, https://doi.org/10.5194/adgeo-43-39-2017, 2017
Short summary
Short summary
We describe here the contribution of Istituto Nazionale di Geofisica e Vulcanolgia (INGV) to the AlpArray Seismic Network (AASN) in the framework of the AlpArray project (http://www.alparray.ethz.ch), a large European collaborative research initiative.
The aim of AlpArray is carrying out cutting edge research to advance our understanding of the deep structure, geodynamics, tectonics and seismic hazard of the greater Alpine area (Alps-Apennines-Carpathians-Dinarides orogenic system).
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Numerical modeling of stresses and deformation in the Zagros–Iranian Plateau region
Reflection tomography by depth warping: a case study across the Java trench
Impact of Timanian thrust systems on the late Neoproterozoic–Phanerozoic tectonic evolution of the Barents Sea and Svalbard
Forearc density structure of the overriding plate in the northern area of the giant 1960 Valdivia earthquake
Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard
Multi-scale analysis and modelling of aeromagnetic data over the Bétaré-Oya area in eastern Cameroon, for structural evidence investigations
A Python framework for efficient use of pre-computed Green's functions in seismological and other physical forward and inverse source problems
Seismic attenuation and dispersion in poroelastic media with fractures of variable aperture distributions
Structural expression of a fading rift front: a case study from the Oligo-Miocene Irbid rift of northwest Arabia
Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network
Srishti Singh and Radheshyam Yadav
Solid Earth, 14, 937–959, https://doi.org/10.5194/se-14-937-2023, https://doi.org/10.5194/se-14-937-2023, 2023
Short summary
Short summary
We use numerical models to study the stresses arising from gravitational potential energy (GPE) variations and shear tractions associated with mantle convection in the Zagros–Iran region. The joint models predicted consistent deviatoric stresses that can explain most of the deformation indicators. Stresses associated with mantle convection are found to be higher than those from GPE, thus indicating the deformation in this region may primarily be caused by the mantle, except in eastern Iran.
Yueyang Xia, Dirk Klaeschen, Heidrun Kopp, and Michael Schnabel
Solid Earth, 13, 367–392, https://doi.org/10.5194/se-13-367-2022, https://doi.org/10.5194/se-13-367-2022, 2022
Short summary
Short summary
Geological interpretations based on seismic depth images depend on an accurate subsurface velocity model. Reflection tomography is one method to iteratively update a velocity model based on depth error analysis. We used a warping method to estimate closely spaced data-driven depth error displacement fields. The application to a multichannel seismic line across the Sunda subduction zone illustrates the approach which leads to more accurate images of complex geological structures.
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022, https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Short summary
The present study shows evidence of fault systems (large cracks in the Earth's crust) hundreds to thousands of kilometers long and several kilometers thick extending from northwestern Russia to the northern Norwegian Barents Sea and the Svalbard Archipelago using seismic, magnetic, and gravimetric data. The study suggests that the crust in Svalbard and the Barents Sea was already attached to Norway and Russia at ca. 650–550 Ma, thus challenging existing models.
Andrei Maksymowicz, Daniela Montecinos-Cuadros, Daniel Díaz, María José Segovia, and Tomás Reyes
Solid Earth, 13, 117–136, https://doi.org/10.5194/se-13-117-2022, https://doi.org/10.5194/se-13-117-2022, 2022
Short summary
Short summary
This work analyses the density structure of the continental forearc in the northern segment of the 1960 Mw 9.6 Valdivia earthquake. Results show a segmentation of the continental wedge along and perpendicular to the margin. The extension of the less rigid basement units conforming the marine wedge and Coastal Cordillera domain could modify the process of stress loading during the interseismic periods. This analysis highlights the role of the overriding plate on the seismotectonic process.
Jean-Baptiste P. Koehl
Solid Earth, 12, 1025–1049, https://doi.org/10.5194/se-12-1025-2021, https://doi.org/10.5194/se-12-1025-2021, 2021
Short summary
Short summary
By using seismic data and fieldwork, this contribution shows that soft, coal-rich sedimentary rocks absorbed most of early Cenozoic, Eurekan, contractional deformation in central Spitsbergen, thus suggesting that no contractional deformation event is needed in the Late Devonian to explain the deformation differences among late Paleozoic sedimentary rocks. It also shows that the Billefjorden Fault Zone, a major crack in the Earth's crust in Svalbard, is probably segmented.
Christian Emile Nyaban, Théophile Ndougsa-Mbarga, Marcelin Bikoro-Bi-Alou, Stella Amina Manekeng Tadjouteu, and Stephane Patrick Assembe
Solid Earth, 12, 785–800, https://doi.org/10.5194/se-12-785-2021, https://doi.org/10.5194/se-12-785-2021, 2021
Short summary
Short summary
A multi-scale analysis of aeromagnetic data combining tilt derivative, Euler deconvolution, upward continuation, and 2.75D modelling was applied over Cameroon between the latitudes 5°30'–6° N and the longitudes 13°30'–14°45' E. Major families of faults oriented ENE–WSW, E–W, NW–SE, and N–S with a NE–SW prevalence were mapped. Depths of interpreted faults range from 1000 to 3400 m, mylonitic veins were identified, and 2.75D modelling revealed fault depths greater than 1200 m.
Sebastian Heimann, Hannes Vasyura-Bathke, Henriette Sudhaus, Marius Paul Isken, Marius Kriegerowski, Andreas Steinberg, and Torsten Dahm
Solid Earth, 10, 1921–1935, https://doi.org/10.5194/se-10-1921-2019, https://doi.org/10.5194/se-10-1921-2019, 2019
Short summary
Short summary
We present an open-source software framework for fast and flexible forward modelling of seismic and acoustic wave phenomena and elastic deformation. It supports a wide range of applications across volcanology, seismology, and geodesy to study earthquakes, volcanic processes, landslides, explosions, mine collapses, ground shaking, and aseismic faulting. The framework stimulates reproducible research and open science through the exchange of pre-calculated Green's functions on an open platform.
Simón Lissa, Nicolás D. Barbosa, J. Germán Rubino, and Beatriz Quintal
Solid Earth, 10, 1321–1336, https://doi.org/10.5194/se-10-1321-2019, https://doi.org/10.5194/se-10-1321-2019, 2019
Short summary
Short summary
We quantify the effects that 3-D fractures with realistic distributions of aperture have on seismic wave attenuation and velocity dispersion. Attenuation and dispersion are caused by fluid pressure diffusion between the fractures and the porous background. We show that (i) both an increase in the density of contact areas and a decrease in their correlation length reduce attenuation and (ii) a simple planar fracture can be used to emulate the seismic response of realistic fracture models.
Reli Wald, Amit Segev, Zvi Ben-Avraham, and Uri Schattner
Solid Earth, 10, 225–250, https://doi.org/10.5194/se-10-225-2019, https://doi.org/10.5194/se-10-225-2019, 2019
Short summary
Short summary
Plate-scale rifting is frequently expressed by the subsidence of structural basins along an axis, but postdating tectonic and magmatic activity mostly obscures them. A 3-D subsurface imaging and facies analysis down to 1 km reveals uniquely preserved Galilean basins subsiding along a failing rift front in two main stages. Rifting within a large releasing jog (20–9 Ma), followed by localized grabenization off the Dead Sea fault plate boundary (9–5 Ma), prevents them from dying out peacefully.
Dietrich Lange, Frederik Tilmann, Tim Henstock, Andreas Rietbrock, Danny Natawidjaja, and Heidrun Kopp
Solid Earth, 9, 1035–1049, https://doi.org/10.5194/se-9-1035-2018, https://doi.org/10.5194/se-9-1035-2018, 2018
Short summary
Cited articles
Allen, P. A., Homewood, P., and Williams, G. D.: Foreland basins: An
introduction, in: Foreland basins: International Association of
Sedimentologists Special Publication 8, edited by: Allen, P. A. and
Homewood, P., 3–12, 1986.
AlpArray Seismic Network: AlpArray Seismic Network (AASN) temporary component, AlpArray Working Group, Other/Seismic Network, https://doi.org/10.12686/alparray/z3_2015, 2015.
Alsina, D. and Snieder, R.: Small-scale sublithospheric mantle deformation:
constraints from SKS splitting observations, Geophys. J. Int., 123,
431–448, 1995.
Altamimi, Z., Rebischung, P., Métlvler, L., and Collilleux, X.:
ITRF2014: A new release of the International Terrestrial Reference Frame
modeling nonlinear station motions, J. Geophys. Res., 121, 6109–6131,
https://doi.org/10.1002/2016JB013098, 2016.
Babuska V. and Plomerová, J.: European mantle lithosphere assembled
from rigid microplates with inherited seismic anisotropy, Phys. Earth
Planet. In., 158, 264–280, https://doi.org/10.1016/j.pepi.2006.01.010,
2006.
Baccheschi, P., Margheriti, L., and Steckler, M.: Seismic anisotropy
reveals focused mantle flow around the Calabrian slab (Southern Italy),
Geophys. Res. Lett., 34, L05302, https://doi.org/10.1029/2006GL028899, 2007.
Barruol, G. and Hoffmann, R.: Upper mantle anisotropy beneath the Geoscope
stations, J. Geophys. Res., 104, 10757–10773, 1999.
Barruol, G. and Mainprice, D.: A quantitative evaluation of the
contribution of crustal rocks to the shear-wave splitting of teleseismic SKS
waves, Phys. Earth Planet. In., 78, 281–300, 1993.
Barruol, G., Bonnin, M., Pedersen, H., Bokelmann, G. H., and Tiberi, C.:
Belt-parallel mantle flow beneath a halted continental collision: The
Western Alps, Earth Planet. Sc. Lett., 302, 429–438,
https://doi.org/10.1016/j.epsl.2010.12.040, 2011.
Bezada, M., Faccenda, M., and Toomey, D.: Representing anisotropic
subduction zones with isotropic velocity models: A characterization of the
problem and some steps on a possible path forward, Geochem. Geophy.
Geosy., 17, 3164–3189, https://doi.org/10.1002/2016GC006507, 2016.
Bianchi, I., Miller, M. S., and Bokelmann, G.: Insights on the upper mantle
beneath the Eastern Alps, Earth Plan. Sc. Lett., 403, 199–209, https://doi.org/10.1016/j.epsl.2014.06.051, 2014.
Bokelmann, G., Qorbani, E., and Bianchi, I.: Seismic anisotropy and
large-scale deformation of the Eastern Alps, Earth Planet. Sc. Lett., 383,
1–6, https://doi.org/10.1016/j.epsl.2013.09.019, 2013.
Bormann, P., Grünthal, G., Kind, R., and Montag, H.: Upper mantle
anisotropy beneath central Europe from SKS wave splitting: effects of
absolute plate motion and lithosphere-asthenosphere boundary topography?, J.
Geodyn., 22, 11–32, https://doi.org/10.1016/0264-3707(96)00014-2, 1996.
Buontempo, L., Bokelmann, G., Barruol, G., and Morales, J.: Seismic
anisotropy beneath southern Iberia from SKS splitting, Earth Planet. Sc.
Lett., 273, 237–250, https://doi.org/10.1016/j.epsl.2008.06.024, 2008.
Bus, Z., Grenerczy, G., Táoth, L., and Máonus, P.: Active crustal
deformation in two seismogenic zones of the Pannonian region – GPS versus
seismological observations, Tectonophysics, 474, 343–352,
https://doi.org/10.1016/j.tecto.2009.02.045, 2009.
Chang, L., Flesch, L. M., Wang, C.-Y., and Ding, Z.: Vertical coherence of
deformation in lithosphere in the eastern Himalayan syntaxis using GPS,
Quaternary fault slip rates, and shear wave splitting data, Geophys. Res.
Lett., 42, 5813–5819, https://doi.org/10.1002/2015GL064568, 2015.
Civello, S. and Margheriti, L.: Toroidal mantle flow around the Calabrian
slab (Italy) from SKS splitting, Geophys. Res. Lett., 31, L10601,
https://doi.org/10.1029/2004GL019607, 2004.
Coward, M. and Dietrich, D.: Alpine tectonic overview, Geol. Soc.
Lond. Spec. Publ., 45, 1–29,
https://doi.org/10.1144/GSL.SP.1989.045.01.01, 1989.
Eakin, C. M., Wirth, E. A., Wallace, A., Ulberg, C. W., Creager, K. C., and
Abers, G. A.: SKS splitting beneath Mount St. Helens: Constraints on sub
slab mantle entrainment, Geochem. Geophy. Geosy., 20, 4202–4217,
https://doi.org/10.1029/2019GC008433, 2019.
Darbyshire, F. A., Bastow, I. D., Forte, A. M., Hobbs, T. E., Calvel, A.,
Gonzalez-Monteza, A., and Schow, B.: Variability and origin of seismic
anisotropy across eastern Canada: Evidence from shear wave splitting
measurements, J. Geophys. Res.-Sol. Ea., 120, 8404–8421,
https://doi.org/10.1002/2015JB012228, 2015.
Davis, J. C.: Statistics and data analysis in geology, 3rd Edn., Wiley, ISBN 978-0-471-17275-8, 2002.
Debayle, E. and Ricard, Y.: Seismic observations of large-scale deformation
at the bottom of fast-moving plates, Earth. Planet. Sc. Lett.,
https://doi.org/10.1016/j.epsl.2013.06.025, 2013.
Dèzes, P., Schmid, S., and Ziegler, P.: Evolution of the European
Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with
their foreland lithosphere, Tectonophys., 389, 1–33,
https://doi.org/10.1016/j.tecto.2004.06.011, 2004.
Diaz, J., Gallart, J., Villasenõr, A., Mancilla, F., Pazos, A.,
Córdoba, D., Pulgar, J., Ibarra, P., and Harnafi, M.: Mantle dynamics
beneath the Gibraltar Arc (western Mediterranean) from shear-wave splitting
measurements on a dense seismic array, Geophys. Res. Lett., 37,
https://doi.org/10.1029/2010GL044201, 2010.
Diaz, J., Gil, A., and Gallart, J.: Uppermost mantle seismic velocity and
anisotropy in the Euro-Mediterranean region from Pn and Sn tomography,
Geophys. J. Int., 192, 310–325, https://doi.org/10.1093/gji/ggs016, 2012.
Faccenna, C., Becker, T. W., Miller, M. S., Serpelloni, E., and Willett, S.
D.: Isostasy, dynamic topography, and the elevation of the Apennines of
Italy, Earth Planet. Sc. Lett., 407, 163–174, 2014.
Fouch, M. J. and Rondenay, S.: Seismic anisotropy beneath stable
continental interiors, Phys. Earth Planet. Int., 158, 292–320,
https://doi.org/10.1016/j.pepi.2006.03.024, 2006.
French National Seismic
Network: RESIF and other Broad-band and accelerometric permanent networks in metropolitan France, RESIF, https://doi.org/10.15778/RESIF.FR, last access: 1 July 2020.
Froitzheim, N., Plasienka, D., and Schuster, R.: Alpine tectonics of the
Alps and Western Carpathians, Geology of Central Europe, 2, 1141–1232,
2008.
Fry, B., Deschamps, F., Kissling, E., Stehly, L., and Giardini, D.: Layered
azimuthal anisotropy of Rayleigh wave phase velocities in the European
Alpine lithosphere inferred from ambient noise, Earth Planet. Sc. Lett.,
297, 95–102, https://doi.org/10.1016/j.epsl.2010.06.008, 2010.
Geissler, W. H., Sodoudi, F., and Kind, R.: Thickness of the central and
eastern European lithosphere as seen by S receiver functions, Geophys. J.
Int., 181, 604–634, https://doi.org/10.1111/j.1365-246X.2010.04548.x, 2010.
German Regional Seismic Network (GRSN): fdsnws-station, BGR SZO Data Center, https://doi.org/10.25928/mbx6-hr74, last access: 1 July 2020.
Giacomuzzi, G., Chiarabba, C., and De Gori, P.: Linking the Alps and
Apennines subduction systems: new constraints revealed by high-resolution
teleseismic tomography, Earth Planet. Sc. Lett., 301, 531–543,
https://doi.org/10.1016/j.epsl.2010.11.033, 2011.
Goes, S., Spakman, W., and Bijwaard, H.: A lower mantle source for central
European volcanism, Science, 286, 1928–1931,
https://doi.org/10.1126/science.286.5446.1928, 1999.
Gripp, A. E. and Gordon, R. G.: Young tracks of hotspots and current plate
velocities, Geophys. J. Int., 150, 321–361, https://doi.org/10.1046/j.1365-246X.2002.01627.x, 2002.
Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., and Bernoulli, D.:
Reconciling plate-tectonic reconstructions of Alpine Tethys with the
geological–geophysical record of spreading and subduction in the Alps,
Earth-Sci. Rev., 102, 121–158, https://doi.org/10.1016/j.earscirev.2010.06.002, 2010.
Handy, M. R., Ustaszewski, K., and Kissling, E.: Reconstructing the
Alps–Carpathians–Dinarides as a key to understanding switches in
subduction polarity, slab gaps and surface motion, Int. J. Earth Sci.,
104, 1–26, https://doi.org/10.1007/s00531-014-1060-3, 2015.
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J.,
Reiterg, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M. L., and
Zoback, M.: The World Stress Map database release 2016: crustal stress
pattern across scales, Tectonophys., 744, 484–498,
https://doi.org/10.1016/j.tecto.2018.07.007, 2018.
Helffrich, G.: Lithospheric deformation inferred from teleseismic shear wave
splitting observations in the United Kingdom, J. Geophys. Res., 100,
18195–18204, 1995.
Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I.,
Crawford, W. C., Dessa, J.-X., Doubre, C., Friederich, W., Fuchs, F.,
Giardini, D., Gráczer, Z., Handy, M. R., Herak, M., Jia, Y., Kissling,
E., Kopp, H., Korn, M., Margheriti, L., Meier, T., Mucciarelli, M., Paul,
A., Pesaresi, D., Piromallo, C., Plenefisch, T., Plomerová, J., Ritter,
J., Rümpker, G., Šipka, V., Spallarossa, D., Thomas, C., Tilmann,
F., Wassermann, J., Weber, M., Wéber, Z., Wesztergom, V.,
Živčić, M., AlpArray Seismic Network Team, AlpArray OBS Cruise
Crew, and AlpArray Working Group: The AlpArray Seismic Network: A large
scale European experiment to image the Alpine orogen, Surv. Geophys.,
39, 1009–1033, https://doi.org/10.1007/s10712-018-9472-4, 2018.
INGV Seismological Data Centre: Rete Sismica Nazionale (RSN), Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy, https://doi.org/10.13127/SD/X0FXNH7QFY, 2006.
Istituto Nazionale di Geofisica e Vulcanologia: Seismic Network SI Sudtirol Network, Italy, available at: http://cnt.rm.ingv.it/en/instruments/network/SI, last access: 1 July 2020.
Jung, H., Katayama, I., Jiang, Z., Hiraga, T., and Karato, S.-I.: Effect of
water and stress on the lattice-preferred orientation of olivine,
Tectonophys, 421, 1–22, 2006.
Kennett, B. L. N., Engdahl, E. R., and Buland, R.: Constraints on seismic
velocities in the earth from traveltimes, Geophys. J. Int., 122, 108–124,
1995.
Király, A., Faccenna, C., and Funiciello, F.: Subduction zones
interaction around the Adria microplate and the origin of the Apenninic arc,
Tectonics, 37, 3941–3953, https://doi.org/10.1029/2018TC005211, 2018.
Kreemer, C., Blewitt, G., and Klein, E. C.: A geodetic plate motion and
Global Strain Rate Model, Geochem. Geophys. Geosyst., 15, 3849–3889, https://doi.org/10.1002/2014GC005407, 2014.
Kummerow, J., Kind, R., and Transalp Working Group: Shear wave splitting in
the Eastern Alps observed at the TRANSALP network, Tectonophysics, 414,
117–125, https://doi.org/10.1016/j.tecto.2005.10.023, 2006.
Kuo, B.-Y., Lin, S.-C., and Lin, Y.-W.: SKS splitting and the scale of
vertical coherence of the Taiwan mountain belt, J. Geophys. Res., 123,
1366–1380, https://doi.org/10.1002/2017JB014803, 2018.
Levin, V., Long, M. D., Skryzalin, P., Li, Y., and López, I.: Seismic
evidence for a recently formed mantle upwelling beneath New England,
Geology, 46, 87–90, 2018.
Liddell, M. V., Bastow, I., Darbyshire, F., Gilligan, A., and Pugh, S.: The
formation of Laurentia: Evidence from shear wave splitting, Earth Planet
Sc. Lett., 479, 170–178, https://doi.org/10.1016/j.epsl.2017.09.030, 2017.
Lippitsch, R., Kissling, E., and Ansorge, J.: Upper mantle structure beneath
the Alpine orogen from high–resolution teleseismic tomography, J. Geophys.
Res., 108, 2376, https://doi.org/10.1029/2002JB002016, 2003.
Long, M. and Silver, P.: Shear Wave Splitting and Mantle Anisotropy:
Measurements, Interpretations, and New Directions, Surv. Geophys.,
30, 407–461, https://doi.org/10.1007/s10712-009-9075-1, 2009.
Long, M. D. and Becker, T. W.: Mantle dynamics and seismic anisotropy,
Earth Planet. Sc. Lett., 297, 341–354, https://doi.org/10.1016/j.epsl.2010.06.036,
2010.
Long, M. D., Ford, H. A., Abrahams, L., and Wirth, E. A.: The seismic
signature of lithospheric deformation beneath eastern North America due to
Grenville and Appalachian orogenesis, Lithosphere, 9, 987–1001,
https://doi.org/10.1130/L660.1, 2017.
Lucente, F. P., Margheriti, L., Piromallo, C., and Barruol, G.: Seismic
anisotropy reveals the long route of the slab through the western-central
Mediterranean mantle, Earth Planet. Sc. Lett., 241, 517–529,
https://doi.org/10.1016/j.epsl.2005.10.041, 2006.
Mainprice, D., Barruol, G., and Ismail, W. B.: The seismic anisotropy of the Earth's mantle: from single crystal to polycrystal, in: Earth's Deep Interior: Mineral physics and tomography from the atomic to the global scale, edited by: Karato, S.I., Forte, A. M., Lieberman, R. C., Masters, G., and Stixrude, L., AGU Geophysical Monograph, 117, 237–264, 2000.
Margheriti, L., Lucente, F. P., and Pondrelli, S.: SKS splitting
measurements in the Apenninic-Tyrrhenian domain (Italy) and their relation
with lithospheric subduction and mantle convection, J. Geophys. Res., 108, https://doi.org/10.1029/2002JB001793, 2003.
Meissner, R., Mooney, W. D., and Artemieva, I.: Seismic anisotropy and
mantle creep in young orogens, Geophys. J. Int., 149, 1–14,
https://doi.org/10.1046/j.1365-246X.2002.01628.x, 2002.
Miller, M. S. and Agostinetti, N. P.: Insights into the evolution of the
Italian lithospheric structure from S receiver function analysis, Earth
Planet. Sc. Lett., 345, 49–59, 2012.
Mitterbauer, U., Behm, M., Brückl, E., Lippitsch, R., Guterch, A.,
Keller, G. R., Koslovskaya, E., Rumpfhuber, E.-M., and Sŭmanovac, F.:
Shape and origin of the East-Alpine slab constrained by the ALPASS
teleseismic model, Tectonophysics, 510, 195–206, https://doi.org/10.1016/j.tecto.2011.07.001, 2011.
Niu, F. and Perez, A. M.: Seismic anisotropy in the lower mantle: A
comparison of wave- form splitting of SKS and SKKS, Geophys. Res. Lett., 31, L24612, https://doi.org/10.1029/2004GL021196, 2004.
Petrescu, L., Stuart, G., Houseman, G., and Bastow, I.: Upper mantle
deformation signatures of craton-orogen interaction in the
Carpathian-Pannonian region from SKS anisotropy analysis, Geophys. J. Int., 220, 2105–2118,
https://doi.org/10.1093/gji/ggz573, 2020.
Pearce, J. and Mittleman, D.: Defining the Fresnel zone for broadband
radiation, Phys. Rev. E, 66, https://doi.org/10.1103/PhysRevE.66.056602, 2002.
Piromallo, C. and Faccenna, C.: How deep can we find the traces of Alpine
subduction?, Geophys. Res. Lett., 31, L06605, https://doi.org/10.1029/2003GL019288, 2004.
Piromallo, C. and Morelli, A.: P wave tomography of the mantle under the
Alpine- Mediterranean area, J. Geophys. Res., 108, 2065,
https://doi.org/10.1029/2002JB001757, 2003.
Plenefisch, T., Klinge, K., and Kind, R.: Upper mantle anisotropy at the transition zone of the Saxothuringicum and Moldanubicum in southeast Germany revealed by shear wave splitting, Geophys. J. Int., 144, 309–319, https://doi.org/10.1046/j.0956-540X.2000.01316.x, 2001.
Plomerová, J. and Babuska, V.: Long memory of mantle lithosphere
fabric – European LAB constrained from seismic anisotropy, Lithos, 120,
131–143, 2010.
Qorbani, E., Bianchi, I., and Bokelmann, G.: Slab detachment under the
Eastern Alps seen by seismic anisotropy, Earth Planet. Sc. Lett., 409,
96–108, https://doi.org/10.1016/j.epsl.2014.10.049, 2015.
Qorbani, E., Bokelmann, G., Kovács, I., Horváth, F., and Falus, G.:
Deformation in the asthenospheric mantle beneath the Carpathian-Pannonian
Region, J. Geophys. Res., 121, 6644–6657, https://doi.org/10.1002/2015JB012604,
2016.
Restivo, A. and Helffrich, G.: Teleseismic shear wave splitting measurements
in noisy environments, Geophys. J. Int., 137, 821–830, 1999.
Restivo, A. and Helffrich, G.: Core-mantle boundary structure investigated
using SKS and SKKS polarization anomalies, Geophys. J. Int., 165,
288–302, 2006.
Ribe, N. M.: Seismic anisotropy and mantle flow, J. Geophys. Res., 94,
4213–4223, https://doi.org/10.1029/JB094iB04p04213, 1989.
Ritter, J. R., Jordan, M., Christensen, U. R., and Achauer, U.: A mantle
plume below the Eifel volcanic fields, Germany, Earth Planet. Sc. Lett.,
186, 7–14, https://doi.org/10.1016/S0012-821X(01)00226-6, 2001.
Rosenberg, C. L., Berger, A., Bellahsen, N., and Bousquet, R.: Relating
orogen width to shortening, erosion, and exhumation during Alpine collision,
Tectonics, 34, 1306–1328, https://doi.org/10.1002/2014TC003736, 2015.
Salimbeni, S., Pondrelli, S., Margheriti, L., Park, J., and Levin, V.: SKS
splitting measurements beneath Northern Apennines region: a case of oblique
trench-retreat, Tectonophys., 462, 68–82,
https://doi.org/10.1016/j.tecto.2007.11.075, 2008.
Salimbeni, S., Pondrelli, S., and Margheriti, L.: Hints on the deformation
penetration induced by subductions and collision processes: Seismic
anisotropy beneath the Adria region (Central Mediterranean), J. Geophys.
Res., 118, 5814–5826, https://doi.org/10.1002/2013JB010253, 2013.
Salimbeni, S., Malusà, M. G., Zhao, L., Guillot, S., Pondrelli, S.,
Margheriti, L., Paul, A., Solarino, S., Aubert, C., Dumont, T., Schwartz,
S., Wang, Q., Xu, X., Zheng, T., and Zhu, R.: Active and fossil mantle flows
in the western Alpine region unravelled by seismic anisotropy analysis and
high-resolution P wave tomography, Tectonophysics, 731, 35–47,
https://doi.org/10.1016/j.tecto.2018.03.002, 2018.
Savage, M.: Seismic anisotropy and mantle deformation: What have we learned
from shear wave splitting?, Rev. Geophys., 37, 65–106,
https://doi.org/10.1029/98RG02075, 1999.
Schmid, S., Aebli, H., Heller, F., and Zingg, A.: The role of the Periadriatic Line in the tectonic evolution of the Alps, in: Alpine Tectonics, edited by: Coward, M. P., Dietrich, D., and Park, R. G., Geological Society, London, Special Publications, 45, 153–171, 1989.
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic
map and overall architecture of the Alpine orogen, Eclogae Geol.
Helv., 97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004.
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S.,
Schuster, R., Tischler, M., and Ustaszewski, K.: The
Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of
tectonic units, Swiss J. Geosci., 101, 139–183, https://doi.org/10.1007/s00015-008-1247-3, 2008.
Schumacher, M. E.: Upper Rhine Graben: role of preexisting structures during
rift evolution, Tectonics, 21, 6-1–6-17, 2002.
Silver, P. and Chan, G.: Shear wave splitting and subcontinental mantle
deformation, J. Geophys. Res., 96, 16429–16454,
https://doi.org/10.1029/91JB00899, 1991.
Silver, P. and Chan, W.: Implications for continental structure and
evolution from seismic anisotropy, Nature, 335, 34–39, 1988.
Silver, P. G.: Seismic anisotropy beneath the continents: Probing the depths
of geology, Annu. Rev. Earth Planet. Sc., 24, 385–432, 1996.
Sinclair, H. D.: Tectonostratigraphic model for underfilled peripheral
foreland basin: An Alpine perspective, Geol. Soc. Am. Bull., 109, 324–346, 1997.
Song, T.-R. A. and Kawakatsu, H.: Subduction of oceanic asthenopshere:
evidence from sub-slab seismic anisotropy, Geophys. Res. Lett., 39, L17301,
https://doi.org/10.1029/2012GL052639, 2012.
Swiss Seismological Service (SED) at ETH Zurich: National Seismic Networks of Switzerland; ETH Zürich, Other/Seismic Network, https://doi.org/10.12686/sed/networks/ch, 1983.
Tommasi, A., Godard, M., Coromina, G., Dautria, J., and Barsczus, H.:
Seismic anisotropy and compositionally induced velocity anomalies in the
lithosphere above mantle plumes: a petrological and microstructural study of
mantle xenoliths from French Polynesia, Earth Planet. Sc. Lett., 227,
539–556, https://doi.org/10.1016/j.epsl.2004.09.019, 2004.
Ustaszewski, K., Schmid, S., Fügenschuh, B., Tischler, M., Kissling, E., and
Spakman, W.: A map-view restoration of the Alpine-Carpathian-Dinaridic
system for the Early Miocene, Swiss J. Geosci., 101, 273–294, 2008.
Walther, M., Plenefisch, T., and Rümpker, G.: Automated analysis of SKS
splitting to infer upper mantle anisotropy beneath Germany using more than
20 yr of GRSN and GRF data, Geophys. J. Int., 196, 1207–1236,
https://doi.org/10.1093/gji/ggt456, 2013.
Venereau, C. M. A., Martin-Short, R., Bastow, I. D., Allen, R. M., and
Kounoudis, R.: The role of variable slab dip in driving mantle flow at the
eastern edge of the Alaskan subduction margin: Insights from shear-wave
splitting, Geochem. Geophy. Geosy., 20, 2433–2448,
https://doi.org/10.1029/2018GC008170, 2019.
Wang, C.-Y., Flesch, L. M., Silver, P. G., Chang, L.-J., and Chan, W. W.:
Evidence for mechanically coupled lithosphere in central Asia and resulting
implications, Geology, 36, 363–366, https://doi.org/10.1130/G24450A.1, 2008.
Wessel, P. and Smith, H. F.: New, improved version of the generic
mapping tools released, Eos T. Am. Geophys. Un., 539, 579–579, https://doi.org/10.1029/98EO00426,
1998.
Wüstefeld, A. and Bokelmann, G.: Null detection in shear-wave splitting
measurements, Bull. Seismol. Soc. Am., 97, 1204, https://doi.org/10.1785/0120060190, 2007.
Wüstefeld, A., Al-Harrasi, O., Verdon, J., Wookey, J., and Kendall,
J.-M.: A strategy for automated analysis of passive microseismic data to
image seismic anisotropy and fracture characteristics, Geophys.
Prospect., 58, 755–773, https://doi.org/10.1111/j.1365-2478.2010.00891.x, 2010.
Xue, M. and Allen, R. M.: Asthenospheric channeling of the Icelandic
upwelling: Evidence from seismic anisotropy, Earth Planet. Sc. Lett.,
235, 167–182, https://doi.org/10.1016/j.epsl.2005.03.017, 2005.
Zhao, L., Paul, A., Malusà, M. G., Xu, X., Zheng, T., Solarino, S.,
Guillot, S., Schwartz, S., Dumont, T., Salimbeni, S., Aubert, C., Pondrelli,
S., Wang, Q., and Zhu, R.: Continuity of the Alpine slab unraveled by
high-resolution P wave tomography, J. Geophys. Res., 121, 8720–8737,
https://doi.org/10.1002/2016JB013310, 2016.
Zhu, H., Bozdağ, E., and Tromp, J.: Seismic structure of the European
upper mantle based on adjoint tomography, Geophys. J. Int., 201, 18–52,
https://doi.org/10.1093/gji/ggu492, 2015.
Ziegler, P. A.: European Cenozoic rift system, Tectonophys., 208,
91–111, https://doi.org/10.1016/0040-1951(92)90338-7, 1992.
Short summary
To place constraints on the mantle deformation beneath the Central Alps and the greater Alpine region, we analysed the appropriate seismic signal recorded by more than 100 stations, belonging to AlpArray and to other permanent networks. We took a picture of the imprinting that Alpine orogen history and related subductions left at depth, with a mainly orogen-parallel mantle deformation from Western Alps to Eastern Alps, but also N to S from the Po Plain to the Rhine Graben.
To place constraints on the mantle deformation beneath the Central Alps and the greater Alpine...