Articles | Volume 11, issue 4
https://doi.org/10.5194/se-11-1333-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-1333-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characteristics of earthquake ruptures and dynamic off-fault deformation on propagating faults
Simon Preuss
CORRESPONDING AUTHOR
Geophysical Fluid Dynamics, Institute of Geophysics, Department of Earth sciences, ETH Zürich, 8092 Zürich, Switzerland
Jean Paul Ampuero
Géoazur Laboratory, Institut de Recherche pour le Développement – Université Côte d'Azur, Campus Azur du CNRS, 06560 Valbonne, France
Taras Gerya
Geophysical Fluid Dynamics, Institute of Geophysics, Department of Earth sciences, ETH Zürich, 8092 Zürich, Switzerland
Ylona van Dinther
Tectonics, Department of Earth Sciences, Utrecht University, Princetonlaan 4, 3584 CB, Utrecht, the Netherlands
Related authors
No articles found.
Utsav Mannu, David Fernández-Blanco, Ayumu Miyakawa, Taras Gerya, and Masataka Kinoshita
Solid Earth, 15, 1–21, https://doi.org/10.5194/se-15-1-2024, https://doi.org/10.5194/se-15-1-2024, 2024
Short summary
Short summary
Accretion during subduction, in which one tectonic plate moves under another, forms a wedge where sediments can be transformed into hydrocarbons. We utilised realistic computer models to investigate this and, in particular, how accretion affects mobility in the wedge and found that the evolution of the wedge and the thrusts it develops fundamentally control the thermal maturity of sediments. This can help us better understand the history of subduction and the formation of hydrocarbons in wedges.
Arundhuti Banerjee, Ylona van Dinther, and Femke C. Vossepoel
Nonlin. Processes Geophys., 30, 101–115, https://doi.org/10.5194/npg-30-101-2023, https://doi.org/10.5194/npg-30-101-2023, 2023
Short summary
Short summary
The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given uncertainties in both models and data. Our study investigates whether data assimilation can estimate current and future fault states in the presence of a bias in the friction parameter.
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Martijn P. A. van den Ende and Jean-Paul Ampuero
Solid Earth, 12, 915–934, https://doi.org/10.5194/se-12-915-2021, https://doi.org/10.5194/se-12-915-2021, 2021
Short summary
Short summary
Distributed acoustic sensing (DAS) is an emerging technology that measures stretching of an optical-fibre cable. This technology can be used to record the ground shaking of earthquakes, which offers a cost-efficient alternative to conventional seismometers. Since DAS is relatively new, we need to verify that existing seismological methods can be applied to this new data type. In this study, we reveal several issues by comparing DAS with conventional seismometer data for earthquake localisation.
Martijn P. A. van den Ende, Marco M. Scuderi, Frédéric Cappa, and Jean-Paul Ampuero
Solid Earth, 11, 2245–2256, https://doi.org/10.5194/se-11-2245-2020, https://doi.org/10.5194/se-11-2245-2020, 2020
Short summary
Short summary
The injection of fluids (like wastewater or CO2) into the subsurface could cause earthquakes when existing geological faults inside the reservoir are (re-)activated. To assess the hazard associated with this, previous studies have conducted experiments in which fluids have been injected into centimetre- and decimetre-scale faults. In this work, we analyse and model these experiments. To this end, we propose a new approach through which we extract the model parameters that govern slip on faults.
Robin Lacassin, Maud Devès, Stephen P. Hicks, Jean-Paul Ampuero, Remy Bossu, Lucile Bruhat, Daryono, Desianto F. Wibisono, Laure Fallou, Eric J. Fielding, Alice-Agnes Gabriel, Jamie Gurney, Janine Krippner, Anthony Lomax, Muh. Ma'rufin Sudibyo, Astyka Pamumpuni, Jason R. Patton, Helen Robinson, Mark Tingay, and Sotiris Valkaniotis
Geosci. Commun., 3, 129–146, https://doi.org/10.5194/gc-3-129-2020, https://doi.org/10.5194/gc-3-129-2020, 2020
Short summary
Short summary
Among social media platforms, Twitter is valued by scholars to disseminate scientific information. Using two 2018 geohazard events as examples, we show that collaborative open data sharing and discussion on Twitter promote very rapid building of knowledge. This breaks down the traditional
ivory towerof academia, making science accessible to nonacademics who can follow the discussion. It also presents the opportunity for a new type of scientific approach within global virtual teams.
I. Yu. Popov, I. S. Lobanov, S. I. Popov, A. I. Popov, and T. V. Gerya
Solid Earth, 5, 461–476, https://doi.org/10.5194/se-5-461-2014, https://doi.org/10.5194/se-5-461-2014, 2014
C. Pelties, A.-A. Gabriel, and J.-P. Ampuero
Geosci. Model Dev., 7, 847–866, https://doi.org/10.5194/gmd-7-847-2014, https://doi.org/10.5194/gmd-7-847-2014, 2014
Cited articles
Alpar, B. and Yaltirak, C.: Characteristic features of the North Anatolian
Fault in the eastern Marmara region and its tectonic evolution, Mar.
Geol., 190, 329–350, https://doi.org/10.1016/S0025-3227(02)00353-5, 2002. a
Ando, R., Shaw, B. E., and Scholz, C. H.: Quantifying natural fault geometry:
Statistical of splay fault angles, B. Seismol. Soc.
Am., 99, 389–395, https://doi.org/10.1785/0120080942, 2009. a
Andrews, D. J.: Rupture Propagation With Finite Stress in Antiplane Strain,
J. Geophys. Res., 81, 3575–3582,
https://doi.org/10.1029/JB081i020p03575,
1976. a
Andrews, D. J.: Rupture dynamics with energy loss outside the slip zone,
J. Geophys. Res.-Sol. Ea., 110, 1–14,
https://doi.org/10.1029/2004JB003191, 2005. a
Ashby, M. F. and Sammis, C. G.: The damage mechanics of brittle solids in
compression, Pure Appl. Geophys., 133, 489–521,
https://doi.org/10.1007/BF00878002, 1990. a
Aydin, A. and Berryman, J. G.: Analysis of the growth of strike-slip faults
using effective medium theory, J. Struct. Geol., 32,
1629–1642, https://doi.org/10.1016/j.jsg.2009.11.007,
2010. a
Barka, A., Akyüz, H. S., Altunel, E., Sunal, G., Çakir, Z., Dikbas,
A., Yerli, B., Armijo, R., Meyer, B., De Chabalier, J. B., Rockwell, T.,
Dolan, J. R., Hartleb, R., Dawson, T., Christofferson, S., Tucker, A., Fumal,
T., Langridge, R., Stenner, H., Lettis, W., Bachhuber, J., and Page, W.: The
surface rupture and slip distribution of the 17 August 1999 Izmit earthquake
(M 7.4), North Anatolian fault, B. Seismol. Soc.
Am., 92, 43–60, https://doi.org/10.1785/0120000841, 2002. a
Barth, N. C., Boulton, C., Carpenter, B. M., Batt, G. E., and Toy, V. G.: Slip
localization on the southern Alpine Fault , New Zealand, Tectonics, 32,
620–640, https://doi.org/10.1002/tect.20041, 2013. a
Beeler, N. M., Tullis, T. E., Blanpied, M. L., and Weeks, J. D.: Frictional
behavior of large displacement experimental faults, J. Geophys.
Res.-Sol. Ea., 101, 8697–8715, https://doi.org/10.1029/96JB00411,
1996. a, b, c, d
Bhat, H. S., Dmowska, R., Rice, J. R., and Kame, N.: Dynamic slip transfer
from the Denali to totschunda faults, Alaska: Testing theory for fault
branching, B. Seismol. Soc. Am., 94, 202–213,
https://doi.org/10.1785/0120040601, 2004. a
Bhat, H. S., Olives, M., Dmowska, R., and Rice, J. R.: Role of fault branches
in earthquake rupture dynamics, J. Geophys. Res.-Sol.
Ea., 112, 1–16, https://doi.org/10.1029/2007JB005027, 2007. a, b
Bhat, H. S., Rosakis, A. J., and Sammis, C. G.: A Micromechanics Based
Constitutive Model for Brittle Failure at High Strain Rates, J.
Appl. Mech., 79, 031016, https://doi.org/10.1115/1.4005897,
2012. a, b
Birren, T. and Reber, J. E.: The Impact of Rheology on the Transition From
Stick-Slip to Creep in a Semibrittle Analog, J. Geophys.
Res.-Sol. Ea., 124, 3144–3154, https://doi.org/10.1029/2018JB016914, 2019. a
Brace, W. F., Paulding, B. W., and Scholz, C.: Dilatancy in the fracture of
crystalline rocks, J. Geophys. Res., 71, 3939–3953,
https://doi.org/10.1029/jz071i016p03939, 1966. a
Brantut, N., Schubnel, A., Rouzaud, J., Brunet, F., and Shimamoto, T.:
High-velocity frictional properties of a clay-bearing fault gouge and
implications for earthquake mechanics, J. Geophys. Res., 113,
1–18, https://doi.org/10.1029/2007JB005551, 2008. a
Buiter, S. J. H., Babeyko, A. Y., Ellis, S., Gerya, T. V., Kaus, B. J.,
Kellner, A., Schreurs, G., and Yamada, Y.: The numerical sandbox: Comparison
of model results for a shortening and an extension experiment, Geol.
Soc. Spec. Publ., 253, 29–64,
https://doi.org/10.1144/GSL.SP.2006.253.01.02, 2006. a
Cappa, F., Perrin, C., Manighetti, I., and Delor, E.: Off-fault long-term
damage: A condition to account for generic, triangular earthquake slip
profiles, Geochem., Geophy. Geosy., 15, 1476–1493,
https://doi.org/10.1002/2013GC005182, 2014. a, b
Chen, J., Niemeijer, A. R., and Spiers, C. J.: Microphysically Derived
Expressions for Rate-and-State Friction Parameters, a, b, and Dc, J.
Geophys. Res.-Sol. Ea., 122, 9627–9657,
https://doi.org/10.1002/2017JB014226, 2017. a
Chester, F. M. and Chester, J. S.: Ultracataclasite structure and friction
processes of the Punchbowl fault, San Andreas system, California,
Tectonophysics, 295, 199–221, https://doi.org/10.1016/S0040-1951(98)00121-8, 1998. a, b
Chester, F. M., Evans, J. P., and Biegel, R. L.: Internal structure and
weakening mechanisms of the San Andreas Fault, J. Geodynam., 98,
771–786, https://doi.org/10.1029/92JB01866, 1993. a, b
Collettini, C., Carpenter, B. M., Viti, C., Cruciani, F., Mollo, S., and Tesei,
T.: Fault structure and slip localization in carbonate-bearing normal faults: An example from the Northern Apennines of Italy, J. Struct.
Geol., 67, 154–166, https://doi.org/10.1016/j.jsg.2014.07.017,
2014. a, b
Cooke, M. L. and Madden, E. H.: Is the Earth Lazy? A review of work
minimization in fault evolution, J. Struct. Geol., 66,
334–346, https://doi.org/10.1016/j.jsg.2014.05.004,
2014. a
Cooke, M. L. and Murphy, S.: Assessing the work budget and efficiency of fault
systems using mechanical models, J. Geophys. Res.-Sol.
Ea., 109, 1–13, https://doi.org/10.1029/2004JB002968, 2004. a
Cowie, P. A. and Scholz, C. H.: Growth of faults by accumulation of seismic
slip, J. Geophys. Res., 97, 11085, https://doi.org/10.1029/92JB00586,
1992. a
Crameri, F.: Geodynamic diagnostics, scientific visualisation and StagLab 3.0, Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, 2018. a
Dieterich, J. H.: Constitutive properties of faults with simulated gouge,
Geophys. Monogr. Ser., 24, 103–120, https://doi.org/10.1029/GM024p0103,
1981. a
Dooley, T. P. and Schreurs, G.: Analogue modelling of intraplate strike-slip
tectonics: A review and new experimental results, Tectonophysics, 574–575,
1–71, https://doi.org/10.1016/j.tecto.2012.05.030,
2012. a
Drucker, D. C. and Prager, W.: Soil mechanics and plastic analysis or limit
design, Q. Appl. Math., 10, 157–165,
https://doi.org/10.1090/qam/48291,
1952. a
Erdogan, F. and Sih, G. C.: On the Crack Extension in Plates Under Plane
Loading and Transverse Shear, J. Basic Eng.-T. ASME, 85, 519,
https://doi.org/10.1115/1.3656897,
1963. a
Erickson, B. A., Dunham, E. M., and Khosravifar, A.: A finite difference
method for off-fault plasticity throughout the earthquake cycle, J.
Mech. Phys. Sol., 109, 50–77,
https://doi.org/10.1016/j.jmps.2017.08.002,
2017. a
Fang, Z. and Dunham, E. M.: Additional shear resistance from fault roughness
and stress levels on geometrically complex faults, J. Geophys.
Res.-Sol. Ea., 118, 3642–3654, https://doi.org/10.1002/jgrb.50262, 2013. a
Faulkner, D. R., Mitchell, T. M., Healy, D., and Heap, M. J.: Slip on “weak”
faults by the rotation of regional stress in the fracture damage zone,
Nature, 444, 922–925, https://doi.org/10.1038/nature05353, 2006. a
Faulkner, D. R., Mitchell, T. M., Jensen, E., and Cembrano, J.: Scaling of
fault damage zones with displacement and the implications for fault growth
processes, J. Geophys. Res.-Sol. Ea., 116, 1–11,
https://doi.org/10.1029/2010JB007788, 2011. a
Gabriel, A. A., Ampuero, J. P., Dalguer, L. A., and Mai, P. M.: Source
properties of dynamic rupture pulses with off-fault plasticity, J.
Geophys. Res.-Sol. Ea., 118, 4117–4126, https://doi.org/10.1002/jgrb.50213,
2013. a, b
Gercek, H.: Poisson's ratio values for rocks, Int. J. Rock
Mech. Min., 44, 1–13, https://doi.org/10.1016/j.ijrmms.2006.04.011,
2007. a
Gerya, T. V. and Yuen, D. A.: Characteristics-based marker-in-cell method with
conservative finite-differences schemes for modeling geological flows with
strongly variable transport properties, Phys. Earth Planet.
In., 140, 293–318, https://doi.org/10.1016/j.pepi.2003.09.006, 2003. a
Gerya, T. V. and Yuen, D. A.: Robust characteristics method for modelling
multiphase visco-elasto-plastic thermo-mechanical problems, Phys. Earth Planet.
In., 163, 83–105,
https://doi.org/10.1016/j.pepi.2007.04.015,
2007. a, b
Han, R., Hirose, T., and Shimamoto, T.: Strong velocity weakening and powder
lubrication of simulated carbonate faults at seismic slip rates, J.
Geophys. Res., 115, B03412, https://doi.org/10.1029/2008JB006136, 2010. a
Hatem, A. E., Cooke, M. L., and Toeneboehn, K.: Strain localization and
evolving kinematic efficiency of initiating strike-slip faults within wet
kaolin experiments, J. Struct. Geol., 101, 96–108,
https://doi.org/10.1016/j.jsg.2017.06.011,
2017. a
Hobbs, B. E., Mühlhaus, H. B., and Ord, A.: Instability, softening and
localization of deformation, Geol. Soc. Spec. Publ., 54,
143–165, https://doi.org/10.1144/GSL.SP.1990.054.01.15, 1990. a
Hubert-Ferrari, A., King, G., Manighetti, I., Armijo, R., Meyer, B., and
Tapponnier, P.: Long-term elasticity in the continental lithosphere;
modelling the Aden Ridge propagation and the Anatolian extrusion process,
Geophys. J. Int., 153, 111–132,
https://doi.org/10.1046/j.1365-246X.2003.01872.x, 2003. a, b
Ickrath, M., Bohnhoff, M., Dresen, G., Martínez-Garzón, P., Bulut,
F., Kwiatek, G., and Germer, O.: Detailed analysis of spatiotemporal
variations of the stress field orientation along the Izmit-Düzce
rupture in NW Turkey from inversion of first-motion polarity data,
Geophys. J. Int., 202, 2120–2132, https://doi.org/10.1093/gji/ggv273,
2015. a
Ikari, M. J.: Principal slip zones: Precursors but not recorders of
earthquake slip, Geology, 43, 955–958, https://doi.org/10.1130/G37028.1, 2015. a, b
Jenkins, J. T.: Localization in granylar materials, Appl. Mech.
Rev., 43, 194–195, https://doi.org/10.1115/1.3120803, 1990. a
Jolivet, R., Lasserre, C., Doin, M. P., Peltzer, G., Avouac, J. P., Sun, J.,
and Dailu, R.: Spatio-temporal evolution of aseismic slip along the Haiyuan
fault, China: Implications for fault frictional properties, Earth
Planet. Sc. Let., 377-378, 23–33, https://doi.org/10.1016/j.epsl.2013.07.020,
2013. a
Jolivet, R., Simons, M., Agram, P. S., Duputel, Z., and Shen, Z. K.: Aseismic
slip and seismogenic coupling along the central San Andreas Fault,
Geophys. Res. Lett., 42, 297–306, https://doi.org/10.1002/2014GL062222, 2015. a
Kame, N. and Yamashita, T.: Dynamic branching, arresting of rupture and the
seismic wave radiation in self-chosen crack path modelling, Geophys.
J. Int., 155, 1042–1050,
https://doi.org/10.1111/j.1365-246X.2003.02113.x,
2003. a, b
Kame, N., Rice, J. R., and Dmowska, R.: Effects of prestress state and rupture
velocity on dynamic fault branching, J. Geophys. Res.-Sol.
Ea., 108, 1–21, https://doi.org/10.1029/2002JB002189,
2003. a, b
Katz, Y., Weinberger, R., and Aydin, A.: Geometry and kinematic evolution of
Riedel shear structures, Capitol Reef National Park, Utah, J.
Struct. Geol., 26, 491–501, https://doi.org/10.1016/j.jsg.2003.08.003, 2004. a
Kim, Y. S., Peacock, D. C. P., and Sanderson, D. J.: Fault damage zones,
J. Struct. Geol., 26, 503–517, https://doi.org/10.1016/j.jsg.2003.08.002,
2004. a, b
King, G. C. and Sammis, C. G.: The mechanisms of finite brittle strain, Pure
Appl. Geophys., 138, 611–640, https://doi.org/10.1007/BF00876341,
1992. a
Lapusta, N. and Barbot, S.: Models of earthquakes and aseismic slip based on
laboratory-derived rate and state friction laws, vol. 661, Research
Signpost, Kerala, India, 2012. a
Lapusta, N., Rice, J. R., Ben-Zion, Y., and Zheng, G.: Elastodynamic analysis
for slow tectonic loading with spontaneous rupture episodes on faults with
rate- and state-dependent friction, J. Geophys. Res., 105,
23765, https://doi.org/10.1029/2000JB900250, 2000. a
Lavier, L. L., Buck, W. R., and Poliakov, A. N. B.: Factors controlling normal
fault offset in an ideal brittle layer, J. Geophys. Res.,
105, 23431, https://doi.org/10.1029/2000JB900108,
2000. a
Lee, S., Reber, J. E., Hayman, N. W., and Wheeler, M. F.: Investigation of
wing crack formation with a combined phase-field and experimental approach,
Geophys. Res. Lett., 43, 7946–7952, https://doi.org/10.1002/2016GL069979,
2016. a
Le Pichon, X., Chamot-Rooke, N., Rangin, C., and Sengör, A. M. C.: The
North Anatolian fault in the Sea of Marmara, J. Geophys. Res.-Sol. Ea., 108, 1–20, https://doi.org/10.1029/2002jb001862, 2003. a
Lindsey, E. O. and Fialko, Y.: Geodetic constraints on frictional properties
and earthquake hazard in the Imperial Valley, Southern California, J. Geophys. Res.-Sol. Ea., 121, 1097–1113,
https://doi.org/10.1002/2015JB012516, 2016. a
Logan., J., Friedman, M., Higgs, M., Dengo, C., and Shimamoto, T.:
Experimental studies of Simulated gouge and their application to studies of
natural fault zones, U.S. Geo. Survey, Menlo Park, CA., Analysis,
305–343, 1979. a
Logan, J. M. and Rauenzahn, A. K.: Frictional dependence of gouge mixtures of
quartz and montmorillonite on velocity, composition and fabric,
Tectonophysics, 144, 87–108,
https://doi.org/10.1016/0040-1951(87)90010-2, 1987. a
Logan, J. M., Dengo, C. A., Higgs, N. G., and Wang, Z. Z.: Fabrics of
Experimental Fault Zones: Their Development and Relationship to Mechanical
Behavior, vol. 51, Elsevier, https://doi.org/10.1016/S0074-6142(08)62814-4, 1992. a
Manighetti, I., King, G., and Sammis, C. G.: The role of off-fault damage in
the evolution of normal faults, Earth Planet. Sc. Lett., 217,
399–408, https://doi.org/10.1016/S0012-821X(03)00601-0, 2004. a
Marone, C. and Kilgore, B.: Scaling of the critical slip distance for seismic
faulting with shear strain in fault zones, Nature, 362, 618–621,
https://doi.org/10.1038/362618a0,
1993. a, b, c
Marone, C., Hobbs, B. E., and Ord, A.: Coulomb constitutive laws for friction:
Contrasts in frictional behavior for distributed and localized shear, Pure
Appl. Geophys., 139, 195–214, https://doi.org/10.1007/BF00876327,
1992. a
Meyer, S. E., Kaus, B., and Passchier, C.: Development of branching brittle
and ductile shear zones: A numerical study, Geochem. Geophy.
Geosy., 18, 2054–2075, https://doi.org/10.1002/2016GC006793,
2017. a
Mitchell, T. M. and Faulkner, D. R.: The nature and origin of off-fault damage
surrounding strike-slip fault zones with a wide range of displacements: A
field study from the Atacama fault system, northern Chile, J.
Struct. Geol., 31, 802–816, https://doi.org/10.1016/j.jsg.2009.05.002,
2009. a, b, c
Moore, D. E. and Byerlee, J.: Geometry of Recently Active Breaks Along the San
Andreas Fault , California, Tech. rep., United States Department of the
Interior – Geological Survey, https://doi.org/10.3133/ofr89347,
1989. a, b
Moore, D. E. and Byerlee, J. D.: Comparative geometry of the San Andreas
Fault, California, and laboratory fault zones, Geol. Soc. Am.
Bull., 103, 762–774,
https://doi.org/10.1130/0016-7606(1991)103<0762:CGOTSA>2.3.CO;2, 1991. a, b, c
Moore, D. E. and Byerlee, J.: Relationships between sliding behavior and
internal geometry of laboratory fault zones and some creeping and locked
strike-slip faults of California, Tectonophysics, 211, 305–316,
https://doi.org/10.1016/0040-1951(92)90067-G, 1992. a
Moore, D. E., Summers, R., and Byerlee, J. D.: Sliding behavior and
deformation textures of heated illite gouge, J. Struct. Geol.,
11, 329–342, https://doi.org/10.1016/0191-8141(89)90072-2, 1989. a
Mutlu, O. and Pollard, D. D.: On the patterns of wing cracks along an outcrop
scale flaw: A numerical modeling approach using complementarity, J.
Geophys. Res.-Sol. Ea., 113, 1–20, https://doi.org/10.1029/2007JB005284,
2008. a, b
Norris, R. J. and Toy, V. G.: Continental transforms: A view from the Alpine
Fault, J. Struct. Geol., 64, 3–31,
https://doi.org/10.1016/j.jsg.2014.03.003,
2014. a, b
Nur, A., Ron, H., and Scottti, O.: Kinematics and Mechanics of Tectonic Block
Rotations, Geophysical, 49, 31–46, 1989. a
Okubo, K., Bhat, H. S., Rougier, E., Marty, S., Schubnel, A., Lei, Z., Knight,
E. E., and Klinger, Y.: Dynamics, radiation and overall energy budget of
earthquake rupture with coseismic off-fault damage, J. Geophys. Res.-Sol. Ea., 124, 11771–11801, https://doi.org/10.1029/2019jb017304,
2019. a, b, c, d
Paola, N. D., Holdsworth, R. E., Viti, C., Collettini, C., and Bullock, R.:
Can grain size sensitive flow lubricate faults during the initial stages of
earthquake propagation?, Earth Planet. Sc. Lett., 431, 48–58,
https://doi.org/10.1016/j.epsl.2015.09.002,
2015. a
Peacock, D. C. and Sanderson, D. J.: Effects of layering and anisotropy on
fault geometry, J. Geol. Soc., 149, 793–802,
https://doi.org/10.1144/gsjgs.149.5.0793, 1992. a
Perrin, C., Manighetti, I., Ampuero, J.-P., Cappa, F., and Gaudemer, Y.:
Location of largest earthquake slip and fast rupture controlled by
along-strike change in fault structural maturity due to fault growth,
J. Geophys. Res.-Sol. Ea., 2, 1–16,
https://doi.org/10.1002/2015JB012671, 2016a. a, b
Plesch, A., Nicholson, C., Shaw, J., Marshall, S., Su, M.-H., and Maechling,
P.: The SCEC Community Fault Model (CFM),
available at: https://www.scec.org/research/cfm (last access: 28 May 2020), 2017. a
Poliakov, A. N. B., Dmowska, R., and Rice, J. R.: Dynamic shear rupture
interactions with fault bends and off-axis secondary faulting, J. Geophys. Res.-Sol. Ea., 107, ESE 6–1–ESE 6–18,
https://doi.org/10.1029/2001JB000572,
2002. a, b
Pozzi, G., Paola, N. D., Nielsen, S. B., Holdsworth, R. E., and Bowen, L.: A
new interpretation for the nature and significance of mirror-like surfaces in
experimental carbonate-hosted seismic faults, Geology, 46, 583–586, 2018. a
Preuss, S., Ampuero, J. P., Gerya, T. V., and van Dinther, Y.: Model data
sets and videos to “Characteristics of earthquake ruptures and dynamic
off-fault deformation on propagating faults”, ETH Zurich Research
Collection, https://doi.org/10.3929/ethz-b-000397242,
2020. a
Price, R. J. and Kelly, A.: Deformation of age-hardened aluminium alloy
crystals II. Fracture, Acta Metall. Mater., 12, 979–992,
https://doi.org/10.1016/0001-6160(64)90070-7, 1964. a
Rawling, G. C., Baud, P., and Wong, T.-F.: Dilatancy, brittle strength, and
anisotropy of foliated rocks: Experimental deformation and micromechanical
modeling, J. Geophys. Res.-Sol. Ea., 107, ETG 8–1–ETG
8–14, https://doi.org/10.1029/2001jb000472, 2002. a
Rice, J. R.: Heating, weakening and shear localization in earthquake rupture
Subject Areas, Philos. T.
Roy. Soc. A, 375,
https://doi.org/10.1098/rsta.2016.0015, 2017. a
Rice, J. R., Sammis, C. G., and Parsons, R.: Off-fault secondary failure
induced by a dynamic slip pulse, B. Seismol. Soc.
Am., 95, 109–134, https://doi.org/10.1785/0120030166, 2005. a, b, c
Riedel, W.: Zur Mechanik geologischer Brucherscheinungen, Centralbl. Mineral.
Geol. u. Pal., 1929B, 354–368, 1929. a
Ritter, M. C., Rosenau, M., and Oncken, O.: Growing Faults in the Lab:
Insights Into the Scale Dependence of the Fault Zone Evolution Process,
Tectonics, 37, 140–153, https://doi.org/10.1002/2017TC004787, 2018a. a
Ritter, M. C., Santimano, T., Rosenau, M., Leever, K., and Oncken, O.: Sandbox
rheometry: Co-evolution of stress and strain in Riedel- and Critical Wedge-
experiments, Tectonophysics, 722, 400–409,
https://doi.org/10.1016/j.tecto.2017.11.018,
2018b. a
Rubin, A. M. and Ampuero, J. P.: Earthquake nucleation on (aging) rate and
state faults, J. Geophys. Res.-Sol. Ea., 110, 1–24,
https://doi.org/10.1029/2005JB003686, 2005. a
Savage, H. M. and Brodsky, E. E.: Collateral damage: Evolution with
displacement of fracture distribution and secondary fault strands in fault
damage zones, J. Geophys. Res.-Sol. Ea., 116,
https://doi.org/10.1029/2010JB007665, 2011. a, b, c
Savage, H. M. and Cooke, M. L.: Unlocking the effects of friction on fault
damage zones, J. Struct. Geol., 32, 1732–1741,
https://doi.org/10.1016/j.jsg.2009.08.014,
2010. a
Scholz, C. H., Dawers, N. H., Yu, J.-Z., Anders, M. H., and Cowie, P. A.:
Fault growth and fault scaling laws: Preliminary results, J. Geophys. Res.-Sol. Ea., 98, 21951–21961,
https://doi.org/10.1029/93JB01008,
1993. a
Scholz, C. H., Ando, R., and Shaw, B. E.: The mechanics of first order splay
faulting: The strike-slip case, J. Struct. Geol., 32, 118–126,
https://doi.org/10.1016/j.jsg.2009.10.007,
2010. a
Scuderi, M. M., Niemeijer, A. R., Collettini, C., and Marone, C.: Frictional
properties and slip stability of active faults within carbonate, evaporite
sequences: The role of dolomite and anhydrite, Earth Planet. Sc.
Lett., 369–370, 220–232, https://doi.org/10.1016/j.epsl.2013.03.024,
2013. a
Scuderi, M. M., Collettini, C., Viti, C., Tinti, E., and Marone, C.: Evolution
of shear fabric in granular fault gouge from stable sliding to stick slip and
implications for fault slip mode, Geology, 45, 731–734,
https://doi.org/10.1130/G39033.1, 2017. a, b
Segall, P. and Rice, J. R.: Dilatancy, compaction, and slip instability of a
fluid-infiltrated fault, Nature, 100, 155–171, https://doi.org/10.1029/95JB02403,
1995. a
Sengör, A., Tüysüz, O., Imren, C., Sakinç, M.,
Eyidogan, H., Görür, N., Le Pichon, X., and Rangin, C.: The
North Anatolian Fault: A New Look, Annu. Rev. Earth Pl.
Sc., 33, 37–112, https://doi.org/10.1146/annurev.earth.32.101802.120415, 2004. a
Shipton, Z. K., Evans, J. P., Abercrombie, R. E., and Brodsky, E. E.: The
Missing Sinks: Slip Localization in Faults, Damage Zones, and the Seismic
Energy Budget, in: Earthquakes: Radiated Energy and the Physics of Faulting,
Volume 170, edited by Abercrombie, R., McGarr, A., Toro, G. D., and Kanamori,
H., Geophysical Monograph Series 170, available at: http://sites.bu.edu/rea/files/2016/02/Shipton_etal2006_AGUmono.pdf (last access: 17 July 2020),
2006. a
Sibson, R. H.: Fault rocks and fault mechanisms, J. Geol.
Soci., 133, 191–213, https://doi.org/10.1144/gsjgs.133.3.0191, 1977. a
Sibson, R. H.: Continental fault structure and the shallow earthquake source,
J. Geol. Soc., 140, 741–767,
https://doi.org/10.1144/gsjgs.140.5.0741, 1983. a, b
Sibson, R. H.: Thickness of the Seismic Slip Zone, B.
Seismol. Soc. Am., 93, 1169–1178,
https://doi.org/10.1785/0120020061, 2003. a
Sleep, N. H.: Ductile creep, compaction, and rate and state dependent friction
within major fault zones, J. Geophys. Res.-Sol. Ea., 100,
13065–13080, https://doi.org/10.1029/94jb03340, 1995. a
Smith, S. A. F., Billi, A., Di Toro, G., and Spiess, R.: Principal Slip
Zones in Limestone : Microstructural Characterization and Implications for
the Seismic Cycle (Tre Monti Fault, Central Apennines, Italy), Pure
Appl. Geophys., 168, 2365–2393, https://doi.org/10.1007/s00024-011-0267-5, 2011. a
Smith, S. A. F., Nielsen, S., and Toro, G. D.: Strain localization and the
onset of dynamic weakening in calcite fault gouge, Earth Planet.
Sc. Lett., 413, 25–36, https://doi.org/10.1016/j.epsl.2014.12.043,
2015. a
Swanson, M. T.: Fault structure, wear mechanisms and rupture processes in
pseudotachylyte generation, Tectonophysics, 204, 223–242,
https://doi.org/10.1016/0040-1951(92)90309-T, 1992. a, b
Swanson, M. T.: Late Paleozoic strike-slip faults and related vein arrays of
Cape Elizabeth, Maine, J. Struct. Geol., 28, 456–473,
https://doi.org/10.1016/j.jsg.2005.12.009, 2006. a
Tchalenko, J. S.: Similarities between Shear Zones of Different Magnitudes,
Geol. Soc. Am. Bull., 81, 1625–1640,
https://doi.org/10.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2, 1970. a, b, c, d
Templeton, E. L. and Rice, J. R.: Off-fault plasticity and earthquake rupture
dynamics: 1. Dry materials or neglect of fluid pressure changes, J.
Geophys. Res.-Sol. Ea., 113, 1–19, https://doi.org/10.1029/2007JB005529,
2008. a, b, c
Toro, G. D., Goldsby, D. L., and Tullis, T. E.: Friction falls towards zero in
quartz rock as slip velocity approaches seismic rates, Nature, 427,
436–439, https://doi.org/10.1038/nature02249, 2004. a
van Dinther, Y., Gerya, T. V., Dalguer, L. A., Corbi, F., Funiciello, F., and
Mai, P. M.: The seismic cycle at subduction thrusts: 2. Dynamic implications
of geodynamic simulations validated with laboratory models, J. Geophys. Res.-Sol. Ea., 118, 1502–1525,
https://doi.org/10.1029/2012JB009479, 2013a. a, b, c
van Dinther, Y., Gerya, T. V., Dalguer, L. A., Mai, P. M., Morra, G., and
Giardini, D.: The seismic cycle at subduction thrusts: Insights from
seismo-thermo-mechanical models, J. Geophys. Res.-Sol. Ea., 118, 6183–6202, https://doi.org/10.1002/2013JB010380, 2013b.
a, b, c
van Dinther, Y., Mai, P. M., Dalguer, L. A., and Gerya, T. V.: Modeling the
seismic cycle in subduction zones: The role and spatiotemporal occurrence of
off-megathrust earthquakes, Geophys. Res. Lett., 41, 1194–1201,
https://doi.org/10.1002/2013GL058886, 2014. a
Vermilye, J. M. and Scholz, C. H.: The process zone: A microstructural view of
fault growth, J. Geophys. Res., 103, 12223–12237, https://doi.org/10.1029/98JB00957, 1998. a
Wdowinski, S., Smith-Konter, B., Bock, Y., and Sandwell, D.: Diffuse
interseismic deformation across the Pacific-North America plate boundary,
Geol. Soc. Am., 35, 311–314, https://doi.org/10.1130/G22938A.1, 2007. a
Weng, H. and Ampuero, J. P.: The Dynamics of Elongated Earthquake Ruptures,
EarthArXiv, https://doi.org/10.31223/osf.io/9yq8n, 2019. a, b
Willemse, E. J. M. and Pollard, D. D.: On the orientation and patterns of wing
cracks and solution surfaces at the tips of a sliding flaw or fault, J. Geophys. Res.-Sol. Ea., 103, 2427–2438,
https://doi.org/10.1029/97JB01587,
1998. a, b, c
Wollherr, S., Gabriel, A. A., and Mai, P. M.: Landers 1992 “Reloaded”:
Integrative Dynamic Earthquake Rupture Modeling, J. Geophys. Res.-Sol. Ea., 124, 6666–6702, https://doi.org/10.1029/2018JB016355, 2019. a
Woodcock, N. H., Dickson, J. A. D., and Tarasewicz, J. P. T.: Transient
permeability and reseal hardening in fault zones: evidence from dilation
breccia textures, Geol. Soc. Spec. Publ., 270,
43–53, https://doi.org/10.1144/gsl.sp.2007.270.01.03, 2007. a
Short summary
In this paper, we present newly developed numerical models to simulate episodic growth of geological faults.
This growth of faults occurs during the seismic cycle, with spontaneously generated primary and secondary fault structures. With these models we are able to show the evolution of complex fault geometries. Additionally, we can quantify the impact of earthquakes on fault growth.
In this paper, we present newly developed numerical models to simulate episodic growth of...