Articles | Volume 11, issue 5
https://doi.org/10.5194/se-11-1849-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-1849-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating ocean tide loading displacements with GPS and GLONASS
Bogdan Matviichuk
CORRESPONDING AUTHOR
School of Technology, Environments and Design, University of Tasmania, Hobart, 7001, Australia
Matt King
School of Technology, Environments and Design, University of Tasmania, Hobart, 7001, Australia
Christopher Watson
School of Technology, Environments and Design, University of Tasmania, Hobart, 7001, Australia
Related authors
No articles found.
Eric Buchta, Mirko Scheinert, Matt A. King, Terry Wilson, Achraf Koulali, Peter J. Clarke, Demián Gómez, Eric Kendrick, Christoph Knöfel, and Peter Busch
Earth Syst. Sci. Data, 17, 1761–1780, https://doi.org/10.5194/essd-17-1761-2025, https://doi.org/10.5194/essd-17-1761-2025, 2025
Short summary
Short summary
Geodetic GPS measurements in Antarctica have been used to track bedrock displacement, which is vital for understanding geodynamic processes such as plate motion and glacial isostatic adjustment. However, the potential of GPS data has been limited by its partially fragmented availability and unreliable metadata. A new dataset, which spans the period from 1995 to 2021, offers consistently processed coordinate time series for 286 GPS sites and promises to enhance future geodynamic research.
John Bright Ayabilah, Matt King, Danielle Udy, and Tessa Vance
EGUsphere, https://doi.org/10.5194/egusphere-2025-1187, https://doi.org/10.5194/egusphere-2025-1187, 2025
Short summary
Short summary
Large-scale climate modes significantly influence Antarctic Ice Sheet (AIS) mass variability. This study investigates AIS variability during different El Niño-Southern Oscillation (ENSO) periods using GRACE data (2002–2022). Results show strong spatial variability driven by changes in the Amundsen Sea Low (ASL) and Southern Annular Mode (SAM). This highlights the importance of understanding these patterns for future ice mass estimates and sea level rise predictions.
Ole Richter, David E. Gwyther, Matt A. King, and Benjamin K. Galton-Fenzi
The Cryosphere, 16, 1409–1429, https://doi.org/10.5194/tc-16-1409-2022, https://doi.org/10.5194/tc-16-1409-2022, 2022
Short summary
Short summary
Tidal currents may play an important role in Antarctic ice sheet retreat by changing the rate at which the ocean melts glaciers. Here, using a computational ocean model, we derive the first estimate of present-day tidal melting that covers all of Antarctica. Our results suggest that large-scale ocean models aiming to accurately predict ice melt rates will need to account for the effects of tides. The inclusion of tide-induced friction at the ice–ocean interface should be prioritized.
Grace A. Nield, Matt A. King, Rebekka Steffen, and Bas Blank
Geosci. Model Dev., 15, 2489–2503, https://doi.org/10.5194/gmd-15-2489-2022, https://doi.org/10.5194/gmd-15-2489-2022, 2022
Short summary
Short summary
We present a finite-element model of post-seismic solid Earth deformation built in the software package Abaqus for the purpose of calculating post-seismic deformation in the far field of major earthquakes. The model is benchmarked against an existing open-source post-seismic model demonstrating good agreement. The advantage over existing models is the potential for simple modification to include 3-D Earth structure, non-linear rheologies and alternative or multiple sources of stress change.
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Cited articles
Abbaszadeh, M., Clarke, P. J., and Penna, N. T.: Benefits of combining GPS
and GLONASS for measuring ocean tide loading displacement, J. Geodesy, 94, 63, https://doi.org/10.1007/s00190-020-01393-5, 2020. a, b, c
Agnew, D. C.: Earth Tides, 151–178,
https://doi.org/10.1016/b978-0-444-53802-4.00058-0, 2015. a
Allinson, C. R.: Stability of direct GPS estimates of ocean tide loading,
Geophys. Res. Lett., 31, L15603, https://doi.org/10.1029/2004gl020588, 2004. a, b
Bar-Sever, Y. E., Kroger, P. M., and Borjesson, J. A.: Estimating horizontal
gradients of tropospheric path delay with a single GPS receiver, J. Geophys. Res.-Sol. Ea., 103, 5019–5035, https://doi.org/10.1029/97jb03534,
1998. a
Bertiger, W., Desai, S. D., Haines, B., Harvey, N., Moore, A. W., Owen, S., and
Weiss, J. P.: Single receiver phase ambiguity resolution with GPS data,
J. Geodesy, 84, 327–337, https://doi.org/10.1007/s00190-010-0371-9, 2010. a
BIGF: available at: http://www.bigf.ac.uk/, last access: 20 October 2020.
Boehm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS and
very long baseline interferometry from European Centre for Medium-Range
Weather Forecasts operational analysis data, J. Geophys. Res.-Sol. Ea., 111, B02406, https://doi.org/10.1029/2005jb003629, 2006. a
Bos, M. S.: Ocean Tide Loading Using Improved Ocean Tide Models, PhD thesis,
University of Liverpool, 2000. a
Bos, M. S. and Baker, T. F.: An estimate of the errors in gravity ocean tide
loading computations, J. Geodesy, 79, 50–63,
https://doi.org/10.1007/s00190-005-0442-5, 2005. a
Boy, J. P., Llubes, M., Hinderer, J., and Florsch, N.: A comparison of tidal
ocean loading models using superconducting gravimeter data, J. Geophys. Res.-Sol. Ea., 108, 2193, https://doi.org/10.1029/2002jb002050, 2003. a
Dach, R., Schaer, S., Arnold, D., Kalarus, M., Prange, L., Stebler, P., Villiger, A., and Jaeggi, A.: CODE final product series for the IGS, available at: http://ftp.aiub.unibe.ch/CODE_MGEX last access: 9 October 2020. a
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model,
Phys. Earth Planet. In., 25, 297–356,
https://doi.org/10.1016/0031-9201(81)90046-7, 1981. a
Farrell, W. E.: Deformation of the Earth by surface loads, Rev.
Geophys., 10, 761–797, https://doi.org/10.1029/RG010i003p00761, 1972. a
Foreman, M. G. G. and Henry, R. F.: The harmonic analysis of tidal model time
series, Adv. Water Resour., 12, 109–120,
https://doi.org/10.1016/0309-1708(89)90017-1, 1989. a
Fu, Y., Freymueller, J. T., and van Dam, T.: The effect of using inconsistent
ocean tidal loading models on GPS coordinate solutions, J. Geodesy,
86, 409–421, https://doi.org/10.1007/s00190-011-0528-1, 2012. a
Griffiths, J.: Combined orbits and clocks from IGS second reprocessing, J. Geodesy,
93, 177–195, https://doi.org/10.1007/s00190-018-1149-8, 2019. a, b, c
Griffiths, J. and Ray, J. R.: On the precision and accuracy of IGS orbits,
J. Geodesy, 83, 277–287, https://doi.org/10.1007/s00190-008-0237-6, 2009. a
Ito, T. and Simons, M.: Probing asthenospheric density, temperature, and
elastic moduli below the western United States, Science, 332, 947–51,
https://doi.org/10.1126/science.1202584, 2011. a, b, c, d
Jentzsch, G.: Earth tides and ocean tidal loading, 145–171,
Springer-Verlag, Germany, https://doi.org/10.1007/bfb0011461, 1997. a
Johnston, G., Riddell, A., and Hausler, G.: The International GNSS Service,
chap. 33, 967–982, https://doi.org/10.1007/978-3-319-42928-1_33,
2017. a
Khan, S. A. and Tscherning, C. C.: Determination of semi-diurnal ocean tide
loading constituents using GPS in Alaska, Geophys. Res. Lett., 28,
2249–2252, https://doi.org/10.1029/2000gl011890, 2001. a
King, M. A.: Kinematic and static GPS techniques for estimating tidal
displacements with application to Antarctica, J. Geodyn., 41,
77–86, https://doi.org/10.1016/j.jog.2005.08.019, 2006. a, b
King, M. A., Penna, N. T., Clarke, P. J., and King, E. C.: Validation of ocean
tide models around Antarctica using onshore GPS and gravity data, J. Geophys. Res.-Sol. Ea., 110, B08401, https://doi.org/10.1029/2004jb003390, 2005. a, b
Kouba, J.: A guide to using International GNSS Service (IGS) Products, Report,
Geodetic Survey Division, Natural Resources Canada, 2009. a
Lau, H. C. P., Mitrovica, J. X., Davis, J. L., Tromp, J., Yang, H. Y., and
Al-Attar, D.: Tidal tomography constrains Earth's deep-mantle buoyancy,
Nature, 551, 321–326, https://doi.org/10.1038/nature24452, 2017. a
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean Dyn., 56, 394–415,
https://doi.org/10.1007/s10236-006-0086-x, 2006. a
Martens, H. R., Simons, M., Owen, S., and Rivera, L.: Observations of ocean
tidal load response in South America from subdaily GPS positions, Geophys. J. Int., 205, 1637–1664, https://doi.org/10.1093/gji/ggw087, 2016. a, b, c
Matviichuk, B.: GipsyX_Wrapper v0.1.0, available at: https://github.com/bmatv/GipsyX_Wrapper, last access: 9 October 2020. a
Schenewerk, M. S., Marshall, J., and Dillinger, W.: Vertical Ocean-loading
Deformations Derived from a Global GPS Network, J. Geod. Soc. Japan, 47, 237–242, https://doi.org/10.11366/sokuchi1954.47.237, 2001. a, b
Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrère,
L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D., Erofeeva, S. Y.,
Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine,
F. G., Luthcke, S. B., Lyard, F., Morison, J., Müller, M., Padman, L.,
Richman, J. G., Shriver, J. F., Shum, C. K., Taguchi, E., and Yi, Y.:
Accuracy assessment of global barotropic ocean tide models, Rev.
Geophys., 52, 243–282, https://doi.org/10.1002/2014rg000450, 2014.
a
Susnik, A., Dach, R., Villiger, A., Maier, A., Arnold, D., Schaer, S., and
Jäggi, A.: CODE reprocessing product series, CODE_REPRO_2015,
https://doi.org/10.7892/boris.80011, 2016a. a
Susnik, A., Dach, R., Villiger, A., Maier, A., Arnold, D., Schaer, S., and Jaeggi, A.: CODE reprocessing product series, available at: http://ftp.aiub.unibe.ch/REPRO_2015 (last access: 9 October 2020), 2016b.
Thomas, I. D., King, M. A., and Clarke, P. J.: A comparison of GPS, VLBI and
model estimates of ocean tide loading displacements, J. Geodesy, 81,
359–368, https://doi.org/10.1007/s00190-006-0118-9, 2006. a, b, c, d
Urschl, C., Dach, R., Hugentobler, U., Schaer, S., and Beutler, G.: Validating
ocean tide loading models using GPS, J. Geodesy, 78, 616–625,
https://doi.org/10.1007/s00190-004-0427-9, 2005. a, b, c
Wenzel, H.-G.: The nanogal software: Earth tide data processing package ETERNA
3.30, Bull. Inf. Marées Terr., 124, 9425–9439, 1996. a
Yuan, L. G. and Chao, B. F.: Analysis of tidal signals in surface displacement
measured by a dense continuous GPS array, Earth Planet. Sc.
Lett., 355–356, 255–261, https://doi.org/10.1016/j.epsl.2012.08.035, 2012. a, b, c
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb,
F. H.: Precise point positioning for the efficient and robust analysis of GPS
data from large networks, J. Geophys. Res.-Sol. Ea., 102,
5005–5017, https://doi.org/10.1029/96jb03860, 1997. a
Short summary
The Earth deforms as the weight of ocean mass changes with the tides. GPS has been used to estimate displacements of the Earth at tidal periods and then used to understand the properties of the Earth or to test models of ocean tides. However, there are important inaccuracies in these GPS measurements at major tidal periods. We find that combining GPS and GLONASS gives more accurate results for constituents other than K2 and K1; for these, GLONASS or ambiguity resolved GPS are preferred.
The Earth deforms as the weight of ocean mass changes with the tides. GPS has been used to...