Articles | Volume 11, issue 5
https://doi.org/10.5194/se-11-1849-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-1849-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating ocean tide loading displacements with GPS and GLONASS
Bogdan Matviichuk
CORRESPONDING AUTHOR
School of Technology, Environments and Design, University of Tasmania, Hobart, 7001, Australia
Matt King
School of Technology, Environments and Design, University of Tasmania, Hobart, 7001, Australia
Christopher Watson
School of Technology, Environments and Design, University of Tasmania, Hobart, 7001, Australia
Related authors
No articles found.
Eric Buchta, Mirko Scheinert, Matt A. King, Terry Wilson, Achraf Koulali, Peter J. Clarke, Demián Gómez, Eric Kendrick, Christoph Knöfel, and Peter Busch
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-355, https://doi.org/10.5194/essd-2024-355, 2024
Preprint under review for ESSD
Short summary
Short summary
For nearly three decades, geodetic GPS measurements in Antarctica have tracked bedrock displacement, vital for understanding geodynamic processes like plate motion and glacial isostatic adjustment (GIA). However, the potential of GPS data has been limited by its partially fragmented availability and unreliable metadata. A new dataset, spanning 1995–2021, offers consistently processed coordinate time series for 286 GPS sites, promising to enhance future geodynamic research.
Ole Richter, David E. Gwyther, Matt A. King, and Benjamin K. Galton-Fenzi
The Cryosphere, 16, 1409–1429, https://doi.org/10.5194/tc-16-1409-2022, https://doi.org/10.5194/tc-16-1409-2022, 2022
Short summary
Short summary
Tidal currents may play an important role in Antarctic ice sheet retreat by changing the rate at which the ocean melts glaciers. Here, using a computational ocean model, we derive the first estimate of present-day tidal melting that covers all of Antarctica. Our results suggest that large-scale ocean models aiming to accurately predict ice melt rates will need to account for the effects of tides. The inclusion of tide-induced friction at the ice–ocean interface should be prioritized.
Grace A. Nield, Matt A. King, Rebekka Steffen, and Bas Blank
Geosci. Model Dev., 15, 2489–2503, https://doi.org/10.5194/gmd-15-2489-2022, https://doi.org/10.5194/gmd-15-2489-2022, 2022
Short summary
Short summary
We present a finite-element model of post-seismic solid Earth deformation built in the software package Abaqus for the purpose of calculating post-seismic deformation in the far field of major earthquakes. The model is benchmarked against an existing open-source post-seismic model demonstrating good agreement. The advantage over existing models is the potential for simple modification to include 3-D Earth structure, non-linear rheologies and alternative or multiple sources of stress change.
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Thomas Zwinger, Grace A. Nield, Juha Ruokolainen, and Matt A. King
Geosci. Model Dev., 13, 1155–1164, https://doi.org/10.5194/gmd-13-1155-2020, https://doi.org/10.5194/gmd-13-1155-2020, 2020
Short summary
Short summary
We present a newly developed flat-earth model, Elmer/Earth, for viscoelastic treatment of solid earth deformation under ice loads. Unlike many previous approaches with proprietary software, this model is based on the open-source FEM code Elmer, with the advantage for scientists to apply and alter the model without license constraints. The new-generation full-stress ice-sheet model Elmer/Ice shares the same code base, enabling future coupled ice-sheet–glacial-isostatic-adjustment simulations.
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2637–2652, https://doi.org/10.5194/tc-12-2637-2018, https://doi.org/10.5194/tc-12-2637-2018, 2018
Short summary
Short summary
A combination of computer modelling and observational data were used to infer the resistance to ice flow at the bed of the Fleming Glacier on the Antarctic Peninsula. The model was also used to simulate the distribution of temperature within the ice, which governs the rate at which the ice can deform. This is especially important for glaciers like the Fleming Glacier, which has both regions of rapid deformation and regions of rapid sliding at the bed.
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2653–2666, https://doi.org/10.5194/tc-12-2653-2018, https://doi.org/10.5194/tc-12-2653-2018, 2018
Short summary
Short summary
A combination of computer modelling and observational data were used to infer the resistance to ice flow at the bed of the Fleming Glacier on the Antarctic Peninsula in both 2008 and 2015. The comparison suggests the grounding line retreated by ~ 9 km from 2008 to 2015. The retreat may be enhanced by a positive feedback between friction, melting and sliding at the glacier bed.
Lenneke M. Jong, Rupert M. Gladstone, Benjamin K. Galton-Fenzi, and Matt A. King
The Cryosphere, 12, 2425–2436, https://doi.org/10.5194/tc-12-2425-2018, https://doi.org/10.5194/tc-12-2425-2018, 2018
Short summary
Short summary
We used an ice sheet model to simulate temporary regrounding of a marine ice sheet retreating across a retrograde bedrock slope. We show that a sliding relation incorporating water-filled cavities and the ice overburden pressure at the base allows the temporary regrounding to occur. This suggests that choice of basal sliding relation can be important when modelling grounding line behaviour of regions where potential ice rises and pinning points are present and regrounding could occur.
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Matt A. King, Keith W. Nicholls, Keith Makinson, and Hugh F. J. Corr
Earth Syst. Sci. Data, 9, 849–860, https://doi.org/10.5194/essd-9-849-2017, https://doi.org/10.5194/essd-9-849-2017, 2017
Short summary
Short summary
Tides can affect the flow of ice at hourly to yearly timescales. In some cases the ice responds at a different frequency than is found in the tidal forcing; for example, on Rutford Ice Stream the strongest response is at a fortnightly period. A new compilation of GPS data across the Ronne Ice Shelf and adjoining ice streams shows that this fortnightly modulation in ice flow is found across the entire region. Measurements of this kind can provide insights into ice rheology and basal processes.
Wolfgang Rack, Matt A. King, Oliver J. Marsh, Christian T. Wild, and Dana Floricioiu
The Cryosphere, 11, 2481–2490, https://doi.org/10.5194/tc-11-2481-2017, https://doi.org/10.5194/tc-11-2481-2017, 2017
Short summary
Short summary
Predicting changes of the Antarctic Ice Sheet involves fully understanding ice dynamics at the transition between grounded and floating ice. We map tidal bending of ice by satellite using InSAR, and we use precise GPS measurements with assumptions of tidal elastic bending to better interpret the satellite signal. It allows us to better define the grounding-line position and to refine the shape of tidal flexure profiles.
Riccardo E. M. Riva, Thomas Frederikse, Matt A. King, Ben Marzeion, and Michiel R. van den Broeke
The Cryosphere, 11, 1327–1332, https://doi.org/10.5194/tc-11-1327-2017, https://doi.org/10.5194/tc-11-1327-2017, 2017
Short summary
Short summary
The reduction of ice masses stored on land has made an important contribution to sea-level rise over the last century, as well as changed the Earth's shape. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have varied strongly throughout the last century, which affects the interpretation and extrapolation of recent observations of vertical land motion and sea-level change.
B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban
The Cryosphere, 8, 743–760, https://doi.org/10.5194/tc-8-743-2014, https://doi.org/10.5194/tc-8-743-2014, 2014
Related subject area
Subject area: The evolving Earth surface | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodesy
Gravity inversion method using L0-norm constraint with auto-adaptive regularization and combined stopping criteria
Common-mode signals and vertical velocities in the greater Alpine area from GNSS data
Monitoring surface deformation of deep salt mining in Vauvert (France), combining InSAR and leveling data for multi-source inversion
The imprints of contemporary mass redistribution on local sea level and vertical land motion observations
Time-lapse gravity and levelling surveys reveal mass loss and ongoing subsidence in the urban subrosion-prone area of Bad Frankenhausen, Germany
Precision of continuous GPS velocities from statistical analysis of synthetic time series
Impact of terrestrial reference frame realizations on altimetry satellite orbit quality and global and regional sea level trends: a switch from ITRF2008 to ITRF2014
The glacial isostatic adjustment signal at present day in northern Europe and the British Isles estimated from geodetic observations and geophysical models
Mesay Geletu Gebre and Elias Lewi
Solid Earth, 14, 101–117, https://doi.org/10.5194/se-14-101-2023, https://doi.org/10.5194/se-14-101-2023, 2023
Short summary
Short summary
In this work, a gravity inversion method that can produce compact and sharp images is presented. An auto-adaptive regularization parameter estimation method, improved error-weighting function and combined stopping rule are the contributions incorporated into the presented inversion method. The method is tested by synthetic and real gravity data, and the obtained results confirmed the potential practicality of the method.
Francesco Pintori, Enrico Serpelloni, and Adriano Gualandi
Solid Earth, 13, 1541–1567, https://doi.org/10.5194/se-13-1541-2022, https://doi.org/10.5194/se-13-1541-2022, 2022
Short summary
Short summary
We study time-varying vertical deformation signals in the European
Alps by analyzing GNSS position time series. We associate the deformation
signals to geophysical forcing processes, finding that atmospheric and
hydrological loading are by far the most important cause of seasonal
displacements. Recognizing and filtering out non-tectonic signals allows us
to improve the accuracy and precision of the vertical velocities.
Séverine Liora Furst, Samuel Doucet, Philippe Vernant, Cédric Champollion, and Jean-Louis Carme
Solid Earth, 12, 15–34, https://doi.org/10.5194/se-12-15-2021, https://doi.org/10.5194/se-12-15-2021, 2021
Short summary
Short summary
We develop a two-step methodology combining multiple surface deformation measurements above a salt extraction site (Vauvert, France) in order to overcome the difference in resolution and accuracy. Using this 3-D velocity field, we develop a model to determine the kinematics of the salt layer. The model shows a collapse of the salt layer beneath the exploitation. It also identifies a salt flow from the deepest and most external part of the salt layer towards the center of the exploitation.
Thomas Frederikse, Felix W. Landerer, and Lambert Caron
Solid Earth, 10, 1971–1987, https://doi.org/10.5194/se-10-1971-2019, https://doi.org/10.5194/se-10-1971-2019, 2019
Short summary
Short summary
Due to ice sheets and glaciers losing mass, and because continents get wetter and drier, a lot of water is redistributed over the Earth's surface. The Earth is not completely rigid but deforms under these changes in the load on top. This deformation affects sea-level observations. With the GRACE satellite mission, we can measure this redistribution of water, and we compute the resulting deformation. We use this computed deformation to improve the accuracy of sea-level observations.
Martin Kobe, Gerald Gabriel, Adelheid Weise, and Detlef Vogel
Solid Earth, 10, 599–619, https://doi.org/10.5194/se-10-599-2019, https://doi.org/10.5194/se-10-599-2019, 2019
Short summary
Short summary
Subrosion, i.e. the underground leaching of soluble rocks, causes disastrous sinkhole events worldwide. We investigate the accompanying mass transfer using quarter-yearly time-lapse gravity campaigns over 4 years in the town of Bad Frankenhausen, Germany. After correcting for seasonal soil water content, we find evidence of underground mass loss and attempt to quantify its amount. This is the first study of its kind to prove the feasibility of this approach in an urban area.
Christine Masson, Stephane Mazzotti, and Philippe Vernant
Solid Earth, 10, 329–342, https://doi.org/10.5194/se-10-329-2019, https://doi.org/10.5194/se-10-329-2019, 2019
Short summary
Short summary
We use statistical analyses of synthetic position time series to estimate the potential precision of GPS velocities. Regression tree analyses show that the main factors controlling the velocity precision are the duration of the series, the presence of offsets, and the noise. Our analysis allows us to propose guidelines which can be applied to actual GPS data that constrain the velocity accuracies.
Sergei Rudenko, Saskia Esselborn, Tilo Schöne, and Denise Dettmering
Solid Earth, 10, 293–305, https://doi.org/10.5194/se-10-293-2019, https://doi.org/10.5194/se-10-293-2019, 2019
Short summary
Short summary
A terrestrial reference frame (TRF) realization is a basis for precise orbit determination of Earth-orbiting artificial satellites and sea level studies. We investigate the impact of a switch from an older TRF realization (ITRF2008) to a new one (ITRF2014) on the quality of orbits of three altimetry satellites (TOPEX/Poseidon, Jason-1, and Jason-2) for 1992–2015, but especially from 2009 onwards, and on altimetry products computed using the satellite orbits derived using ITRF2014.
Karen M. Simon, Riccardo E. M. Riva, Marcel Kleinherenbrink, and Thomas Frederikse
Solid Earth, 9, 777–795, https://doi.org/10.5194/se-9-777-2018, https://doi.org/10.5194/se-9-777-2018, 2018
Short summary
Short summary
This study constrains the post-glacial rebound signal in Scandinavia and northern Europe via the combined inversion of prior forward model information with GPS-measured vertical land motion data and GRACE gravity data. The best-fit model for vertical motion rates has a χ2 value of ~ 1 and a maximum uncertainty of 0.3–0.4 mm yr−1. An advantage of inverse models relative to forward models is their ability to estimate formal uncertainties associated with the post-glacial rebound process.
Cited articles
Abbaszadeh, M., Clarke, P. J., and Penna, N. T.: Benefits of combining GPS
and GLONASS for measuring ocean tide loading displacement, J. Geodesy, 94, 63, https://doi.org/10.1007/s00190-020-01393-5, 2020. a, b, c
Agnew, D. C.: Earth Tides, 151–178,
https://doi.org/10.1016/b978-0-444-53802-4.00058-0, 2015. a
Allinson, C. R.: Stability of direct GPS estimates of ocean tide loading,
Geophys. Res. Lett., 31, L15603, https://doi.org/10.1029/2004gl020588, 2004. a, b
Bar-Sever, Y. E., Kroger, P. M., and Borjesson, J. A.: Estimating horizontal
gradients of tropospheric path delay with a single GPS receiver, J. Geophys. Res.-Sol. Ea., 103, 5019–5035, https://doi.org/10.1029/97jb03534,
1998. a
Bertiger, W., Desai, S. D., Haines, B., Harvey, N., Moore, A. W., Owen, S., and
Weiss, J. P.: Single receiver phase ambiguity resolution with GPS data,
J. Geodesy, 84, 327–337, https://doi.org/10.1007/s00190-010-0371-9, 2010. a
BIGF: available at: http://www.bigf.ac.uk/, last access: 20 October 2020.
Boehm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS and
very long baseline interferometry from European Centre for Medium-Range
Weather Forecasts operational analysis data, J. Geophys. Res.-Sol. Ea., 111, B02406, https://doi.org/10.1029/2005jb003629, 2006. a
Bos, M. S.: Ocean Tide Loading Using Improved Ocean Tide Models, PhD thesis,
University of Liverpool, 2000. a
Bos, M. S. and Baker, T. F.: An estimate of the errors in gravity ocean tide
loading computations, J. Geodesy, 79, 50–63,
https://doi.org/10.1007/s00190-005-0442-5, 2005. a
Boy, J. P., Llubes, M., Hinderer, J., and Florsch, N.: A comparison of tidal
ocean loading models using superconducting gravimeter data, J. Geophys. Res.-Sol. Ea., 108, 2193, https://doi.org/10.1029/2002jb002050, 2003. a
Dach, R., Schaer, S., Arnold, D., Kalarus, M., Prange, L., Stebler, P., Villiger, A., and Jaeggi, A.: CODE final product series for the IGS, available at: http://ftp.aiub.unibe.ch/CODE_MGEX last access: 9 October 2020. a
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model,
Phys. Earth Planet. In., 25, 297–356,
https://doi.org/10.1016/0031-9201(81)90046-7, 1981. a
Farrell, W. E.: Deformation of the Earth by surface loads, Rev.
Geophys., 10, 761–797, https://doi.org/10.1029/RG010i003p00761, 1972. a
Foreman, M. G. G. and Henry, R. F.: The harmonic analysis of tidal model time
series, Adv. Water Resour., 12, 109–120,
https://doi.org/10.1016/0309-1708(89)90017-1, 1989. a
Fu, Y., Freymueller, J. T., and van Dam, T.: The effect of using inconsistent
ocean tidal loading models on GPS coordinate solutions, J. Geodesy,
86, 409–421, https://doi.org/10.1007/s00190-011-0528-1, 2012. a
Griffiths, J.: Combined orbits and clocks from IGS second reprocessing, J. Geodesy,
93, 177–195, https://doi.org/10.1007/s00190-018-1149-8, 2019. a, b, c
Griffiths, J. and Ray, J. R.: On the precision and accuracy of IGS orbits,
J. Geodesy, 83, 277–287, https://doi.org/10.1007/s00190-008-0237-6, 2009. a
Ito, T. and Simons, M.: Probing asthenospheric density, temperature, and
elastic moduli below the western United States, Science, 332, 947–51,
https://doi.org/10.1126/science.1202584, 2011. a, b, c, d
Jentzsch, G.: Earth tides and ocean tidal loading, 145–171,
Springer-Verlag, Germany, https://doi.org/10.1007/bfb0011461, 1997. a
Johnston, G., Riddell, A., and Hausler, G.: The International GNSS Service,
chap. 33, 967–982, https://doi.org/10.1007/978-3-319-42928-1_33,
2017. a
Khan, S. A. and Tscherning, C. C.: Determination of semi-diurnal ocean tide
loading constituents using GPS in Alaska, Geophys. Res. Lett., 28,
2249–2252, https://doi.org/10.1029/2000gl011890, 2001. a
King, M. A.: Kinematic and static GPS techniques for estimating tidal
displacements with application to Antarctica, J. Geodyn., 41,
77–86, https://doi.org/10.1016/j.jog.2005.08.019, 2006. a, b
King, M. A., Penna, N. T., Clarke, P. J., and King, E. C.: Validation of ocean
tide models around Antarctica using onshore GPS and gravity data, J. Geophys. Res.-Sol. Ea., 110, B08401, https://doi.org/10.1029/2004jb003390, 2005. a, b
Kouba, J.: A guide to using International GNSS Service (IGS) Products, Report,
Geodetic Survey Division, Natural Resources Canada, 2009. a
Lau, H. C. P., Mitrovica, J. X., Davis, J. L., Tromp, J., Yang, H. Y., and
Al-Attar, D.: Tidal tomography constrains Earth's deep-mantle buoyancy,
Nature, 551, 321–326, https://doi.org/10.1038/nature24452, 2017. a
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean Dyn., 56, 394–415,
https://doi.org/10.1007/s10236-006-0086-x, 2006. a
Martens, H. R., Simons, M., Owen, S., and Rivera, L.: Observations of ocean
tidal load response in South America from subdaily GPS positions, Geophys. J. Int., 205, 1637–1664, https://doi.org/10.1093/gji/ggw087, 2016. a, b, c
Matviichuk, B.: GipsyX_Wrapper v0.1.0, available at: https://github.com/bmatv/GipsyX_Wrapper, last access: 9 October 2020. a
Schenewerk, M. S., Marshall, J., and Dillinger, W.: Vertical Ocean-loading
Deformations Derived from a Global GPS Network, J. Geod. Soc. Japan, 47, 237–242, https://doi.org/10.11366/sokuchi1954.47.237, 2001. a, b
Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrère,
L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D., Erofeeva, S. Y.,
Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine,
F. G., Luthcke, S. B., Lyard, F., Morison, J., Müller, M., Padman, L.,
Richman, J. G., Shriver, J. F., Shum, C. K., Taguchi, E., and Yi, Y.:
Accuracy assessment of global barotropic ocean tide models, Rev.
Geophys., 52, 243–282, https://doi.org/10.1002/2014rg000450, 2014.
a
Susnik, A., Dach, R., Villiger, A., Maier, A., Arnold, D., Schaer, S., and
Jäggi, A.: CODE reprocessing product series, CODE_REPRO_2015,
https://doi.org/10.7892/boris.80011, 2016a. a
Susnik, A., Dach, R., Villiger, A., Maier, A., Arnold, D., Schaer, S., and Jaeggi, A.: CODE reprocessing product series, available at: http://ftp.aiub.unibe.ch/REPRO_2015 (last access: 9 October 2020), 2016b.
Thomas, I. D., King, M. A., and Clarke, P. J.: A comparison of GPS, VLBI and
model estimates of ocean tide loading displacements, J. Geodesy, 81,
359–368, https://doi.org/10.1007/s00190-006-0118-9, 2006. a, b, c, d
Urschl, C., Dach, R., Hugentobler, U., Schaer, S., and Beutler, G.: Validating
ocean tide loading models using GPS, J. Geodesy, 78, 616–625,
https://doi.org/10.1007/s00190-004-0427-9, 2005. a, b, c
Wenzel, H.-G.: The nanogal software: Earth tide data processing package ETERNA
3.30, Bull. Inf. Marées Terr., 124, 9425–9439, 1996. a
Yuan, L. G. and Chao, B. F.: Analysis of tidal signals in surface displacement
measured by a dense continuous GPS array, Earth Planet. Sc.
Lett., 355–356, 255–261, https://doi.org/10.1016/j.epsl.2012.08.035, 2012. a, b, c
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb,
F. H.: Precise point positioning for the efficient and robust analysis of GPS
data from large networks, J. Geophys. Res.-Sol. Ea., 102,
5005–5017, https://doi.org/10.1029/96jb03860, 1997. a
Short summary
The Earth deforms as the weight of ocean mass changes with the tides. GPS has been used to estimate displacements of the Earth at tidal periods and then used to understand the properties of the Earth or to test models of ocean tides. However, there are important inaccuracies in these GPS measurements at major tidal periods. We find that combining GPS and GLONASS gives more accurate results for constituents other than K2 and K1; for these, GLONASS or ambiguity resolved GPS are preferred.
The Earth deforms as the weight of ocean mass changes with the tides. GPS has been used to...