Articles | Volume 11, issue 5
Solid Earth, 11, 1849–1863, 2020

Special issue: Developments in the science and history of tides (OS/ACP/HGSS/NPG/SE...

Solid Earth, 11, 1849–1863, 2020
Research article
14 Oct 2020
Research article | 14 Oct 2020

Estimating ocean tide loading displacements with GPS and GLONASS

Bogdan Matviichuk et al.

Related authors

The impact of tides on Antarctic ice shelf melting
Ole Richter, David E. Gwyther, Matt A. King, and Benjamin K. Galton-Fenzi
The Cryosphere, 16, 1409–1429,,, 2022
Short summary
A global, spherical finite-element model for post-seismic deformation using Abaqus
Grace A. Nield, Matt A. King, Rebekka Steffen, and Bas Blank
Geosci. Model Dev., 15, 2489–2503,,, 2022
Short summary
An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124,,, 2021
Short summary
A new open-source viscoelastic solid earth deformation module implemented in Elmer (v8.4)
Thomas Zwinger, Grace A. Nield, Juha Ruokolainen, and Matt A. King
Geosci. Model Dev., 13, 1155–1164,,, 2020
Short summary
Basal friction of Fleming Glacier, Antarctica – Part 1: Sensitivity of inversion to temperature and bedrock uncertainty
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2637–2652,,, 2018
Short summary

Related subject area

Subject area: The evolving Earth surface | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodesy
Monitoring surface deformation of deep salt mining in Vauvert (France), combining InSAR and leveling data for multi-source inversion
Séverine Liora Furst, Samuel Doucet, Philippe Vernant, Cédric Champollion, and Jean-Louis Carme
Solid Earth, 12, 15–34,,, 2021
Short summary
The imprints of contemporary mass redistribution on local sea level and vertical land motion observations
Thomas Frederikse, Felix W. Landerer, and Lambert Caron
Solid Earth, 10, 1971–1987,,, 2019
Short summary
Time-lapse gravity and levelling surveys reveal mass loss and ongoing subsidence in the urban subrosion-prone area of Bad Frankenhausen, Germany
Martin Kobe, Gerald Gabriel, Adelheid Weise, and Detlef Vogel
Solid Earth, 10, 599–619,,, 2019
Short summary
Precision of continuous GPS velocities from statistical analysis of synthetic time series
Christine Masson, Stephane Mazzotti, and Philippe Vernant
Solid Earth, 10, 329–342,,, 2019
Short summary
Impact of terrestrial reference frame realizations on altimetry satellite orbit quality and global and regional sea level trends: a switch from ITRF2008 to ITRF2014
Sergei Rudenko, Saskia Esselborn, Tilo Schöne, and Denise Dettmering
Solid Earth, 10, 293–305,,, 2019
Short summary

Cited articles

Abbaszadeh, M., Clarke, P. J., and Penna, N. T.: Benefits of combining GPS and GLONASS for measuring ocean tide loading displacement, J. Geodesy, 94, 63,, 2020. a, b, c
Agnew, D. C.: Earth Tides, 151–178,, 2015. a
Allinson, C. R.: Stability of direct GPS estimates of ocean tide loading, Geophys. Res. Lett., 31, L15603,, 2004. a, b
Baker, T. F.: Tidal Deformations of the Earth, Sci. Prog., 69, 197–233, 1984. a, b
Bar-Sever, Y. E., Kroger, P. M., and Borjesson, J. A.: Estimating horizontal gradients of tropospheric path delay with a single GPS receiver, J. Geophys. Res.-Sol. Ea., 103, 5019–5035,, 1998. a
Short summary
The Earth deforms as the weight of ocean mass changes with the tides. GPS has been used to estimate displacements of the Earth at tidal periods and then used to understand the properties of the Earth or to test models of ocean tides. However, there are important inaccuracies in these GPS measurements at major tidal periods. We find that combining GPS and GLONASS gives more accurate results for constituents other than K2 and K1; for these, GLONASS or ambiguity resolved GPS are preferred.