Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-1969-2020
https://doi.org/10.5194/se-11-1969-2020
Research article
 | 
05 Nov 2020
Research article |  | 05 Nov 2020

Spatiotemporal history of fault–fluid interaction in the Hurricane fault, western USA

Jace M. Koger and Dennis L. Newell

Related subject area

Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochemistry
Mineralogical and elemental geochemical characteristics of Taodonggou Group mudstone in the Taibei Sag, Turpan–Hami Basin: implication for its formation mechanism
Huan Miao, Jianying Guo, Yanbin Wang, Zhenxue Jiang, Chengju Zhang, and Chuanming Li
Solid Earth, 14, 1031–1052, https://doi.org/10.5194/se-14-1031-2023,https://doi.org/10.5194/se-14-1031-2023, 2023
Short summary
Application of lithogeochemical and pyrite trace element data for the determination of vectors to ore in the Raja Au–Co prospect, northern Finland
Sara Raič, Ferenc Molnár, Nick Cook, Hugh O'Brien, and Yann Lahaye
Solid Earth, 13, 271–299, https://doi.org/10.5194/se-13-271-2022,https://doi.org/10.5194/se-13-271-2022, 2022
Short summary
Influence of basement rocks on fluid evolution during multiphase deformation: the example of the Estamariu thrust in the Pyrenean Axial Zone
Daniel Muñoz-López, Gemma Alías, David Cruset, Irene Cantarero, Cédric M. John, and Anna Travé
Solid Earth, 11, 2257–2281, https://doi.org/10.5194/se-11-2257-2020,https://doi.org/10.5194/se-11-2257-2020, 2020
Short summary
Fluid–rock interactions in the shallow Mariana forearc: carbon cycling and redox conditions
Elmar Albers, Wolfgang Bach, Frieder Klein, Catriona D. Menzies, Friedrich Lucassen, and Damon A. H. Teagle
Solid Earth, 10, 907–930, https://doi.org/10.5194/se-10-907-2019,https://doi.org/10.5194/se-10-907-2019, 2019
Short summary
Squirt flow due to interfacial water films in hydrate bearing sediments
Kathleen Sell, Beatriz Quintal, Michael Kersten, and Erik H. Saenger
Solid Earth, 9, 699–711, https://doi.org/10.5194/se-9-699-2018,https://doi.org/10.5194/se-9-699-2018, 2018
Short summary

Cited articles

Anderson, R. E. and Mehnert, H. H.: Reinterpretation of the history of the Hurricane fault in Utah, in: Basin and Range Symposium, edited by: Newman, G. W., Rocky Mountain Association of Geologist and Utah Geological Association, Denver, CO, 145–165, 1976. 
Armstrong, R. L.: Sevier orogenic belt in Nevada and Utah, Geol. Soc. Am. Bull., 79, 429–458, 1968. 
Axen, G. J., Taylor, W. J., and Bartley, J. M.: Space-time patterns and tectonic controls of Tertiary extension and magmatism in the Great Basin of the western United States, Geol. Soc. Am. Bull., 105, 56–76, 1993. 
Baedecker, M. J., Cozzarelli, I. M., Eganhouse, R. P., Siegel, D. I., and Bennett, P. C.: Crude oil in a shallow sand and gravel aquifer – III. Biogeochemical reactions and mass balance modeling in anoxic groundwater, Appl. Geochem., 8, 569–586, 1993. 
Bahr, C. W.: Virgin oil field, Washington County, Utah, in: Guidbook to the geology of southwestern Utah: Transition between basin-range and Colorado plateau provinces, edited by: Heylmun, E. B., Intermountain Association of Petroleum Geologists, Salt Lake City, 169–171, 1963. 
Download
Short summary
The Hurricane fault is a major and active normal fault located in the southwestern USA. This study utilizes the geochemistry and dating of calcite veins associated with the fault to characterize ancient groundwater flow. Results show that waters moving along the fault over the last 540 000 years were a mixture of infiltrating fresh water and deep, warm salty groundwater. The formation of calcite veins may be related to ancient earthquakes, and the fault influences regional groundwater flow.