Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-1987-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-1987-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fault-controlled fluid circulation and diagenesis along basin-bounding fault systems in rifts – insights from the East Greenland rift system
Eric Salomon
CORRESPONDING AUTHOR
Department of Earth Science, University of Bergen, Bergen, Norway
now at: GeoZentrum Nordbayern, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
Atle Rotevatn
Department of Earth Science, University of Bergen, Bergen, Norway
Thomas Berg Kristensen
Department of Earth Science, University of Bergen, Bergen, Norway
now at: Equinor, Bergen, Norway
Sten-Andreas Grundvåg
Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway
Gijs Allard Henstra
Department of Earth Science, University of Bergen, Bergen, Norway
now at: AkerBP, Fornebu, Norway
Anna Nele Meckler
Department of Earth Science, University of Bergen, Bergen, Norway
Richard Albert
Department of Geosciences, Goethe University Frankfurt, Frankfurt, Germany
Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt, Germany
Axel Gerdes
Department of Geosciences, Goethe University Frankfurt, Frankfurt, Germany
Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt, Germany
Related authors
No articles found.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna M. R. Sartell, Andrew Schaeffer, Daniel Stockli, Marie A. Vander Kloet, and Carmen Gaina
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2024-3, https://doi.org/10.5194/gc-2024-3, 2024
Revised manuscript accepted for GC
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic Geology. The students experience this from a wide range of lecturers, focussing both on the small and larger scales, and covering many geoscientific disciplines.
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023, https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary
Short summary
Chronological information on the evolution of the Namib Desert is scarce. We used U–Pb dating of silcretes formed by pressure solution during calcrete formation to track paleoclimate variability since the Late Miocene. Calcrete formation took place during the Pliocene with an abrupt cessation at 2.9 Ma. The end took place due to deep canyon incision which we dated using TCN exposure dating. With our data we correct and contribute to the Neogene history of the Namib Desert and its evolution.
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023, https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Short summary
In the context of understanding current global warming, the middle Pliocene (3.3–3.0 million years ago) is an important interval in Earth's history because atmospheric carbon dioxide concentrations were similar to levels today. We have reconstructed deep-sea temperatures at two different locations for this period, and find that a very different mode of ocean circulation or mixing existed, with important implications for how heat was transported in the deep ocean.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Jenny Maccali, Anna Nele Meckler, Stein-Erik Lauritzen, Torill Brekken, Helen Aase Rokkan, Alvaro Fernandez, Yves Krüger, Jane Adigun, Stéphane Affolter, and Markus Leuenberger
Clim. Past, 19, 1847–1862, https://doi.org/10.5194/cp-19-1847-2023, https://doi.org/10.5194/cp-19-1847-2023, 2023
Short summary
Short summary
The southern coast of South Africa hosts some key archeological sites for the study of early human evolution. Here we present a short but high-resolution record of past changes in the hydroclimate and temperature on the southern coast of South Africa based on the study of a speleothem collected from Bloukrantz Cave. Overall, the paleoclimate indicators suggest stable temperature from 48.3 to 45.2 ka, whereas precipitation was variable, with marked short drier episodes.
Tibor János Dunai, Steven Andrew Binnie, and Axel Gerdes
Geochronology, 4, 65–85, https://doi.org/10.5194/gchron-4-65-2022, https://doi.org/10.5194/gchron-4-65-2022, 2022
Short summary
Short summary
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
Thomas J. Leutert, Sevasti Modestou, Stefano M. Bernasconi, and A. Nele Meckler
Clim. Past, 17, 2255–2271, https://doi.org/10.5194/cp-17-2255-2021, https://doi.org/10.5194/cp-17-2255-2021, 2021
Short summary
Short summary
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was followed by a period of dramatic climate change. We present a clumped isotope-based bottom-water temperature record from the Southern Ocean covering this key climate transition. Our record reveals warm conditions and a substantial cooling preceding the main ice volume increase, possibly caused by thresholds involved in ice growth and/or regional effects at our study site.
Kim Senger, Peter Betlem, Sten-Andreas Grundvåg, Rafael Kenji Horota, Simon John Buckley, Aleksandra Smyrak-Sikora, Malte Michel Jochmann, Thomas Birchall, Julian Janocha, Kei Ogata, Lilith Kuckero, Rakul Maria Johannessen, Isabelle Lecomte, Sara Mollie Cohen, and Snorre Olaussen
Geosci. Commun., 4, 399–420, https://doi.org/10.5194/gc-4-399-2021, https://doi.org/10.5194/gc-4-399-2021, 2021
Short summary
Short summary
At UNIS, located at 78° N in Longyearbyen in Arctic Norway, we use digital outcrop models (DOMs) actively in a new course (
AG222 Integrated Geological Methods: From Outcrop To Geomodel) to solve authentic geoscientific challenges. DOMs are shared through the open-access Svalbox geoscientific portal, along with 360° imagery, subsurface data and published geoscientific data from Svalbard. Here we share experiences from the AG222 course and Svalbox, both before and during the Covid-19 pandemic.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Rock deformation, geomorphology, morphotectonics, and paleoseismology | Discipline: Structural geology
Application of anisotropy of magnetic susceptibility (AMS) fabrics to determine the kinematics of active tectonics: examples from the Betic Cordillera, Spain, and the Northern Apennines, Italy
Towards the application of Stokes flow equations to structural restoration simulations
Data acquisition by digitizing 2-D fracture networks and topographic lineaments in geographic information systems: further development and applications
Regional-scale paleofluid system across the Tuscan Nappe–Umbria–Marche Apennine Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite–vein networks
Stress field orientation controls on fault leakage at a natural CO2 reservoir
Diagenetic evolution of fault zones in Urgonian microporous carbonates, impact on reservoir properties (Provence – southeast France)
Uncertainty in fault seal parameters: implications for CO2 column height retention and storage capacity in geological CO2 storage projects
The role of mechanical stratigraphy on the refraction of strike-slip faults
Influence of basement heterogeneity on the architecture of low subsidence rate Paleozoic intracratonic basins (Reggane, Ahnet, Mouydir and Illizi basins, Hoggar Massif)
David J. Anastasio, Frank J. Pazzaglia, Josep M. Parés, Kenneth P. Kodama, Claudio Berti, James A. Fisher, Alessandro Montanari, and Lorraine K. Carnes
Solid Earth, 12, 1125–1142, https://doi.org/10.5194/se-12-1125-2021, https://doi.org/10.5194/se-12-1125-2021, 2021
Short summary
Short summary
The anisotropy of magnetic susceptibility (AMS) technique provides an effective way to interpret deforming mountain belts. In both the Betics, Spain, and Apennines, Italy, weak but well-organized AMS fabrics were recovered from young unconsolidated and unburied rocks that could not be analyzed with more traditional methods. Collectively, these studies demonstrate the novel ways that AMS can be combined with other data to resolve earthquake hazards in space and time.
Melchior Schuh-Senlis, Cedric Thieulot, Paul Cupillard, and Guillaume Caumon
Solid Earth, 11, 1909–1930, https://doi.org/10.5194/se-11-1909-2020, https://doi.org/10.5194/se-11-1909-2020, 2020
Short summary
Short summary
This paper presents a numerical method for restoring models of the subsurface to a previous state in their deformation history, acting as a numerical time machine for geological structures. The method relies on the assumption that rock layers can be modeled as highly viscous fluids. It shows promising results on simple setups, including models with faults and non-flat topography. While issues still remain, this could open a way to add more physics to reverse time structural modeling.
Romesh Palamakumbura, Maarten Krabbendam, Katie Whitbread, and Christian Arnhardt
Solid Earth, 11, 1731–1746, https://doi.org/10.5194/se-11-1731-2020, https://doi.org/10.5194/se-11-1731-2020, 2020
Short summary
Short summary
The aim of this paper is to describe, evaluate and develop a simple but robust low-cost method for capturing 2-D fracture network data in GIS and make them more accessible to a broader range of users in both academia and industry. We present a breakdown of the key steps in the methodology, which provides an understanding of how to avoid error and improve the accuracy of the final dataset. The 2-D digital method can be used to interpret traces of 2-D linear features on a wide variety of scales.
Nicolas E. Beaudoin, Aurélie Labeur, Olivier Lacombe, Daniel Koehn, Andrea Billi, Guilhem Hoareau, Adrian Boyce, Cédric M. John, Marta Marchegiano, Nick M. Roberts, Ian L. Millar, Fanny Claverie, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 11, 1617–1641, https://doi.org/10.5194/se-11-1617-2020, https://doi.org/10.5194/se-11-1617-2020, 2020
Short summary
Short summary
This paper reports a multiproxy approach to reconstruct the depth, timing, and extent of the past fluid flow during the formation of a fold-and-thrust belt in the Northern Apennines, Italy. The unique combination of paleopiezometry and absolute dating returns the absolute timing of the sequence of deformation. Combined with burial models, this leads to predict the expected temperatures for fluid, highlighting a limited hydrothermal fluid flow we relate to the large-scale subsurface geometry.
Johannes M. Miocic, Gareth Johnson, and Stuart M. V. Gilfillan
Solid Earth, 11, 1361–1374, https://doi.org/10.5194/se-11-1361-2020, https://doi.org/10.5194/se-11-1361-2020, 2020
Short summary
Short summary
At the St. Johns Dome, Arizona, CO2 naturally occurs in the subsurface, but there are travertine rocks on the surface which are an expression of CO2 leakage to the surface. These travertine deposits occur along faults, zones where the rock layers are fractured and displaced. In our research, we use geomechanical analysis to show that the CO2 leakage occurs at points where the faults are likely to be permeable due to the orientation of the geological stress field in the subsurface.
Irène Aubert, Philippe Léonide, Juliette Lamarche, and Roland Salardon
Solid Earth, 11, 1163–1186, https://doi.org/10.5194/se-11-1163-2020, https://doi.org/10.5194/se-11-1163-2020, 2020
Short summary
Short summary
In carbonate rocks, fault zones influence the fluid flows and lead to important diagenetic processes modifying reservoir properties. The aim of this study is to identify the impact of two polyphase fault zones on fluid flows and reservoir properties during basin history. We determined petro-physic and diagenetic properties on 92 samples. This study highlights that fault zones acted as drains at their onset and induced fault zone cementation, which has strongly altered local reservoir properties.
Johannes M. Miocic, Gareth Johnson, and Clare E. Bond
Solid Earth, 10, 951–967, https://doi.org/10.5194/se-10-951-2019, https://doi.org/10.5194/se-10-951-2019, 2019
Short summary
Short summary
When carbon dioxide is introduced into the subsurface it will migrate upwards and can encounter faults, which, depending on their hydrogeological properties and composition, can form barriers or pathways for the migrating fluid. We analyse uncertainties associated with these properties in order to better understand the implications for the retention of CO2 in the subsurface. We show that faults that form seals for other fluids may not be seals for CO2, which has implications for storage sites.
Mirko Carlini, Giulio Viola, Jussi Mattila, and Luca Castellucci
Solid Earth, 10, 343–356, https://doi.org/10.5194/se-10-343-2019, https://doi.org/10.5194/se-10-343-2019, 2019
Short summary
Short summary
Physical properties of layered sedimentary rocks affect nucleation and propagation of discontinuities therein. Fractures developing through sedimentary sequences characterized by the alternation of strong and weak layers are strongly deviated along their track at layers’ boundaries, and depending on the layer they cross-cut, they show very thick (strong layers) or very thin (weak layers) infills of precipitated minerals, potentially representing pathways for ore deposits and oil/water resources.
Paul Perron, Michel Guiraud, Emmanuelle Vennin, Isabelle Moretti, Éric Portier, Laetitia Le Pourhiet, and Moussa Konaté
Solid Earth, 9, 1239–1275, https://doi.org/10.5194/se-9-1239-2018, https://doi.org/10.5194/se-9-1239-2018, 2018
Short summary
Short summary
In this paper we present an original multidisciplinary workflow involving various tools (e.g., seismic profiles, satellite images, well logs) and techniques (e.g., photogeology, seismic interpretation, well correlation, geophysics, geochronology, backstripping) as a basis for discussing the potential factors controlling the tectono-stratigraphic architecture within the Palaeozoic intracratonic basins of the Saharan Platform using the Reggane, Ahnet, Mouydir and Illizi basins as examples.
Cited articles
Bernasconi, S. M., Hu, B., Wacker, U., Fiebig, J., Breitenbach, S. F. M., and
Rutz, T.: Background effects on Faraday collectors in gas-source mass
spectrometry and implications for clumped isotope measurements, Rapid
Commun. Mass Sp., RCM, 27, 603–612,
https://doi.org/10.1002/rcm.6490, 2013. a
Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F. M.,
Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A. N., Millan, I., and
Ziegler, M.: Reducing Uncertainties in Carbonate Clumped Isotope Analysis
Through Consistent Carbonate-Based Standardization, Geochem. Geophy.
Geosy., 19, 2895–2914, https://doi.org/10.1029/2017gc007385, 2018. a, b
Bons, P. D., Elburg, M. A., and Gomez-Rivas, E.: A review of the formation of
tectonic veins and their microstructures, J. Struct. Geol., 43,
33–62, https://doi.org/10.1016/j.jsg.2012.07.005, 2012. a
Brace, W. F.: Permeability of crystalline and argillaceous rocks, Int.
J. Rock Mech. Min.,
17, 241–251, https://doi.org/10.1016/0148-9062(80)90807-4, 1980. a
Chéry, J., Lucazeau, F., Daignières, M., and Vilotte, J. P.: Large
uplift of rift flanks: A genetic link with lithospheric rigidity?, Earth
Planet. Sc. Lett., 112, 195–211, https://doi.org/10.1016/0012-821X(92)90016-O,
1992. a
Christiansen, F., Larsen, H., Marcussen, C., Hansen, K., and Krabbe, H.: Uplift
study of the Jameson Land basin, East Greenland, Norsk Geologisk Tidsskrift,
72, 291–294, 1992. a
Clark, I. D. and Fritz, P.: Environmental Isotopes in Hydrogeology, CRC Press, Boca Raton, 342 pp.,
1997. a
Cooper, H., Kohout, F., Henry, H., and Glover, R.: Sea Water in Coastal
Aquifers, Tech. rep., US Government Printing Office, Washington, DC, 84 pp., 1964. a
Cooper, H. H.: A hypothesis concerning the dynamic balance of fresh water and
salt water in a coastal aquifer, J. Geophys. Res., 64,
461–467, https://doi.org/10.1029/JZ064i004p00461, 1959. a
Corti, G., van Wijk, J., Cloetingh, S., and Morley, C. K.: Tectonic
inheritance and continental rift architecture: Numerical and analogue models
of the East African Rift system, Tectonics, 26, 13 pp.,
https://doi.org/10.1029/2006TC002086, 2007. a
Croizé, D., Renard, F., Bjørlykke, K., and Dysthe, D. K.: Experimental
calcite dissolution under stress: Evolution of grain contact microstructure
during pressure solution creep, J. Geophys. Res., 115, 15 pp.,
https://doi.org/10.1029/2010JB000869, 2010. a
Cumberland, S. A., Douglas, G., Grice, K., and Moreau, J. W.: Uranium mobility
in organic matter-rich sediments: A review of geological and geochemical
processes, Earth-Sci. Rev., 159, 160–185,
https://doi.org/10.1016/j.earscirev.2016.05.010, 2016. a
Dalland, A.: Mesozoic sedimentary succession at Andøy, northern Norway, and
relation to structural development of the North Atlantic area, in: Geology of
the North Atlantic Borderlands, Canadian Society of Petroleum
Geologists Memoir, 563–584, 1981. a
Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. M.:
Defining an absolute reference frame for `clumped' isotope studies of CO2,
Geochim. Cosmochim. Ac., 75, 7117–7131,
https://doi.org/10.1016/j.gca.2011.09.025, 2011. a
Ebinger, C. J., Jackson, J. A., Foster, A. N., and Hayward, N. J.: Extensional
basin geometry and the elastic lithosphere, Philos. T.
R. Soc. Lond. Ser. A, 357, 741–765, https://doi.org/10.1098/rsta.1999.0351, 1999. a
Eiler, J. M.: Paleoclimate reconstruction using carbonate clumped isotope
thermometry, Quaternary Sci. Rev., 30, 3575–3588,
https://doi.org/10.1016/j.quascirev.2011.09.001, 2011. a
Fisler, D. K. and Cygan, R. T.: Diffusion of Ca and Mg in calcite, Am.
Mineral., 84, 1392–1399, https://doi.org/10.2138/am-1999-0917, 1999. a
Gawthorpe, R. L. and Leeder, M. R.: Tectono-sedimentary evolution of active
extensional basins, Basin Res., 12, 195–218,
https://doi.org/10.1046/j.1365-2117.2000.00121.x, 2000. a, b
Gawthorpe, R. L., Fraser, A. J., and Collier, R. E.: Sequence stratigraphy in
active extensional basins: implications for the interpretation of ancient
basin-fills, Mar. Petrol. Geol., 11, 642–658,
https://doi.org/10.1016/0264-8172(94)90021-3, 1994. a
Gorski, C. A. and Fantle, M. S.: Stable mineral recrystallization in low
temperature aqueous systems: A critical review, Geochim. Cosmochim.
Ac., 198, 439–465, https://doi.org/10.1016/j.gca.2016.11.013, 2017. a
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: The geologic time
scale 2012, Elsevier, Amsterdam and Boston, 1st Edn., 1176 pp., 2012. a
Harwood, J., Aplin, A. C., Fialips, C. I., Iliffe, J. E., Kozdon, R., Ushikubo,
T., and Valley, J. W.: Quartz Cementation History of Sandstones Revealed By
High-Resolution Sims Oxygen Isotope Analysis, J. Sediment.
Res., 83, 522–530, https://doi.org/10.2110/jsr.2013.29, 2013. a
Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J.,
Pérez-Huerta, A., and Yancey, T. E.: Temperature limits for preservation
of primary calcite clumped isotope paleotemperatures, Geochim.
Cosmochim. Ac., 139, 362–382, https://doi.org/10.1016/j.gca.2014.04.040, 2014. a
Henriksen, N.: Caledonian Orogen East Greenland 70–82∘ N, Geological map
1:100 000, Tech. rep., GEUS, Copenhagen, Greenland, p. 1, 2003. a
Henstra, G. A., Grundvåg, S.-A., Johannessen, E. P., Kristensen, T. B.,
Midtkandal, I., Nystuen, J. P., Rotevatn, A., Surlyk, F., Sæther, T., and
Windelstad, J.: Depositional processes and stratigraphic architecture within
a coarse-grained rift-margin turbidite system: The Wollaston Forland Group,
east Greenland, Mar. Petrol. Geol., 76, 187–209,
https://doi.org/10.1016/j.marpetgeo.2016.05.018, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Henstra, G. A., Gawthorpe, R. L., Helland-Hansen, W., Ravnås, R., and
Rotevatn, A.: Depositional systems in multiphase rifts: seismic case study
from the Lofoten margin, Norway, Basin Res., 29, 447–469,
https://doi.org/10.1111/bre.12183, 2017. a
Hollinsworth, A. D., Koehn, D., Dempster, T. J., and Aanyu, K.: Structural
controls on the interaction between basin fluids and a rift flank fault:
Constraints from the Bwamba Fault, East African Rift, J. Struct.
Geol., 118, 236–249, https://doi.org/10.1016/j.jsg.2018.10.012, 2019. a, b
Hollis, C., Bastesen, E., Boyce, A., Corlett, H., Gawthorpe, R., Hirani, J.,
Rotevatn, A., and Whitaker, F.: Fault-controlled dolomitization in a rift
basin, Geology, 45, 219–222, https://doi.org/10.1130/G38s394.1, 2017. a
Horita, J.: Oxygen and carbon isotope fractionation in the system
dolomite–water–CO2 to elevated temperatures, Geochim. Cosmochim.
Ac., 129, 111–124, https://doi.org/10.1016/j.gca.2013.12.027, 2014. a
Houben, G. J., Stoeckl, L., Mariner, K. E., and Choudhury, A. S.: The influence
of heterogeneity on coastal groundwater flow - physical and numerical
modeling of fringing reefs, dykes and structured conductivity fields,
Adv. Water Resour., 113, 155–166,
https://doi.org/10.1016/j.advwatres.2017.11.024, 2018. a
Indrevær, K., Stunitz, H., and Bergh, S. G.: On Palaeozoic–Mesozoic
brittle normal faults along the SW Barents Sea margin: fault processes and
implications for basement permeability and margin evolution, J.
Geol. Soc., 171, 831–846, https://doi.org/10.1144/jgs2014-018, 2014. a
John, C. M. and Bowen, D.: Community software for challenging isotope analysis:
First applications of “Easotope” to clumped isotopes, Rapid communications in
mass spectrometry, RCM, 30, 2285–2300, https://doi.org/10.1002/rcm.7720, 2016. a
Jørgensen, B. B. and Kasten, S.: Sulfur Cycling and Methane Oxidation, in:
Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M.,
Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 271–309,
https://doi.org/10.1007/3-540-32144-6_8, 2006. a
Karolytė, R., Johnson, G., Yielding, G., and Gilfillan, S. M.: Fault seal
modelling – the influence of fluid properties on fault sealing capacity in
hydrocarbon and CO2 systems, Petroleum Geoscience, 26, 481–497,
https://doi.org/10.1144/petgeo2019-126, 2020. a
Kele, S., Breitenbach, S. F., Capezzuoli, E., Meckler, A. N., Ziegler, M.,
Millan, I. M., Kluge, T., Deák, J., Hanselmann, K., John, C. M., Yan, H.,
Liu, Z., and Bernasconi, S. M.: Temperature dependence of oxygen- and clumped
isotope fractionation in carbonates: A study of travertines and tufas in the
6–95 ∘C temperature range, Geochim. Cosmochim. Ac., 168, 172–192,
https://doi.org/10.1016/j.gca.2015.06.032, 2015. a
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61,
3461–3475, https://doi.org/10.1016/S0016-7037(97)00169-5, 1997. a
Kristensen, T. B., Rotevatn, A., Peacock, D. C., Henstra, G. A., Midtkandal,
I., and Grundvåg, S.-A.: Structure and flow properties of syn-rift border
faults: The interplay between fault damage and fault-related chemical
alteration (Dombjerg Fault, Wollaston Forland, NE Greenland), J.
Struct. Geol., 92, 99–115, https://doi.org/10.1016/j.jsg.2016.09.012, 2016. a, b, c, d, e, f, g, h, i, j, k, l
Lander, R. H. and Walderhaug, O.: Predicting Porosity through Simulating
Sandstone Compaction and Quartz Cementation, AAPG Bulletin, 433–449,
https://doi.org/10.1306/00AA9BC4-1730-11D7-8645000102C1865D, 1999. a
Lander, R. H., Larese, R. E., and Bonnell, L. M.: Toward more accurate quartz
cement models: The importance of euhedral versus noneuhedral growth rates,
AAPG Bull., 92, 1537–1563, https://doi.org/10.1306/07160808037, 2008. a
Larsen, L. M., Pedersen, A. K., Tegner, C., and Duncan, R. A.: Eocene to
Miocene igneous activity in NE Greenland: northward younging of magmatism
along the East Greenland margin, J. Geol. Soc., 171,
539–553, https://doi.org/10.1144/jgs2013-118, 2014. a, b
Larsen, L. M. and Watt, W. S.: Episodic volcanism during break-up of the North
Atlantic: evidence from the East Greenland plateau basalts, Earth
Planet. Sc. Lett., 73, 105–116, https://doi.org/10.1016/0012-821X(85)90038-X,
1985. a
LeGrande, A. N. and Schmidt, G. A.: Global gridded data set of the oxygen
isotopic composition in seawater, Geophys. Res. Lett., 33, 5,
https://doi.org/10.1029/2006GL026011, 2006. a
Lloyd, M. K., Ryb, U., and Eiler, J. M.: Experimental calibration of clumped
isotope reordering in dolomite, Geochim. Cosmochim. Ac., 242, 1–20,
https://doi.org/10.1016/j.gca.2018.08.036, 2018. a, b
López, D. L. and Smith, L.: Fluid flow in fault zones: Influence of
hydraulic anisotropy and heterogeneity on the fluid flow and heat transfer
regime, Water Resour. Res., 32, 3227–3235, https://doi.org/10.1029/96WR02101,
1996. a, b
McBride, E. F. and Milliken, K. L.: Giant calcite-cemented concretions, Dakota
Formation, central Kansas, USA, Sedimentology, 53, 1161–1179,
https://doi.org/10.1111/j.1365-3091.2006.00813.x, 2006. a
Meckler, A. N., Ziegler, M., Millán, M. I., Breitenbach, S. F. M., and
Bernasconi, S. M.: Long-term performance of the Kiel carbonate device with a
new correction scheme for clumped isotope measurements, Rapid Commun. Mass S., 28, 1705–1715, https://doi.org/10.1002/rcm.6949, 2014. a
Meinicke, N., Ho, S. L., Hannisdal, B., Nürnberg, D., Tripati, A.,
Schiebel, R., and Meckler, A. N.: A robust calibration of the clumped
isotopes to temperature relationship for foraminifers, Geochim.
Cosmochim. Ac., 270, 160–183, https://doi.org/10.1016/j.gca.2019.11.022, 2020. a
Mjelde, R., Breivik, A. J., Raum, T., Mittelstaedt, E., Ito, G., and Faleide,
J. I.: Magmatic and tectonic evolution of the North Atlantic, J.
Geol. Soc., 165, 31–42, https://doi.org/10.1144/0016-76492007-018, 2008. a
Moore, C. H. and Wade, W. J.: Carbonate reservoirs: Porosity and diagenesis in
a sequence stratigraphic framework, Vol. 67, Developments in
sedimentology, Elsevier, Amsterdam, 2 Edn., 392 pp., 2013. a
Morad, S. (Ed.): Carbonate cementation in sandstones: Distribution patterns and
geochemical evolution, Vol. 26, The international association of
sedimentologists special publication, Blackwell Science, [S.l.], 511 pp., 1998. a
Morley, C. K.: Developments in the structural geology of rifts over the last
decade and their impact on hydrocarbon exploration, Geol. Soc.
Lond. Sp. Publ., 80, 1–32, https://doi.org/10.1144/GSL.SP.1995.080.01.01,
1995. a
Müller, I. A., Rodriguez-Blanco, J. D., Storck, J.-C., do Nascimento,
G. S., Bontognali, T. R., Vasconcelos, C., Benning, L. G., and Bernasconi,
S. M.: Calibration of the oxygen and clumped isotope thermometers for
(proto-)dolomite based on synthetic and natural carbonates, Chem. Geol.,
525, 1–17, https://doi.org/10.1016/j.chemgeo.2019.07.014, 2019. a
Nøhr-Hansen, H.: Dinoflagellate cyst stratigraphy of the Barremian to
Albian, Lower Cretaceous, North-East Greenland, Grønlands Geologiske
Undersøgelse, 1–171, 1993. a
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J. S.,
Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C., Brassell,
S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N., Jenkyns,
H. C., Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J.,
Naafs, B. D. A., Püttmann, W., Sluijs, A., van Helmond, N. A.,
Vellekoop, J., Wagner, T., and Wrobel, N. E.: Cretaceous sea-surface
temperature evolution: Constraints from TEX 86 and planktonic foraminiferal
oxygen isotopes, Earth-Sci. Rev., 172, 224–247,
https://doi.org/10.1016/j.earscirev.2017.07.012, 2017. a
Oliver, N. H. S. and Bons, P. D.: Mechanisms of fluid flow and fluid-rock
interaction in fossil metamorphic hydrothermal systems inferred from
vein-wallrock patterns, geometry and microstructure, Geofluids, 1, 137–162,
https://doi.org/10.1046/j.1468-8123.2001.00013.x, 2001. a
Passey, B. H. and Henkes, G. A.: Carbonate clumped isotope bond reordering and
geospeedometry, Earth Planet. Sc. Lett., 351-352, 223–236,
https://doi.org/10.1016/j.epsl.2012.07.021, 2012. a, b
Pauly, S., Mutterlose, J., and Alsen, P.: Depositional environments of Lower
Cretaceous (Ryazanian–Barremian) sediments from Wollaston Forland and Kuhn
Ø, North-East Greenland, Bull. Geol. Soc. Denmark,
61, 19–36, 2013. a
Phillips, T. B., Jackson, C. A.-L., Bell, R. E., Duffy, O. B., and Fossen, H.:
Reactivation of intrabasement structures during rifting: A case study from
offshore southern Norway, J. Struct. Geol., 91, 54–73,
https://doi.org/10.1016/j.jsg.2016.08.008, 2016. a
Piasecki, A., Bernasconi, S. M., Grauel, A.-L., Hannisdal, B., Ho, S. L.,
Leutert, T. J., Marchitto, T. M., Meinicke, N., Tisserand, A., and Meckler,
N.: Application of Clumped Isotope Thermometry to Benthic Foraminifera,
Geochem. Geophy. Geosy., 20, 2082–2090,
https://doi.org/10.1029/2018GC007961, 2019. a
Price, G. D. and Nunn, E. V.: Valanginian isotope variation in glendonites and
belemnites from Arctic Svalbard: Transient glacial temperatures during the
Cretaceous greenhouse, Geology, 38, 251–254, https://doi.org/10.1130/G30593.1, 2010. a
Price, G. D., Bajnai, D., and Fiebig, J.: Carbonate clumped isotope evidence
for latitudinal seawater temperature gradients and the oxygen isotope
composition of Early Cretaceous seas, Palaeogeogr. Palaeocl., 552, 109777, https://doi.org/10.1016/j.palaeo.2020.109777, 2020. a
Prosser, S.: Rift-related linked depositional systems and their seismic
expression, Geol. Soc. Lond. Spec. Publ., 71, 35–66,
https://doi.org/10.1144/GSL.SP.1993.071.01.03, 1993. a
Ring, U.: The influence of preexisting structure on the evolution of the
Cenozoic Malawi rift (East African rift system), Tectonics, 13, 313–326,
https://doi.org/10.1029/93TC03188, 1994. a
Rotevatn, A., Kristensen, T. B., Ksienzyk, A. K., Wemmer, K., Henstra, G. A.,
Midtkandal, I., Grundvåg, S.-A., and Andresen, A.: Structural Inheritance
and Rapid Rift-Length Establishment in a Multiphase Rift: The East Greenland
Rift System and its Caledonian Orogenic Ancestry, Tectonics, 37, 1858–1875,
https://doi.org/10.1029/2018TC005018, 2018. a, b, c, d
Saigal, G. C. and Bjørlykke, K.: Carbonate cements in clastic reservoir
rocks from offshore Norway – relationships between isotopic composition,
textural development and burial depth, Geol. Soc. Lond. Spec.
Publ., 36, 313–324, https://doi.org/10.1144/GSL.SP.1987.036.01.22, 1987. a
Salomon, E.: Clumped Isotope Data of NE Greenland samples from Salomon et al., submitted to Solid Earth, Version 1.0, Interdisciplinary Earth Data Alliance (IEDA), https://doi.org/10.26022/IEDA/111602, last access: 30 October 2020. a
Salomon, E., Koehn, D., and Passchier, C.: Brittle reactivation of ductile
shear zones in NW Namibia in relation to South Atlantic rifting, Tectonics,
34, 70–85, https://doi.org/10.1002/2014TC003728, 2015. a
Shackleton, N. J. and Kennett, J. P.: Paleotemperature history of the Cenozoic
and the initiation of Antarctic glaciation: oxygen and carbon isotopic
analyses in DSDP Sites 277, 279 and 281, Initial Reports of Deep Sea Drilling
Project, 29, 743–755, 1975. a
Sharp, I. R., Gawthorpe, R. L., Underhill, J. R., and Gupta, S.:
Fault-propagation folding in extensional settings: Examples of structural
style and synrift sedimentary response from the Suez rift, Sinai, Egypt,
Geol. Soc. Am. Bull., 112, 1877–1899,
2000. a
Shenton, B. J., Grossman, E. L., Passey, B. H., Henkes, G. A., Becker, T. P.,
Laya, J. C., Perez-Huerta, A., Becker, S. P., and Lawson, M.: Clumped isotope
thermometry in deeply buried sedimentary carbonates: The effects of bond
reordering and recrystallization, Geol. Soc. Am. Bull., 127, 1036–1051,
B31169.1, https://doi.org/10.1130/B31169.1, 2015. a
Sheppard, S. M. F.: Characterization and isotopic variations in natural
waters, Rev. Mineral. Geochem., 16, 165–183, 1986. a
Sibson, R. H.: Conditions for fault-valve behaviour, Geol. Soc.
Lond. Spec. Publ.s, 54, 15–28,
https://doi.org/10.1144/GSL.SP.1990.054.01.02, 1990. a
Sperrevik, S., Gillespie, P. A., Fisher, Q. J., Halvorsen, T., and Knipe,
R. J.: Empirical estimation of fault rock properties, in: Hydrocarbon seal
quantification, edited by: Hunsdale, R. and Koestler, A., Vol. 11, Special publication/Norwegian Petroleum Society, Elsevier,
Amsterdam, 109–125, https://doi.org/10.1016/S0928-8937(02)80010-8, 2002. a
Spirakis, C. S.: The roles of organic matter in the formation of uranium
deposits in sedimentary rocks, Ore Geol. Rev., 11, 53–69,
https://doi.org/10.1016/0169-1368(95)00015-1, 1996. a
Stemmerik, L., Vigran, J. O., and Piasecki, S.: Dating of late Paleozoic
rifting events in the North Atlantic: New biostratigraphic data from the
uppermost Devonian and Carboniferous of East Greenland, Geology, 19, 218–221,
1991. a
Surlyk, F.: Mid-Mesozoic syn-rift turbidite systems: controls and predictions,
in: Correlation in Hydrocarbon Exploration, edited by: Collinson, J. D.,
Springer Netherlands, Dordrecht, 231–241,
https://doi.org/10.1007/978-94-009-1149-9_18, 1989. a
Surlyk, F.: Timing, style and sedimentary evolution of Late Palaeozoic-Mesozoic
extensional basins of East Greenland, Geol. Soc. Lond. Spec.
Publ., 55, 107–125, https://doi.org/10.1144/GSL.SP.1990.055.01.05, 1990. a
Surlyk, F., Hurst, J. M., Piasecki, S., Rolle, F., Scholle, P. A., Stemmerik,
L., and Thomsen, E.: The Permian of the Western Margin of the Greenland
Sea – A Future Exploration Target, in: Future Petroleum Provinces of the
World, Am. Assoc. Petrol. Geol., 40, 629–659,
https://doi.org/10.1306/M40454C30, 1986. a
Surlyk, F., Noe-Nygaard, N., and Dam, G.: High and low resolution sequence
stratigraphy in lithological prediction – examples from the Mesozoic around
the northern North Atlantic, Geological Society, London, Petroleum Geology
Conference series, 4, 199–214, https://doi.org/10.1144/0040199, 1993. a
Swart, P. K.: The geochemistry of carbonate diagenesis: The past, present and
future, Sedimentology, 62, 1233–1304, https://doi.org/10.1111/sed.12205, 2015. a
Tang, J., Köhler, S. J., and Dietzel, M.: Sr ∕ Ca and 44Ca ∕ 40Ca
fractionation during inorganic calcite formation: I. Sr incorporation,
Geochim. Cosmochim. Ac., 72, 3718–3732,
https://doi.org/10.1016/j.gca.2008.05.031, 2008. a
Taylor, T. R., Giles, M. R., Hathon, L. A., Diggs, T. N., Braunsdorf, N. R.,
Birbiglia, G. V., Kittridge, M. G., Macaulay, C. I., and Espejo, I. S.:
Sandstone diagenesis and reservoir quality prediction: Models, myths, and
reality, AAPG Bull., 94, 1093–1132, https://doi.org/10.1306/04211009123, 2010. a
Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., and Aggarwal,
P. K.: Global isoscapes for δ18O and δ2H in precipitation:
improved prediction using regionalized climatic regression models, Hydrol. Earth Syst. Sci., 17, 4713–4728, https://doi.org/10.5194/hess-17-4713-2013,
2013. a
Thomson, K., Green, P. F., Whitham, A. G., Price, S. P., and Underhill, J. R.:
New constraints on the thermal history of North-East Greenland from apatite
fission-track analysis, Geol. Soc. Am. Bull., 111,
1054–1068,
1999. a
Torsvik, T. H., van der Voo, R., Preeden, U., Mac Niocaill, C.,
Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J., Domeier, M.,
Gaina, C., Tohver, E., Meert, J. G., McCausland, P. J., and Cocks, L. R. M.:
Phanerozoic polar wander, palaeogeography and dynamics, Earth-Sci.
Rev., 114, 325–368, https://doi.org/10.1016/j.earscirev.2012.06.007, 2012. a
Toussaint, R., Aharonov, E., Koehn, D., Gratier, J.-P., Ebner, M., Baud, P.,
Rolland, A., and Renard, F.: Stylolites: A review, J. Struct.
Geol., 114, 163–195, https://doi.org/10.1016/j.jsg.2018.05.003, 2018. a
van Hinsbergen, D. J. J., de Groot, L. V., van Schaik, S. J., Spakman, W.,
Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A Paleolatitude
Calculator for Paleoclimate Studies, PloS one, 10, e0126946,
https://doi.org/10.1371/journal.pone.0126946, 2015. a
Vermeesch, P., Resentini, A., and Garzanti, E.: An R package for statistical
provenance analysis, Sediment. Geol., 336, 14–25,
https://doi.org/10.1016/j.sedgeo.2016.01.009, 2016. a
Walderhaug, O.: Precipitation rates for quartz cement in sandstones determined
by fluid-inclusion microthermometry and temperature-history modeling, J. Sediment. Res., 64, 324–333, https://doi.org/10.2110/jsr.64.324, 1994. a
Walderhaug, O.: Kinetic Modeling of Quartz Cementation and Porosity Loss in
Deeply Buried Sandstone Reservoirs, Geology, 80, 731–745,
https://doi.org/10.1306/64ED88A4-1724-11D7-8645000102C1865D, 1996.
a
Walderhaug, O.: Modeling Quartz Cementation and Porosity in Middle Jurassic
Brent Group Sandstones of the Kvitebjørn Field, Northern North Sea,
Geology, 84, 1325–1339, https://doi.org/10.1306/A9673E96-1738-11D7-8645000102C1865D, 2000. a
Wernicke, B.: Uniform-sense normal simple shear of the continental lithosphere,
Can. J. Earth Sci., 22, 108–125, https://doi.org/10.1139/e85-009,
1985. a
Whipp, P. S., Jackson, C. A.-L., Gawthorpe, R. L., Dreyer, T., and Quinn, D.:
Normal fault array evolution above a reactivated rift fabric; a subsurface
example from the northern Horda Platform, Norwegian North Sea, Basin
Res., 26, 523–549, https://doi.org/10.1111/bre.12050, 2014. a
Whitham, A. G., Price, S. P., Koraini, A. M., and Kelly, S. R. A.: Cretaceous
(post-Valanginian) sedimentation and rift events in NE Greenland (71–77∘ N),
Geological Society, London, Petroleum Geology Conference series, 5, 325–336,
https://doi.org/10.1144/0050325, 1999. a
Wilson, A. M.: Fresh and saline groundwater discharge to the ocean: A regional
perspective, Water Resour. Res., 41, W02016, https://doi.org/10.1029/2004WR003399,
2005. a
Worden, R. H., Morrall, G. T., Kelly, S., Mc Ardle, P., and Barshep, D. V.: A
renewed look at calcite cement in marine-deltaic sandstones: the Brent
Reservoir, Heather Field, northern North Sea, UK, Geol. Soc. Lond.
Spec. Publ., 484, 305–335, https://doi.org/10.1144/SP484-2018-43, 2019. a
Yielding, G., Bretan, P., and Freeman, B.: Fault seal calibration: a brief
review, Geol. Soc. Lond. Spec. Publ., 347, 243–255,
https://doi.org/10.1144/SP347.14, 2010. a
Zhao, C., Hobbs, B. E., Mühlhaus, H. B., Ord, A., and Lin, G.: Convective
instability of 3-D fluid-saturated geological fault zones heated from below,
Geophys. J. Int., 155, 213–220,
https://doi.org/10.1046/j.1365-246X.2003.02032.x, 2003. a
Short summary
This study focuses on the impact of major rift border faults on fluid circulation and hanging wall sediment diagenesis by investigating a well-exposed example in NE Greenland using field observations, U–Pb calcite dating, clumped isotope, and minor element analyses. We show that fault-proximal sediments became calcite cemented quickly after deposition to form a near-impermeable barrier along the fault, which has important implications for border fault zone evolution and reservoir assessments.
This study focuses on the impact of major rift border faults on fluid circulation and hanging...
Special issue