Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D.,
Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp,
K., Sanan, P., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H.: PETSc
Users Manual, Tech. Rep. ANL-95/11 – Revision 3.12, Argonne National
Laboratory, available at:
https://www.mcs.anl.gov/petsc (last access: 27 October 2020),
2019b.
a,
b
Benzi, M. and Wathen, A. J.: Some Preconditioning Techniques for Saddle Point
Problems, in: Model Order Reduction: Theory, Research Aspects and
Applications, edited by: Schilders, W. H., van der Vorst, H. A., and Rommes,
J., Springer Berlin Heidelberg, 195–211, 2008. a
Benzi, M., Golub, G. H., and Liesen, J.: Numerical Solution of Saddle Point
Problems, Acta Numerica, 14, 1–137,
https://doi.org/10.1017/S0962492904000212, 2005.
a,
b
Bollhöfer, M. and Saad, Y.: Multilevel Preconditioners Constructed from
Inverse-Based ILUs, SIAM J. Sci. Comput., 27, 1627–1650,
2006.
a,
b,
c
Bollhöfer, M., Grote, M., and Schenk, O.: Algebraic Multilevel
Preconditioner for the Helmholtz Equation in Heterogeneous Media, SIAM J.
Sci. Comput., 31,
https://doi.org/10.1137/080725702, 2009.
a,
b
Bollhöfer, M., Eftekhari, A., Scheidegger, S., and Schenk, O.: Large-Scale
Sparse Inverse Covariance Matrix Estimation, SIAM J. Sci.
Comput., 41, A380–A401, 2019a. a
Bunch, J. R. and Kaufman, L.: Some Stable Methods for Calculating Inertia and
Solving Symmetric Linear Systems, Math. Comput., 31, 163–179,
1977. a
Chow, E. and Saad, Y.: Experimental Study of ILU Preconditioners for
Indefinite Matrices, J. Comput. Appl. Math., 86,
387–414, 1997. a
Dabrowski, M., Krotkiewski, M., and Schmid, D. W.: MILAMIN: MATLAB-Based Finite Element Method Solver for Large Problems, Geochem. Geophy. Geosy., 9, 24 pp.,
https://doi.org/10.1029/2007GC001719, 2008.
a
Davis, T. A.: Algorithm 832: UMFPACK V4. 3 – An Unsymmetric-Pattern
Multifrontal Method, ACM Transactions on Mathematical Software (TOMS), 30,
196–199, 2004.
a,
b
Davis, T. A., Rajamanickam, S., and Sid-Lakhdar, W. M.: A Survey of Direct Methods for Sparse Linear Systems, Acta Numerica, 25, 383–566,
https://doi.org/10.1017/S0962492916000076, 2016.
a,
b
Duff, I., Gould, N., Reid, J., Scott, J., and Turner, K.: The Factorization of
Sparse Symmetric Indefinite Matrices, IMA Journal of Numerical Analysis, 11, 181–204, 1991. a
Duff, I. S. and Koster, J.: The Design and Use of Algorithms for Permuting
Large Entries to the Diagonal of Sparse Matrices, SIAM J. Matrix
Anal. A., 20, 889–901,
https://doi.org/10.1137/S0895479897317661,
1999.
a
Duff, I. S. and Pralet, S.: Strategies for Scaling and Pivoting for Sparse
Symmetric Indefinite Problems, SIAM Journal on Matrix Analysis and Applications, 27, 313–340, 2005.
a,
b
Elman, H. C., Silvester, D. J., and Wathen, A. J.: Finite Elements and Fast
Iterative Solvers : with Applications in Incompressible Fluid Dynamics,
Numerical mathematics and scientific computation, Oxford University Press,
Oxford, New York, 2005.
a,
b,
c
Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., and Rixen, D.: FETI-DP:
A Dual–Primal Unified FETI Method — Part I: A Faster Alternative to
the Two-Level FETI Method, Int. J. Numer. Meth.
Eng., 50, 1523–1544, 2001. a
George, A.: Nested Dissection of a Regular Finite Element Mesh, SIAM J. Numer.
Anal., 10, 345–363, 1973. a
Gerya, T. V. and Yuen, D. A.: Characteristics-Based Marker-in-Cell Method with
Conservative Finite-Differences Schemes for Modeling Geological Flows with
Strongly Variable Transport Properties, Phys. Earth Planet.
In., 140, 293–318, 2003. a
Gould, N. I. M., Scott, J. A., and Hu, Y.: A Numerical Evaluation of Sparse
Direct Solvers for the Solution of Large Sparse Symmetric Linear Systems of
Equations, ACM T. Math. Software, 33,
https://doi.org/10.1145/1236463.1236465, 2007.
a
Greif, C., He, S., and Liu, P.: SYM-ILDL: Incomplete LDL
T factorization of symmetric indefinite and skew-symmetric matrices, ACM Transactions on Mathematical Software (TOMS), ACM New York, NY, USA, Vol. 44, 1–21,
2015.
a,
b
Gupta, A. and Ying, L.: On Algorithms for Finding Maximum Matchings in
Bipartite Graphs (RC 21576), Tech. rep., IBM Research, 1999. a
Hagemann, M. and Schenk, O.: Weighted Matchings for Preconditioning Symmetric
Indefinite Linear Systems, SIAM J. Sci. Comput., 28, 403–420, 2006.
a,
b,
c
Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J.,
Kolda, T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T.,
Salinger, A. G., Thornquist, H. K., Tuminaro, R. S., Willenbring, J. M.,
Williams, A., and Stanley, K. S.: An Overview of the Trilinos Project, ACM
T. Math. Software, 31, 397–423,
https://doi.org/10.1145/1089014.1089021, 2005.
a
Hu, J., Tuminaro, R., Adams, M. F., and Brezina, M.: Parallel Multigrid
Smoothing: Polynomial versus Gauss-Seidel, J. Comput.
Phys., 188, 593–610, 2003. a
Isaac, T., Stadler, G., and Ghattas, O.: Solution on Nonlinear Stokes
Equations Discretized by High-Order Finite Elements on Nonconforming and
Anisotropic Meshes, with Application to Ice Sheet Dynamics, SIAM J. Sci.
Comput., 37, 804–833, 2015. a
Karypis, G. and Kumar, V.: A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs, SIAM J. Sci. Comput., 20,
359–392, 1998. a
Kuzmin, A., Luisier, M., and Schenk, O.: Fast Methods for Computing Selected
Elements of the Greens Function in Massively Parallel Nanoelectronic Device
Simulations, in: Euro-Par 2013 Parallel Processing, edited by: Wolf, F., Mohr,
B., and Mey, D., Vol. 8097 of
Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 533–544,
https://doi.org/10.1007/978-3-642-40047-6_54,
2013.
a,
b
Laird, A. L. and Giles, M.: Preconditioned Iterative Solution of the 2D
Helmholtz Equation, Tech. rep., University of Oxford, 2002. a
Li, X. S. and Demmel, J. W.: SuperLU_DIST: A Scalable Distributed-Memory
Sparse Direct Solver for Unsymmetric Linear Systems, ACM T.
Math. Software, 29, 110–140,
https://doi.org/10.1145/779359.779361,
2003.
a
Bollhöfer, M.: ILUPACK web page, available at:
http://ilupack.tu-bs.de/, last access: 27 October 2020. a
MATLAB: 9.6 (R2019a), The MathWorks Inc., Natick, Massachusetts, available at:
https://www.mathworks.com/products/matlab (last access: 8 November 2020) 2019. a
May, D. A., Brown, J., and Le Pourheit, L.: pTatin3D : High-Performance
Methods for Long-Term Lithospheric Dynamics, in: SC14, 274–284,
https://doi.org/10.1109/SC.2014.28, 2014.
a
May, D. A., Brown, J., and Le Pourhiet, L.: A Scalable, Matrix-Free Multigrid
Preconditioner for Finite Element Discretizations of Heterogeneous Stokes
Flow, Comput. Meth. Appl. Mech. Eng., 290, 496–523,
https://doi.org/10.1016/j.cma.2015.03.014, 2015.
a
May, D. A., Sanan, P., Rupp, K., Knepley, M. G., and Smith, B. F.:
Extreme-Scale Multigrid Components Within PETSc, in: PASC '16: Proceedings
of the Platform for Advanced Scientific Computing Conference, 5, 12 pp.,
https://doi.org/10.1145/2929908.2929913, 2016.
a
Metsch, B.: Algebraic Multigrid (AMG) for Saddle Point Systems, Ph.D. thesis,
Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, available at:
https://www.mathworks.com (last access: 5 November 2020), 2013. a
Mills, R. T., Lu, C., Lichtner, P. C., and Hammond, G. E.: Simulating
Subsurface Flow and Transport on Ultrascale Computers using PFLOTRAN,
J. Phys.-Conf. Ser., 78, 012051,
https://doi.org/10.1088/1742-6596/78/1/012051, 2007.
a
Rudi, J., Ghattas, O., Malossi, A. C. I., Isaac, T., Stadler, G., Gurnis, M.,
Staar, P. W. J., Ineichen, Y., Bekas, C., and Curioni, A.: An Extreme-Scale
Implicit Solver for Complex PDEs, Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
on – SC '15, 1–12,
https://doi.org/10.1145/2807591.2807675, 2015.
a,
b
Rudi, J., Stadler, G., and Ghattas, O.: Weighted BFBT Preconditioner for
Stokes Flow Problems with Highly Heterogeneous Viscosity, SIAM J.
Sci. Comput., 39, S272–S297, 2017.
a,
b
Sanan, P.: PCILUPACK, available at:
https://github.com/psanan/pcilupack, last access: 27 October 2020. a
Schenk, O.: PARDISO web page, available at:
https://www.pardiso-project.org/, last access: 27 October 2020.
Sanan, P. and Janalik, R.: PARDISO-PETSc wrapper, available at:
https://bitbucket.org/psanan/petsc/branch/psanan/pardiso-3.12.4, last access: 27 October 2020. a
Schenk, O. and Gärtner, K.: Solving Unsymmetric Sparse Systems of Linear
Equations with PARDISO, Future Gene. Comput. Sy., 20, 475–487,
2004.
a,
b
Schenk, O. and Gärtner, K.: On Fast Factorization Pivoting Methods for
Sparse Symmetric Indefinite Systems, Electron. T. Numer.
Ana., 23, 158–179, 2006.
a,
b,
c,
d
Schenk, O., Bollhöfer, M., and Römer, R. A.: On Large-Scale
Diagonalization Techniques for the Anderson Model of Localization, SIAM
Review, 50, 91–112, 2008.
a,
b
Scott, J. and Tůma, M.: On Signed Incomplete Cholesky Factorization
Preconditioners for Saddle-Point Systems, SIAM J. Sci.
Comput., 36, A2984–A3010,
https://doi.org/10.1137/140956671, 2014.
a
Smith, B., Bjorstad, P., and Gropp, W.: Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations, Cambridge
University Press, Cambridge, England, UK, 2004. a
Wubs, F. W. and Thies, J.: A Robust Two-Level Incomplete Factorization for (Navier-)Stokes Saddle Point Matrices, SIAM Journal on Matrix Analysis and Applications, 32, 1475–1499,
https://doi.org/10.1137/100789439, 2011.
a