Articles | Volume 11, issue 3
https://doi.org/10.5194/se-11-767-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-767-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Yttrium speciation in subduction-zone fluids from ab initio molecular dynamics simulations
Johannes Stefanski
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Petrology
Contribution of carbonatite and recycled oceanic crust to petit-spot lavas on the western Pacific Plate
Tracing fluid transfers in subduction zones: an integrated thermodynamic and δ18O fractionation modelling approach
Post-entrapment modification of residual inclusion pressure and its implications for Raman elastic thermobarometry
Anatomy of the magmatic plumbing system of Los Humeros Caldera (Mexico): implications for geothermal systems
Alkali basalt from the Seifu Seamount in the Sea of Japan: post-spreading magmatism in a back-arc setting
Magmatic sulfides in high-potassium calc-alkaline to shoshonitic and alkaline rocks
Kazuto Mikuni, Naoto Hirano, Shiki Machida, Hirochika Sumino, Norikatsu Akizawa, Akihiro Tamura, Tomoaki Morishita, and Yasuhiro Kato
Solid Earth, 15, 167–196, https://doi.org/10.5194/se-15-167-2024, https://doi.org/10.5194/se-15-167-2024, 2024
Short summary
Short summary
Plate tectonics theory is the motion of rocky plates (lithosphere) over ductile zones (asthenosphere). The causes of the lithosphere–asthenosphere boundary (LAB) are controversial; however, petit-spot volcanism supports the presence of melt at the LAB. We conducted geochemistry, geochronology, and geochemical modeling of petit-spot volcanoes on the western Pacific Plate, and the results suggested that carbonatite melt and recycled oceanic crust induced the partial melting at the LAB.
Alice Vho, Pierre Lanari, Daniela Rubatto, and Jörg Hermann
Solid Earth, 11, 307–328, https://doi.org/10.5194/se-11-307-2020, https://doi.org/10.5194/se-11-307-2020, 2020
Short summary
Short summary
This study presents an approach that combines equilibrium thermodynamic modelling with oxygen isotope fractionation modelling for investigating fluid–rock interaction in metamorphic systems. An application to subduction zones shows that chemical and isotopic zoning in minerals can be used to determine feasible fluid sources and the conditions of interaction. Slab-derived fluids can cause oxygen isotope variations in the mantle wedge that may result in anomalous isotopic signatures of arc lavas.
Xin Zhong, Evangelos Moulas, and Lucie Tajčmanová
Solid Earth, 11, 223–240, https://doi.org/10.5194/se-11-223-2020, https://doi.org/10.5194/se-11-223-2020, 2020
Short summary
Short summary
In this study, we present a 1-D visco-elasto-plastic model in a spherical coordinate system to study the residual pressure preserved in mineral inclusions. This allows one to study how much residual pressure can be preserved after viscous relaxation. An example of quartz inclusion in garnet host is studied and it is found that above 600–700 °C, substantial viscous relaxation will occur. If one uses the relaxed residual quartz pressure for barometry, erroneous results will be obtained.
Federico Lucci, Gerardo Carrasco-Núñez, Federico Rossetti, Thomas Theye, John Charles White, Stefano Urbani, Hossein Azizi, Yoshihiro Asahara, and Guido Giordano
Solid Earth, 11, 125–159, https://doi.org/10.5194/se-11-125-2020, https://doi.org/10.5194/se-11-125-2020, 2020
Short summary
Short summary
Understanding the anatomy of active magmatic plumbing systems is essential to define the heat source(s) feeding geothermal fields. Mineral-melt thermobarometry and fractional crystallization (FC) models were applied to Quaternary volcanic products of the Los Humeros Caldera (Mexico). Results point to a magmatic system controlled by FC processes and made of magma transport and storage layers within the crust, with significant implications on structure and longevity of the geothermal reservoir.
Tomoaki Morishita, Naoto Hirano, Hirochika Sumino, Hiroshi Sato, Tomoyuki Shibata, Masako Yoshikawa, Shoji Arai, Rie Nauchi, and Akihiro Tamura
Solid Earth, 11, 23–36, https://doi.org/10.5194/se-11-23-2020, https://doi.org/10.5194/se-11-23-2020, 2020
Short summary
Short summary
We report a peridotite xenolith-bearing basalt dredged from the Seifu Seamount (SSM basalt) in the northeast Tsushima Basin, southwest Sea of Japan, which is one of the western Pacific back-arc basin swarms. An 40Ar / 39Ar plateau age of 8.33 ± 0.15 Ma (2 σ) was obtained for the SSM basalt, indicating that it erupted shortly after the termination of back-arc spreading. The SSM basalt was formed in a post-back-arc extension setting by the low-degree partial melting of an upwelling asthenosphere.
Ariadni A. Georgatou and Massimo Chiaradia
Solid Earth, 11, 1–21, https://doi.org/10.5194/se-11-1-2020, https://doi.org/10.5194/se-11-1-2020, 2020
Short summary
Short summary
We study the petrographical and geochemical occurrence of magmatic sulfide minerals in volcanic rocks for areas characterised by different geodynamic settings, some of which are associated with porphyry (Cu and/or Au) and Au epithermal mineralisation. The aim is to investigate the role of magmatic sulfide saturation processes in depth for ore generation in the surface.
Cited articles
Ague, J. J.: Element mobility during regional metamorphism in crustal and
subduction zone environments with a focus on the rare earth elements (REE),
Am. Mineral., 102, 1796–1821, https://doi.org/10.2138/am-2017-6130, 2017. a, b, c, d
Alt, J. C., Shanks, W. C., and Jackson, M. C.: Cycling of sulfur in subduction
zones: The geochemistry of sulfur in the Mariana Island Arc and
back-arc trough, Earth Planet. Sc. Lett., 119, 477–494,
https://doi.org/10.1016/0012-821X(93)90057-G, 1993. a
Anderson, G.: Thermodynamics of Natural Systems, Cambridge University
Press, Cambridge, 2 Edn., 198–233, 2009. a
Anderson, G. M. and Crerar, D. A.: Thermodynamics in Geochemistry: The
Equilibrium Model, Oxford University Press, New York, 1st Edn., 555 pp.,
1993. a
Aranovich, L. and Safonov, O.: Halogens in High-Grade Metamorphism, in:
The Role of Halogens in Terrestrial and Extraterrestrial
Geochemical Processes, edited by: Harlov, D. E. and Aranovich, L.,
Springer International Publishing, Cham, 713–757,
https://doi.org/10.1007/978-3-319-61667-4_11, 2018. a, b, c
Atkins, P. and De Paula, J.: Physical Chemistry, Oxford University Press, 6th
Edn., 158 pp., 2006. a
Bali, E., Keppler, H., and Audetat, A.: The mobility of W and Mo in
subduction zone fluids and the Mo–W–Th–U systematics of island
arc magmas, Earth Planet. Sc. Lett., 351/352, 195–207,
https://doi.org/10.1016/j.epsl.2012.07.032, 2012. a
Barnes, J. D., Manning, C. E., Scambelluri, M., and Selverstone, J.: The
Behavior of Halogens During Subduction-Zone Processes, in: The
Role of Halogens in Terrestrial and Extraterrestrial Geochemical
Processes, edited by: Harlov, D. E. and Aranovich, L.,
Springer International Publishing, Cham, 545–590, https://doi.org/10.1007/978-3-319-61667-4_8,
2018. a
Bau, M. and Dulski, P.: Comparative study of yttrium and rare-earth element
behaviours in fluorine-rich hydrothermal fluids, Contr. Mineral. Petrol.,
119, 213–223, 1995. a
Becke, A. D.: Density-functional exchange-energy approximation with correct
asymptotic behavior, Phys. Rev. A, 38, 3098–3100,
https://doi.org/10.1103/PhysRevA.38.3098, 1988. a
Behler, J. and Parrinello, M.: Generalized Neural-Network Representation
of High-Dimensional Potential-Energy Surfaces, Phys. Rev. Lett.,
98, 146401, https://doi.org/10.1103/PhysRevLett.98.146401, 2007. a
Brown, P. L. and Ekberg, C. (Eds.): Alkaline Earth Metals, Wiley-VCH Verlag
GmbH & Co. KGaA, 1–9, 2016. a
Bühl, M. and Golubnychiy, V.: Binding of Pertechnetate to Uranyl(VI) in
Aqueous Solution, A Density Functional Theory Molecular
Dynamics Study, Inorg. Chem., 46, 8129–8131, https://doi.org/10.1021/ic701431u,
2007. a
Bühl, M. and Grenthe, I.: Binding modes of oxalate in UO2(oxalate) in
aqueous solution studied with first-principles molecular dynamics
simulations, Implications for the chelate effect, Dalton Trans., 40,
11192–11199, https://doi.org/10.1039/C1DT10796H, 2011. a
Car, R. and Parrinello, M.: Unified Approach for Molecular Dynamics and
Density-Functional Theory, Phys. Rev. Lett., 55, 2471–2474,
https://doi.org/10.1103/PhysRevLett.55.2471, 1985. a
Cetiner, Z. S., Wood, S. A., and Gammons, C. H.: The aqueous geochemistry of
the rare earth elements, Part XIV, The solubility of rare earth element
phosphates from 23 to 150 ∘C, Chem. Geol., 217, 147–169,
https://doi.org/10.1016/j.chemgeo.2005.01.001, 2005. a
Cheng, B., Engel, E. A., Behler, J., Dellago, C., and Ceriotti, M.: Ab initio
thermodynamics of liquid and solid water, P. Natl. Acad. Sci. USA, 116, 1110–1115, https://doi.org/10.1073/pnas.1815117116, 2019. a
Ciccotti, G., Kapral, R., and Vanden-Eijnden, E.: Blue moon sampling, vectorial
reaction coordinates, and unbiased constrained dynamics, Chem. Phys Chem., 6,
1809–1814, https://doi.org/10.1002/cphc.200400669, 2005. a
Dalou, C., Mysen, B. O., and Foustoukos, D.: In-situ measurements of fluorine
and chlorine speciation and partitioning between melts and aqueous fluids in
the
O system, Am. Mineral., 100, 47–58, https://doi.org/10.2138/am-2015-4859, 2015. a
Dick, J. M.: Calculation of the relative metastabilities of proteins using the
CHNOSZ software package, Geochem. T., 9, 10, https://doi.org/10.1186/1467-4866-9-10,
2008. a
Dolejš, D.: Thermodynamics of Aqueous Species at High Temperatures
and Pressures: Equations of State and Transport Theory, Rev.
Mineral. Geochem., 76, 35–79, https://doi.org/10.2138/rmg.2013.76.3, 2013. a
Dolejš, D. and Zajacz, Z.: Halogens in Silicic Magmas and Their
Hydrothermal Systems, in: The Role of Halogens in Terrestrial and
Extraterrestrial Geochemical Processes, edited by: Harlov, D. E. and
Aranovich, L., Springer International Publishing, Cham,
431–543, https://doi.org/10.1007/978-3-319-61667-4_7, 2018. a
Galvez, M. E., Connolly, J. A. D., and Manning, C. E.: Implications for metal
and volatile cycles from the pH of subduction zone fluids, Nature, 539,
420–424, https://doi.org/10.1038/nature20103, 2016. a, b
Goedecker, S., Teter, M., and Hutter, J.: Separable dual-space Gaussian
pseudopotentials, Phys. Rev. B, 54, 1703–1710,
https://doi.org/10.1103/PhysRevB.54.1703, 1996. a
Goncharov, A. F., Goldman, N., Fried, L. E., Crowhurst, J. C., Kuo, I.-F. W.,
Mundy, C. J., and Zaug, J. M.: Dynamic Ionization of Water under
Extreme Conditions, Phys. Rev. Lett., 94, 125508,
https://doi.org/10.1103/PhysRevLett.94.125508, 2005. a
Graupner, T., Kempe, U., Dombon, E., Pätzold, O., Leeder, O., and Spooner, E.
T. C.: Fluid regime and ore formation in the tungsten(-yttrium) deposits of
Kyzyltau (Mongolian Altai): evidence for fluid variability in
tungsten-tin ore systems, Chem. Geol., 154, 21–58,
https://doi.org/10.1016/S0009-2541(98)00123-5, 1999. a
Haas, J. R., Shock, E. L., and Sassani, D. C.: Rare earth elements in
hydrothermal systems: Estimates of standard partial molal thermodynamic
properties of aqueous complexes of the rare earth elements at high pressures
and temperatures, Geochim. Cosmochim. Ac., 59, 4329–4350,
https://doi.org/10.1016/0016-7037(95)00314-P, 1995. a, b, c, d, e, f, g, h, i
Harlov, D. E., Johansson, L., Van Den Kerkhof, A., and Förster, H.-J.: The
Role of Advective Fluid Flow and Diffusion during Localized,
Solid-State Dehydration: Söndrum Stenhuggeriet, Halmstad, SW
Sweden, J. Petrol., 47, 3–33, https://doi.org/10.1093/petrology/egi062, 2006. a, b
Hartwigsen, C., Goedecker, S., and Hutter, J.: Relativistic separable
dual-space Gaussian pseudopotentials from H to Rn, Phys. Rev. B, 58,
3641–3662, https://doi.org/10.1103/PhysRevB.58.3641, 1998. a
Helgeson, H. C.: Thermodynamics of hydrothermal systems at elevated
temperatures and pressures, Am. J. Sci., 267, 729–804,
https://doi.org/10.2475/ajs.267.7.729, 1969. a
Helgeson, H. C., Kirkham, D. H., and Flowers, G. C.: Theoretical prediction of
the thermodynamic behavior of aqueous electrolytes by high pressures and
temperatures; IV, Calculation of activity coefficients, osmotic
coefficients, and apparent molal and standard and relative partial molal
properties to 600 ∘C and 5 kb, Am. J. Sci., 281, 1249–1516,
https://doi.org/10.2475/ajs.281.10.1249, 1981. a, b
Hermann, J., Spandler, C., Hack, A., and Korsakov, A. V.: Aqueous fluids and
hydrous melts in high-pressure and ultra-high pressure rocks: Implications
for element transfer in subduction zones, Lithos, 92, 399–417,
https://doi.org/10.1016/j.lithos.2006.03.055, 2006. a
Hermann, J., Zheng, Y.-F., and Rubatto, D.: Deep Fluids in Subducted
Continental Crust, Elements, 9, 281–287,
https://doi.org/10.2113/gselements.9.4.281, 2013. a
Hetherington, C. J., Harlov, D. E., and Buadzyń, B.: Experimental
metasomatism of monazite and xenotime: mineral stability, REE mobility and
fluid composition, Miner. Petrol., 99, 165–184,
https://doi.org/10.1007/s00710-010-0110-1, 2010. a
Hohenberg, P. and Kohn, W.: Inhomogeneous Electron Gas, Phys. Rev., 136,
B864–B871, https://doi.org/10.1103/PhysRev.136.B864, 1964. a
Hole, M. J., Trewin, N. H., and Still, J.: Mobility of the high field strength,
rare earth elements and yttrium during late diagenesis, J. Geol. Soc., 149, 689–692, https://doi.org/10.1144/gsjgs.149.5.0689, 1992. a
Hoover, W. G.: Canonical dynamics: Equilibrium phase-space distributions,
Phys. Rev. A, 31, 1695–1697, https://doi.org/10.1103/PhysRevA.31.1695, 1985. a
Hückel, E. and Debye, P.: The theory of electrolytes: I. lowering of
freezing point and related phenomena, Phys. Z., 24, 185–206, 1923. a
Hughes, L., Burgess, R., Chavrit, D., Pawley, A., Tartèse, R., Droop, G.,
Ballentine, C. J., and Lyon, I.: Halogen behaviour in subduction zones:
Eclogite facies rocks from the Western and Central Alps, Geochim.
Cosmochim. Ac., 243, 1–23, https://doi.org/10.1016/j.gca.2018.09.024, 2018. a
Humphrey, W., Dalke, A., and Schulten, K.: VMD – Visual Molecular
Dynamics, J. Molec. Graph., 14, 33–38, 1996. a
Hünenberger, P. H. and McCammon, J. A.: Ewald artifacts in computer
simulations of ionic solvation and ion-ion interaction: A continuum
electrostatics study, J. Chem. Phys., 110, 1856–1872,
https://doi.org/10.1063/1.477873, 1999. a
Ikeda, T., Hirata, M., and Kimura, T.: Hydration structure of Y3+ and
La3+ compared: an application of metadynamics, J. Chem. Phys., 122,
244507, https://doi.org/10.1063/1.1940029, 2005a. a
Ikeda, T., Hirata, M., and Kimura, T.: Hydration of Y3+ ion: a
Car-Parrinello molecular dynamics study, J. Chem. Phys., 122, 024510,
https://doi.org/10.1063/1.1832594, 2005b. a, b
IUPAC: A report of IUPAC commission 1.2 on thermodynamics notation for states
and processes, significance of the word “standard” in chemical
thermodynamics, and remarks on commonly tabulated forms of thermodynamic
functions, Tech. Rep. 9, 1982. a
Ivanov, I., Chen, B., Raugei, S., and Klein, M. L.: Relative pKa Values
from First-Principles Molecular Dynamics: The Case of Histidine
Deprotonation, J. Phys. Chem. B, 110, 6365–6371, https://doi.org/10.1021/jp056750i,
2006. a
Johansson, G. and Wakita, H.: X-ray investigation of the coordination and
complex formation of lanthanoid ions in aqueous perchlorate and selenate
solutions, Inorg. Chem., 24, 3047–3052, https://doi.org/10.1021/ic00213a035, 1985. a
John, T., Klemd, R., Gao, J., and Garbe-Schönberg, C.-D.: Trace-element
mobilization in slabs due to non steady-state fluid-rock interaction:
Constraints from an eclogite-facies transport vein in blueschist
(Tianshan, China), Lithos, 103, 1–24,
https://doi.org/10.1016/j.lithos.2007.09.005, 2008. a
Keppler, H.: Constraints from partitioning experiments on the composition of
subduction-zone fluids, Nature, 380, 237–240, https://doi.org/10.1038/380237a0, 1996. a
Keppler, H.: Fluids and trace element transport in subduction zones, Am.
Mineral., 102, 5–20, https://doi.org/10.2138/am-2017-5716, 2017. a
Kielland, J.: Individual Activity Coefficients of Ions in Aqueous
Solutions, J. Am. Chem. Soc., 59, 1675–1678, https://doi.org/10.1021/ja01288a032,
1937. a
Kohn, W. and Sham, L. J.: Self-Consistent Equations Including Exchange
and Correlation Effects, Phys. Rev., 140, A1133–A1138, 1965. a
Krack, M.: Pseudopotentials for H to Kr optimized for gradient-corrected
exchange-correlation functionals, Theor. Chem. Acc., 114, 145–152,
https://doi.org/10.1007/s00214-005-0655-y, 2005. a
Laio, A. and Parrinello, M.: Escaping free-energy minima, P. Natl. Acad. Sci. USA, 99,
12562–12566, https://doi.org/10.1073/pnas.202427399, 2002. a
Lindqvist-Reis, P., Lamble, K., Pattanaik, S., Persson, I., and Sandström,
M.: Hydration of the Yttrium(III) Ion in Aqueous Solution. An
X-ray Diffraction and XAFS Structural Study, J. Phys. Chem. B, 104,
402–408, https://doi.org/10.1021/jp992101t, 2000. a
Liu, X., Lu, X., Wang, R., and Zhou, H.: First-principles molecular dynamics
study of stepwise hydrolysis reactions of Y3+ cations, Chem. Geol., 334,
37–43, https://doi.org/10.1016/j.chemgeo.2012.09.048, 2012. a, b
Loges, A., Migdisov, A. A., Wagner, T., Williams-Jones, A. E., and Markl, G.:
An experimental study of the aqueous solubility and speciation of Y(III)
fluoride at temperatures up to 250 ∘C, Geochim. Cosmochim. Ac.,
123, 403–415, https://doi.org/10.1016/j.gca.2013.07.031, 2013. a, b, c, d, e, f, g, h, i
Luo, Y.-R. and Byrne, R. H.: The Ionic Strength Dependence of Rare
Earth and Yttrium Fluoride Complexation at 25 ∘C, J. Solution
Chem., 29, 1089–1099, https://doi.org/10.1023/A:1005186932126, 2000. a
Luo, Y.-R. and Byrne, R. H.: Yttrium and Rare Earth Element
Complexation by Chloride Ions at 25 ∘C, J. Solution
Chem., 30, 837–845, https://doi.org/10.1023/A:1012292417793, 2001. a, b
Luo, Y.-R. and Byrne, R. H.: The Influence of Ionic Strength on Yttrium
and Rare Earth Element Complexation by Fluoride Ions in NaClO4,
NaNO3 and NaCl Solutions at 25 ∘C, J. Solution. Chem., 36,
673, https://doi.org/10.1007/s10953-007-9141-6, 2007. a
Manning, C. E.: The chemistry of subduction-zone fluids, Earth Planet. Sc.
Lett., 223, 1–16, https://doi.org/10.1016/j.epsl.2004.04.030, 2004. a, b
Manning, C. E.: Fluids of the Lower Crust: Deep Is Different, Annu.
Rev. Earth Pl. Sc., 46, 67–97,
https://doi.org/10.1146/annurev-earth-060614-105224, 2018. a, b, c, d
Manning, C. E., Shock, E. L., and Sverjensky, D. A.: The Chemistry of
Carbon in Aqueous Fluids at Crustal and Upper-Mantle
Conditions: Experimental and Theoretical Constraints, Rev. Mineral.
Geochem., 75, 109–148, https://doi.org/10.2138/rmg.2013.75.5, 2013. a
Mantegazzi, D., Sanchez-Valle, C., and Driesner, T.: Thermodynamic properties
of aqueous NaCl solutions to 1073 K and 4.5 GPa, and implications for
dehydration reactions in subducting slabs, Geochim. Cosmochim. Ac., 121, 263–290, https://doi.org/10.1016/j.gca.2013.07.015, 2013. a, b, c
Mark, A. E., van Helden, S. P., Smith, P. E., Janssen, L. H. M., and van
Gunsteren, W. F.: Convergence Properties of Free Energy Calculations:
α–Cyclodextrin Complexes as a Case Study, J. Am. Chem. Soc.,
116, 6293–6302, https://doi.org/10.1021/ja00093a032, 1994. a
Marshall, W. L. and Franck, E. U.: Ion product of water substance,
0–1000 ∘C, 1–10,000 bars New International Formulation
and its background, J. Phys. Chem. Ref. Data, 10, 295–304,
https://doi.org/10.1063/1.555643, 1981. a, b
Matsuoka, O., Clementi, E., and Yoshimine, M.: CI study of the water dimer
potential surface, J. Chem. Phys., 64, 1351–1361, https://doi.org/10.1063/1.432402,
1976. a
Mayanovic, R. A., Jayanetti, S., Anderson, A. J., Bassett, W. A., and Chou, I.:
Comparison Between Yb3+ and Y3+ Ion Association with the Cl-Ion in Hydrothermal Solutions: Evidence From XAFS Measurements
on Rare Earth Aqueous Solutions at up to 500 ∘C and 270 MPa, AGU
Spring Meeting Abstracts, 22, M22A–12, 2002. a, b, c, d, e
Mayanovic, R. A., Anderson, A. J., Bassett, W. A., and Chou, I.-M.: Steric
hindrance and the enhanced stability of light rare-earth elements in
hydrothermal fluids, Am. Mineral., 94, 1487–1490, https://doi.org/10.2138/am.2009.3250,
2009. a
McGary, R. S., Evans, R. L., Wannamaker, P. E., Elsenbeck, J., and Rondenay,
S.: Pathway from subducting slab to surface for melt and fluids beneath
Mount Rainier, Nature, 511, 338–340, https://doi.org/10.1038/nature13493, 2014. a
McPhie, J., Kamenetsky, V., Allen, S., Ehrig, K., Agangi, A., and Bath, A.: The
fluorine link between a supergiant ore deposit and a silicic large igneous
province, Geology, 39, 1003–1006, https://doi.org/10.1130/G32205.1, 2011. a
Mei, Y., Sherman, D. M., Liu, W., and Brugger, J.: Ab initio molecular dynamics
simulation and free energy exploration of copper(I) complexation by
chloride and bisulfide in hydrothermal fluids, Geochim. Cosmochim. Ac., 102,
45–64, https://doi.org/10.1016/j.gca.2012.10.027, 2013. a
Mei, Y., Liu, W., Sherman, D. M., and Brugger, J.: Metal complexation and ion
hydration in low density hydrothermal fluids: Ab initio molecular dynamics
simulation of Cu(I) and Au(I) in chloride solutions
(25–1000 ∘C, 1–5000 bar), Geochim. Cosmochim. Ac., 131,
196–212, https://doi.org/10.1016/j.gca.2014.01.033, 2014. a
Mei, Y., Sherman, D. M., Liu, W., Etschmann, B., Testemale, D., and Brugger,
J.: Zinc complexation in chloride-rich hydrothermal fluids
(25–600 ∘C): A thermodynamic model derived from ab initio
molecular dynamics, Geochim. Cosmochim. Ac., 150, 265–284,
https://doi.org/10.1016/j.gca.2014.09.023, 2015. a, b
Mei, Y., Etschmann, B., Liu, W., Sherman, D. M., Testemale, D., and Brugger,
J.: Speciation and thermodynamic properties of zinc in sulfur-rich
hydrothermal fluids: Insights from ab initio molecular dynamics simulations
and X-ray absorption spectroscopy, Geochim. Cosmochim. Ac., 179, 32–52,
https://doi.org/10.1016/j.gca.2016.01.031, 2016. a, b
Mei, Y., Liu, W., Brugger, J., Sherman, D. M., and Gale, J. D.: The
dissociation mechanism and thermodynamic properties of HCl(aq) in
hydrothermal fluids (to 700 ∘C, 60 kbar) by ab initio molecular
dynamics simulations, Geochim. Cosmochim. Ac., 226, 84–106,
https://doi.org/10.1016/j.gca.2018.01.017, 2018. a, b
Mesmer, R. E., Marshall, W. L., Palmer, D. A., Simonson, J. M., and Holmes,
H. F.: Thermodynamics of aqueous association and ionization reactions at high
temperatures and pressures, J. Solution Chem., 17, 699–718,
https://doi.org/10.1007/BF00647417, 1988. a, b
Métrich, N. and Wallace, P. J.: Volatile Abundances in Basaltic Magmas
and Their Degassing Paths Tracked by Melt Inclusions, Rev.
Mineral. Geochem., 69, 363–402, https://doi.org/10.2138/rmg.2008.69.10, 2008. a
Migdisov, A., Williams-Jones, A. E., Brugger, J., and Caporuscio, F. A.:
Hydrothermal transport, deposition, and fractionation of the REE:
Experimental data and thermodynamic calculations, Chem. Geol., 439, 13–42,
https://doi.org/10.1016/j.chemgeo.2016.06.005, 2016. a, b
Migdisov, A., Guo, X., Nisbet, H., Xu, H., and Williams-Jones, A. E.:
Fractionation of REE, U, and Th in natural ore-forming hydrothermal
systems: Thermodynamic modeling, J. Chem. Thermodyn., 128, 305–319,
https://doi.org/10.1016/j.jct.2018.08.032, 2019. a, b
Migdisov, A. A. and Williams-Jones, A. E.: Hydrothermal transport and
deposition of the rare earth elements by fluorine-bearing aqueous liquids,
Miner. Depos., 49, 987–997, https://doi.org/10.1007/s00126-014-0554-z, 2014. a, b, c
Migdisov, A. A., Williams-Jones, A. E., and Wagner, T.: An experimental study
of the solubility and speciation of the Rare Earth Elements (III) in
fluoride- and chloride-bearing aqueous solutions at temperatures up to
300 ∘C, Geochim. Cosmochim. Ac., 73, 7087–7109,
https://doi.org/10.1016/j.gca.2009.08.023, 2009. a, b, c, d, e, f, g
Moore, S. J., Carlson, W. D., and Hesse, M. A.: Origins of yttrium and rare
earth element distributions in metamorphic garnet, J. Metamorph. Geol., 31,
663–689, https://doi.org/10.1111/jmg.12039, 2013. a
Näslund, J., Lindqvist-Reis, P., Persson, I., and Sandström, M.: Steric
Effects Control the Structure of the Solvated Lanthanum(III)
Ion in Aqueous, Dimethyl Sulfoxide, and
N,N‘-Dimethylpropyleneurea Solution, An EXAFS and
Large-Angle X-ray Scattering Study, Inorg. Chem., 39, 4006–4011,
https://doi.org/10.1021/ic991208s, 2000. a
Newton, R. C. and Manning, C. E.: Role of saline fluids in deep-crustal and
upper-mantle metasomatism: insights from experimental studies, Geofluids, 10,
58–72, https://doi.org/10.1111/j.1468-8123.2009.00275.x, 2010. a, b
Newton, R. C., Aranovich, L. Y., Hansen, E. C., and Vandenheuvel, B. A.:
Hypersaline fluids in Precambrian deep-crustal metamorphism, Precambrian
Res., 91, 41–63, https://doi.org/10.1016/S0301-9268(98)00038-2, 1998. a
Nosé, S.: A unified formulation of the constant temperature molecular
dynamics methods, J. Chem. Phys., 81, 511–519, https://doi.org/10.1063/1.447334, 1984. a
Pan, D., Spanu, L., Harrison, B., Sverjensky, D. A., and Galli, G.: Dielectric
properties of water under extreme conditions and transport of carbonates in
the deep Earth, P. Natl. Acad. Sci. USA, 110, 6646–6650, https://doi.org/10.1073/pnas.1221581110, 2013. a
Pan, Y. and Fleet, M. E.: Rare earth element mobility during prograde granulite
facies metamorphism: significance of fluorine, Contrib. Mineral. Petrol.,
123, 251–262, https://doi.org/10.1007/s004100050154, 1996. a
Pérez de Alba Ortíz, A., Tiwari, A., Puthenkalathil, R. C., and Ensing, B.:
Advances in enhanced sampling along adaptive paths of collective variables,
J. Chem. Phys., 149, 072320, https://doi.org/10.1063/1.5027392, 2018. a
Petrović, D., Jakovljević, I., Joksović, L., Szecsenyi, K. M., and
Đurđević, P.: Study of the hydrolytic properties of the trivalent
Y-ion in chloride medium, Polyhedron, 105, 1–11,
https://doi.org/10.1016/j.poly.2015.11.047, 2016. a
Pietrucci, F., Aponte, J. C., Starr, R., Pérez-Villa, A., Elsila, J. E.,
Dworkin, J. P., and Saitta, A. M.: Hydrothermal Decomposition of Amino
Acids and Origins of Prebiotic Meteoritic Organic Compounds, ACS
Earth Space Chem., 2, 588–598,
https://doi.org/10.1021/acsearthspacechem.8b00025, 2018. a
Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N., and Khubunaya, S.:
Constraints on mantle melting and composition and nature of slab components
in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in
melt inclusions from the Kamchatka Arc, Earth Planet. Sc.
Lett., 255, 53–69, https://doi.org/10.1016/j.epsl.2006.12.005, 2007. a
Resat, H. and Mezei, M.: Studies on free energy calculations. I.
Thermodynamic integration using a polynomial path, J. Chem. Phys., 99,
6052–6061, https://doi.org/10.1063/1.465902, 1993. a
Rozsa, V., Pan, D., Giberti, F., and Galli, G.: Ab initio spectroscopy and
ionic conductivity of water under Earth mantle conditions, P. Natl. Acad. Sci. USA, 115,
6952–6957, https://doi.org/10.1073/pnas.1800123115, 2018. a
Sakti, A. W., Nishimura, Y., and Nakai, H.: Rigorous pKa Estimation of
Amine Species Using Density-Functional Tight-Binding-Based
Metadynamics Simulations, J. Chem. Theory Comput., 14, 351–356,
https://doi.org/10.1021/acs.jctc.7b00855, 2018. a
Sallet, R.: Fluorine as a tool in the petrogenesis of quartz-bearing magmatic
associations: applications of an improved F-OH biotite-apatite
thermometer grid, Lithos, 50, 241–253, https://doi.org/10.1016/S0024-4937(99)00036-5,
2000. a
Sanchez-Valle, C.: Structure and Thermodynamics of Subduction Zone
Fluids from Spectroscopic Studies, Rev. Mineral. Geochem., 76,
265–309, https://doi.org/10.2138/rmg.2013.76.8, 2013. a
Scambelluri, M. and Philippot, P.: Deep fluids in subduction zones, Lithos, 55,
213–227, https://doi.org/10.1016/S0024-4937(00)00046-3, 2001. a
Schmidt, C., Rickers, K., Bilderback, D. H., and Huang, R.: In situ
synchrotron-radiation XRF study of REE phosphate dissolution in aqueous
fluids to 800 ∘C, Lithos, 95, 87–102,
https://doi.org/10.1016/j.lithos.2006.07.017, 2007a. a, b
Schmidt, C., Rickers, K., Bilderback, D. H., and Huang, R.: In situ
synchrotron-radiation XRF study of REE phosphate dissolution in aqueous
fluids to 800 ∘C, Lithos, 95, 87–102,
https://doi.org/10.1016/j.lithos.2006.07.017, 2007b. a, b
Schmidt, M. W. and Poli, S.: Experimentally based water budgets for dehydrating
slabs and consequences for arc magma generation, Earth Planet. Sc. Lett.,
163, 361–379, https://doi.org/10.1016/S0012-821X(98)00142-3, 1998. a
Sherman, D. M.: Metal complexation and ion association in hydrothermal fluids:
insights from quantum chemistry and molecular dynamics, Geofluids, 10,
41–57, https://doi.org/10.1111/j.1468-8123.2009.00269.x, 2010. a
Shock, E. L. and Helgeson, H. C.: Calculation of the thermodynamic and
transport properties of aqueous species at high pressures and temperatures:
Correlation algorithms for ionic species and equation of state predictions
to 5 kb and 1000 ∘C, Geochim. Cosmochim. Ac., 52, 2009–2036,
https://doi.org/10.1016/0016-7037(88)90181-0, 1988. a
Shock, E. L., Helgeson, H. C., and Sverjensky, D. A.: Calculation of the
thermodynamic and transport properties of aqueous species at high pressures
and temperatures: Standard partial molal properties of inorganic neutral
species, Geochim. Cosmochim. Ac., 53, 2157–2183,
https://doi.org/10.1016/0016-7037(89)90341-4, 1989. a, b
Sprik, M. and Ciccotti, G.: Free energy from constrained molecular dynamics, J.
Chem. Phys., 109, 7737–7744, https://doi.org/10.1063/1.477419, 1998. a
Stefanski, J., Schmidt, C., and Jahn, S.: Aqueous sodium hydroxide (NaOH)
solutions at high pressure and temperature: insights from in situ Raman
spectroscopy and ab initio molecular dynamics simulations, Phys. Chem. Chem.
Phys., 20, 21629–21639, https://doi.org/10.1039/C8CP00376A,
2018. a
Sun, S.-s. and McDonough, W. F.: Chemical and isotopic systematics of oceanic
basalts: implications for mantle composition and processes, J. Geol. Soc., 42, 313–345, https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989. a
Tang, M., Chen, K., and Rudnick, R. L.: Archean upper crust transition from
mafic to felsic marks the onset of plate tectonics, Science, 351, 372–375,
https://doi.org/10.1126/science.aad5513, 2016. a
Tsay, A., Zajacz, Z., and Sanchez-Valle, C.: Efficient mobilization and
fractionation of rare-earth elements by aqueous fluids upon slab dehydration,
Earth Planet. Sc. Lett., 398, 101–112, https://doi.org/10.1016/j.epsl.2014.04.042,
2014. a, b, c, d
Tsay, A., Zajacz, Z., Ulmer, P., and Sanchez-Valle, C.: Mobility of major and
trace elements in the eclogite-fluid system and element fluxes upon slab
dehydration, Geochim. Cosmochim. Ac., 198, 70–91,
https://doi.org/10.1016/j.gca.2016.10.038, 2017. a
Tummanapelli, A. K. and Vasudevan, S.: Estimating successive pKa values of
polyprotic acids from ab initio molecular dynamics using metadynamics: the
dissociation of phthalic acid and its isomers, Phys. Chem. Chem. Phys., 17,
6383–6388, https://doi.org/10.1039/C4CP06000H, 2015. a
Ulmer, P. and Trommsdorff, V.: Serpentine stability to mantle depths and
subduction-related magmatism, Science, 268, 858–861,
https://doi.org/10.1126/science.268.5212.858, 1995. a
Vala Ragnarsdottir, K., Oelkers, E. H., Sherman, D. M., and Collins, C. R.:
Aqueous speciation of yttrium at temperatures from 25 to 340 ∘C
at Psat: an in situ EXAFS study, Chem. Geol., 151, 29–39,
https://doi.org/10.1016/S0009-2541(98)00068-0, 1998.
a, b, c, d
van Sijl, J., Allan, N. L., Davies, G. R., and van Westrenen, W.: Molecular
modelling of rare earth element complexation in subduction zone fluids,
Geochim. Cosmochim. Ac., 73, 3934–3947, https://doi.org/10.1016/j.gca.2009.04.001,
2009. a
van Sijl, J., Allan, N. L., Davies, G. R., and van Westrenen, W.: Titanium in
subduction zone fluids: First insights from ab initio molecular
metadynamics simulations, Geochim. Cosmochim. Ac., 74, 2797–2810,
https://doi.org/10.1016/j.gca.2010.01.031, 2010. a
Winter, J. D.: Principles of Igneous and Metamorphic Petrology, Pearson,
New York, 2nd Edn., 163–166, 2009. a
Wood, S. A.: The aqueous geochemistry of the rare-earth elements and yttrium,
Chem. Geol., 88, 99–125, https://doi.org/10.1016/0009-2541(90)90106-H, 1990. a, b
Worzewski, T., Jegen, M., Kopp, H., Brasse, H., and Castillo, W. T.:
Magnetotelluric image of the fluid cycle in the Costa Rican subduction
zone, Nat. Geosci., 4, 108–111, https://doi.org/10.1038/ngeo1041, 2011. a
Xing, Y., Etschmann, B., Liu, W., Mei, Y., Shvarov, Y., Testemale, D., Tomkins,
A., and Brugger, J.: The role of fluorine in hydrothermal mobilization and
transportation of Fe, U and REE and the formation of IOCG deposits,
Chem. Geol., 504, 158–176, https://doi.org/10.1016/j.chemgeo.2018.11.008, 2018. a, b
Yardley, B. W. D.: Apatite composition and the fugacities of HF and HCl in
metamorphic fluids, Mineral. Mag., 49, 77–79,
https://doi.org/10.1180/minmag.1985.049.350.10, 1985. a
Zhang, Z.-M., Shen, K., Sun, W.-D., Liu, Y.-S., Liou, J. G., Shi, C., and Wang,
J.-L.: Fluids in deeply subducted continental crust: Petrology, mineral
chemistry and fluid inclusion of UHP metamorphic veins from the Sulu
orogen, eastern China, Geochim. Cosmochim. Ac., 72, 3200–3228,
https://doi.org/10.1016/j.gca.2008.04.014, 2008. a
Zheng, Y., Chen, R., Xu, Z., and Zhang, S.: The transport of water in
subduction zones, Sci. China Earth Sci., 59, 651–682,
https://doi.org/10.1007/s11430-015-5258-4, 2016. a
Zhu, C. and Sverjensky, D. A.: Partitioning of F-Cl-OH between minerals
and hydrothermal fluids, Geochim. Cosmochim. Ac., 55, 1837–1858,
https://doi.org/10.1016/0016-7037(91)90028-4, 1991. a
Short summary
The capacity of aqueous fluids to mobilize rare Earth elements is closely related to their molecular structure. In this study, first-principle molecular dynamics simulations are used to investigate the complex formation of yttrium with chloride and fluoride under subduction-zone conditions. The simulations predict that yttrium–fluoride complexes are more stable than their yttrium–chloride counterparts but likely less abundant due to the very low fluoride ion concentration in natural systems.
The capacity of aqueous fluids to mobilize rare Earth elements is closely related to their...