Articles | Volume 12, issue 2
https://doi.org/10.5194/se-12-319-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-319-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fault sealing and caprock integrity for CO2 storage: an in situ injection experiment
Alba Zappone
CORRESPONDING AUTHOR
Swiss Seismological Service, ETHZ, Zurich, 8092, Switzerland
Department of Mechanical and Process Engineering, ETHZ, Zurich, 8092,
Switzerland
Antonio Pio Rinaldi
Swiss Seismological Service, ETHZ, Zurich, 8092, Switzerland
Energy Geosciences Division, LBNL Berkeley, CA 94720, USA
Melchior Grab
Department of Earth Sciences, ETHZ, Zurich, 8092, Switzerland
Quinn C. Wenning
Department of Earth Sciences, ETHZ, Zurich, 8092, Switzerland
Clément Roques
Department of Earth Sciences, ETHZ, Zurich, 8092, Switzerland
Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes,
France
Claudio Madonna
Department of Mechanical and Process Engineering, ETHZ, Zurich, 8092,
Switzerland
Anne C. Obermann
Swiss Seismological Service, ETHZ, Zurich, 8092, Switzerland
Stefano M. Bernasconi
Department of Earth Sciences, ETHZ, Zurich, 8092, Switzerland
Matthias S. Brennwald
Department of Water Resources and Drinking Water, EAWAG
Dübendorf, 8600, Switzerland
Rolf Kipfer
Department of Water Resources and Drinking Water, EAWAG
Dübendorf, 8600, Switzerland
Florian Soom
Energy Geosciences Division, LBNL Berkeley, CA 94720, USA
Paul Cook
Energy Geosciences Division, LBNL Berkeley, CA 94720, USA
Yves Guglielmi
Energy Geosciences Division, LBNL Berkeley, CA 94720, USA
Christophe Nussbaum
Swiss Geological Survey, swisstopo, Wabern, 3084, Switzerland
Domenico Giardini
Department of Earth Sciences, ETHZ, Zurich, 8092, Switzerland
Marco Mazzotti
Department of Mechanical and Process Engineering, ETHZ, Zurich, 8092,
Switzerland
Stefan Wiemer
Swiss Seismological Service, ETHZ, Zurich, 8092, Switzerland
Related authors
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Matthias S. Brennwald, Antonio P. Rinaldi, Jocelyn Gisiger, Alba Zappone, and Rolf Kipfer
Geosci. Instrum. Method. Data Syst., 13, 1–8, https://doi.org/10.5194/gi-13-1-2024, https://doi.org/10.5194/gi-13-1-2024, 2024
Short summary
Short summary
The gas equilibrium membrane inlet mass spectrometry (GE-MIMS) method for dissolved-gas quantification was expanded to work in water at high pressures.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Felix Kästner, Simona Pierdominici, Judith Elger, Alba Zappone, Jochem Kück, and Christian Berndt
Solid Earth, 11, 607–626, https://doi.org/10.5194/se-11-607-2020, https://doi.org/10.5194/se-11-607-2020, 2020
Short summary
Short summary
Knowledge about physical properties at depth is crucial to image and understand structures linked with orogenic processes. We examined seismic velocities from core and downhole data from the COSC-1 borehole, Sweden, and calibrated our results with laboratory measurements on core samples. Despite a strong mismatch between the core and downhole velocities due to microcracks, mafic units are resolved at all scales, while at sample scale, strong seismic anisotropy correlates with the rock foliation.
Anthony Adwan, Bertrand Maillot, Pauline Souloumiac, Christophe Barnes, Christophe Nussbaum, Meinert Rahn, and Thomas Van Stiphout
Solid Earth, 15, 1445–1463, https://doi.org/10.5194/se-15-1445-2024, https://doi.org/10.5194/se-15-1445-2024, 2024
Short summary
Short summary
We use computer simulations to study how stress is distributed in large-scale geological models, focusing on how fault lines behave under pressure. By running many 2D and 3D simulations with varying conditions, we discover patterns in how faults form and interact. Our findings reveal that even small changes in conditions can lead to different stress outcomes. This research helps us better understand earthquake mechanics and could improve predictions of fault behavior in real-world scenarios.
Etienne Marti, Sarah Leray, and Clément Roques
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-381, https://doi.org/10.5194/hess-2024-381, 2024
Preprint under review for HESS
Short summary
Short summary
We show that the response of groundwater-dependent wetlands to recharge changes can be predicted based on landform properties, providing a practical approach for wetland vulnerability assessment. We reveal that mountain catchments are less sensitive to recharge changes than lowland catchments. It offers insights for evaluating the vulnerability of catchments to climate change impacts and has direct implications for water resource management and conservation planning in diverse landscapes.
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stéphane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci., 24, 3945–3976, https://doi.org/10.5194/nhess-24-3945-2024, https://doi.org/10.5194/nhess-24-3945-2024, 2024
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Sandro Truttmann, Tobias Diehl, Marco Herwegh, and Stefan Wiemer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2975, https://doi.org/10.5194/egusphere-2024-2975, 2024
Short summary
Short summary
Our study investigates the statistical relationship between geological faults and earthquakes in the Southwestern Swiss Alps. We analyze how the fault size and earthquake rupture are related and find differences in how faults at different depths rupture seismically. While shallow faults tend to rupture only partially, deeper faults are more likely to rupture along their entire length, potentially resulting in larger earthquakes.
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024, https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans, yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our coccolith clumped isotope temperature calibration with well-constrained temperatures systematically differs from inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future coccolith carbonate temperature reconstructions.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Kathrin Behnen, Marian Hertrich, Hansruedi Maurer, Alexis Shakas, Kai Bröker, Claire Epiney, María Blanch Jover, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2024-1919, https://doi.org/10.5194/egusphere-2024-1919, 2024
Short summary
Short summary
Several crosshole seismic surveys in the undisturbed Rotondo granite are used to analyze the seismic anisotropy in the BedrettoLab in the Swiss alps. The P- and S1-waves show a clear trend of faster velocities in NE-SW direction and slower velocities perpendicular to it. This pattern describes a tilted transverse isotropic velocity model. The symmetry plane is mostly aligned with the direction of maximum stress but also the orientation of fractures are expected to influence the wave velocities.
Lonnie Justin Hufford, Leif Tokle, Whitney Maria Behr, Luiz Grafula Morales, and Claudio Madonna
EGUsphere, https://doi.org/10.5194/egusphere-2024-1507, https://doi.org/10.5194/egusphere-2024-1507, 2024
Short summary
Short summary
We constrained the rheology of glaucophane aggregates deforming near its brittle-ductile transition with general shear deformation experiments. In the experiments, glaucophane first underwent work hardening and strain weakening associated with brittle grain size reduction and incipient dislocation processes, then evolved to steady-state dislocation creep. We developed a flow law that can be used to approximate the rheological behavior of mafic oceanic crust at blueschist facies conditions.
Cyprien Louis, Landon J. S. Halloran, and Clément Roques
EGUsphere, https://doi.org/10.5194/egusphere-2024-927, https://doi.org/10.5194/egusphere-2024-927, 2024
Short summary
Short summary
We investigate an undocumented rock glacier (RG) and its role in subsurface hydrological processes in an alpine catchment. We compare aerial photos to calculate the creeping velocity of the RG and measure geochemical parameters of water in springs located below the RG. We also investigate the intensity and time-shift of daily melt and dilution processes in a new way to show how the RG and springs are connected. This study improves our conceptual understanding of RG-groundwater interactions.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Irina Dallo, Michèle Marti, Nadja Valenzuela, Helen Crowley, Jamal Dabbeek, Laurentiu Danciu, Simone Zaugg, Fabrice Cotton, Domenico Giardini, Rui Pinho, John F. Schneider, Céline Beauval, António A. Correia, Olga-Joan Ktenidou, Päivi Mäntyniemi, Marco Pagani, Vitor Silva, Graeme Weatherill, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 291–307, https://doi.org/10.5194/nhess-24-291-2024, https://doi.org/10.5194/nhess-24-291-2024, 2024
Short summary
Short summary
For the release of cross-country harmonised hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard Model and European Seismic Risk Model and provide practical recommendations for similar efforts.
Matthias S. Brennwald, Antonio P. Rinaldi, Jocelyn Gisiger, Alba Zappone, and Rolf Kipfer
Geosci. Instrum. Method. Data Syst., 13, 1–8, https://doi.org/10.5194/gi-13-1-2024, https://doi.org/10.5194/gi-13-1-2024, 2024
Short summary
Short summary
The gas equilibrium membrane inlet mass spectrometry (GE-MIMS) method for dissolved-gas quantification was expanded to work in water at high pressures.
Marta Han, Leila Mizrahi, and Stefan Wiemer
EGUsphere, https://doi.org/10.5194/egusphere-2023-3153, https://doi.org/10.5194/egusphere-2023-3153, 2024
Short summary
Short summary
Relying on recent accomplishments in collecting and harmonizing data by the 2020 European Seismic Hazard Model (ESHM20) and leveraging advancements in state-of-the-art earthquake forecasting methods, we develop a harmonized earthquake forecasting model for Europe. We propose several model variants and test them on training data for consistency and on a seven-year testing period against each other, as well as against both a time-independent benchmark and a global time-dependent benchmark.
Jasmine S. Berg, Paula C. Rodriguez, Cara Magnabosco, Longhui Deng, Stefano M. Bernasconi, Hendrik Vogel, Marina Morlock, and Mark A. Lever
EGUsphere, https://doi.org/10.5194/egusphere-2023-2102, https://doi.org/10.5194/egusphere-2023-2102, 2023
Preprint archived
Short summary
Short summary
The addition of sulfur to organic matter is generally thought to protect it from microbial degradation. We analyzed buried sulfur compounds in a 10-m sediment core representing the entire ~13,500 year history of an alpine lake. Surprisingly, organic sulfur and pyrite formed very rapidly and were characterized by very light isotope signatures that suggest active microbial sulfur cycling in the deep subsurface.
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023, https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Short summary
We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins.
Jens T. Birkholzer, Yves Guglielmi, and Christophe Nussbaum
Saf. Nucl. Waste Disposal, 2, 61–62, https://doi.org/10.5194/sand-2-61-2023, https://doi.org/10.5194/sand-2-61-2023, 2023
Short summary
Short summary
This presentation discusses a series of in situ experiments of fault activation by fluid injection conducted in argillite rock at the Mont Terri underground research laboratory in Switzerland to better understand whether pressurization of natural faults can lead to their reactivation and permeability generation in case such features are present near disposal tunnels. Lessons learned from these experiments help inform the safety assessment of geologic disposal in argillite host rock.
Sebastian Hellmann, Melchior Grab, Cedric Patzer, Andreas Bauder, and Hansruedi Maurer
Solid Earth, 14, 805–821, https://doi.org/10.5194/se-14-805-2023, https://doi.org/10.5194/se-14-805-2023, 2023
Short summary
Short summary
Acoustic waves are suitable to analyse the physical properties of the subsurface. For this purpose, boreholes are quite useful to deploy a source and receivers in the target area to get a comprehensive high-resolution dataset. However, when conducting such experiments in a subsurface such as glaciers that continuously move, the boreholes get deformed. In our study, we therefore developed a method that allows an analysis of the ice while considering deformations.
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Thomas J. Leutert, Sevasti Modestou, Stefano M. Bernasconi, and A. Nele Meckler
Clim. Past, 17, 2255–2271, https://doi.org/10.5194/cp-17-2255-2021, https://doi.org/10.5194/cp-17-2255-2021, 2021
Short summary
Short summary
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was followed by a period of dramatic climate change. We present a clumped isotope-based bottom-water temperature record from the Southern Ocean covering this key climate transition. Our record reveals warm conditions and a substantial cooling preceding the main ice volume increase, possibly caused by thresholds involved in ice growth and/or regional effects at our study site.
Andre Baldermann, Oliver Wasser, Elshan Abdullayev, Stefano Bernasconi, Stefan Löhr, Klaus Wemmer, Werner E. Piller, Maxim Rudmin, and Sylvain Richoz
Clim. Past, 17, 1955–1972, https://doi.org/10.5194/cp-17-1955-2021, https://doi.org/10.5194/cp-17-1955-2021, 2021
Short summary
Short summary
We identified the provenance, (post)depositional history, weathering conditions and hydroclimate that formed the detrital and authigenic silicates and soil carbonates of the Valley of Lakes sediments in Central Asia during the Cenozoic (~34 to 21 Ma). Aridification pulses in continental Central Asia coincide with marine glaciation events and are caused by Cenozoic climate forcing and the exhumation of the Tian Shan, Hangay and Altai mountains, which reduced the moisture influx by westerly winds.
Lisa Winhausen, Jop Klaver, Joyce Schmatz, Guillaume Desbois, Janos L. Urai, Florian Amann, and Christophe Nussbaum
Solid Earth, 12, 2109–2126, https://doi.org/10.5194/se-12-2109-2021, https://doi.org/10.5194/se-12-2109-2021, 2021
Short summary
Short summary
An experimentally deformed sample of Opalinus Clay (OPA), which is being considered as host rock for nuclear waste in Switzerland, was studied by electron microscopy to image deformation microstructures. Deformation localised by forming micrometre-thick fractures. Deformation zones show dilatant micro-cracking, granular flow and bending grains, and pore collapse. Our model, with three different stages of damage accumulation, illustrates microstructural deformation in a compressed OPA sample.
Viktor J. Bruckman, Gregor Giebel, Christopher Juhlin, Sonja Martens, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 56, 13–18, https://doi.org/10.5194/adgeo-56-13-2021, https://doi.org/10.5194/adgeo-56-13-2021, 2021
Gregory Church, Andreas Bauder, Melchior Grab, and Hansruedi Maurer
The Cryosphere, 15, 3975–3988, https://doi.org/10.5194/tc-15-3975-2021, https://doi.org/10.5194/tc-15-3975-2021, 2021
Short summary
Short summary
In this field study, we acquired a 3D radar survey over an active drainage network that transported meltwater through a Swiss glacier. We successfully imaged both englacial and subglacial pathways and were able to confirm long-standing glacier hydrology theory regarding meltwater pathways. The direction of these meltwater pathways directly impacts the glacier's velocity, and therefore more insightful field observations are needed in order to improve our understanding of this complex system.
Annika Fiskal, Eva Anthamatten, Longhui Deng, Xingguo Han, Lorenzo Lagostina, Anja Michel, Rong Zhu, Nathalie Dubois, Carsten J. Schubert, Stefano M. Bernasconi, and Mark A. Lever
Biogeosciences, 18, 4369–4388, https://doi.org/10.5194/bg-18-4369-2021, https://doi.org/10.5194/bg-18-4369-2021, 2021
Short summary
Short summary
Microbially produced methane can serve as a carbon source for freshwater macrofauna most likely through grazing on methane-oxidizing bacteria. This study investigates the contributions of different carbon sources to macrofaunal biomass. Our data suggest that the average contribution of methane-derived carbon is similar between different fauna but overall remains low. This is further supported by the low abundance of methane-cycling microorganisms.
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Irene Bianchi, Elmer Ruigrok, Anne Obermann, and Edi Kissling
Solid Earth, 12, 1185–1196, https://doi.org/10.5194/se-12-1185-2021, https://doi.org/10.5194/se-12-1185-2021, 2021
Short summary
Short summary
The European Alps formed during collision between the European and Adriatic plates and are one of the most studied orogens for understanding the dynamics of mountain building. In the Eastern Alps, the contact between the colliding plates is still a matter of debate. We have used the records from distant earthquakes to highlight the geometries of the crust–mantle boundary in the Eastern Alpine area; our results suggest a complex and faulted internal crustal structure beneath the higher crests.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Gregory Church, Melchior Grab, Cédric Schmelzbach, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020, https://doi.org/10.5194/tc-14-3269-2020, 2020
Short summary
Short summary
In this field study, we repeated ground-penetrating radar measurements over an active englacial channel network that transports meltwater through the glacier. We successfully imaged the englacial meltwater pathway and were able to delimitate the channel's shape. Meltwater from the glacier can impact the glacier's dynamics if it reaches the ice–bed interface, and therefore monitoring these englacial drainage networks is important to understand how these networks behave throughout a season.
Sonja Martens, Maren Brehme, Viktor J. Bruckman, Christopher Juhlin, Johannes Miocic, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 54, 1–5, https://doi.org/10.5194/adgeo-54-1-2020, https://doi.org/10.5194/adgeo-54-1-2020, 2020
Marco Broccardo, Arnaud Mignan, Francesco Grigoli, Dimitrios Karvounis, Antonio Pio Rinaldi, Laurentiu Danciu, Hannes Hofmann, Claus Milkereit, Torsten Dahm, Günter Zimmermann, Vala Hjörleifsdóttir, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 20, 1573–1593, https://doi.org/10.5194/nhess-20-1573-2020, https://doi.org/10.5194/nhess-20-1573-2020, 2020
Short summary
Short summary
This study presents a first-of-its-kind pre-drilling probabilistic induced seismic risk analysis for the Geldinganes (Iceland) deep-hydraulic stimulation. The results of the assessment indicate that the individual risk within a radius of 2 km around the injection point is below the safety limits. However, the analysis is affected by a large variability due to the presence of pre-drilling deep uncertainties. This suggests the need for online risk updating during the stimulation.
Dominik Zbinden, Antonio Pio Rinaldi, Tobias Diehl, and Stefan Wiemer
Solid Earth, 11, 909–933, https://doi.org/10.5194/se-11-909-2020, https://doi.org/10.5194/se-11-909-2020, 2020
Short summary
Short summary
The deep geothermal project in St. Gallen, Switzerland, aimed at generating electricity and heat. The fluid pumped into the underground caused hundreds of small earthquakes and one larger one felt by the local population. Here we use computer simulations to study the physical processes that led to the earthquakes. We find that gas present in the subsurface could have intensified the seismicity, which may have implications for future geothermal projects conducted in similar geological conditions.
Linus Villiger, Valentin Samuel Gischig, Joseph Doetsch, Hannes Krietsch, Nathan Oliver Dutler, Mohammadreza Jalali, Benoît Valley, Paul Antony Selvadurai, Arnaud Mignan, Katrin Plenkers, Domenico Giardini, Florian Amann, and Stefan Wiemer
Solid Earth, 11, 627–655, https://doi.org/10.5194/se-11-627-2020, https://doi.org/10.5194/se-11-627-2020, 2020
Short summary
Short summary
Hydraulic stimulation summarizes fracture initiation and reactivation due to high-pressure fluid injection. Several borehole intervals covering intact rock and pre-existing fractures were targets for high-pressure fluid injections within a decameter-scale, crystalline rock volume. The observed induced seismicity strongly depends on the target geology. In addition, the severity of the induced seismicity per experiment counter correlates with the observed transmissivity enhancement.
Felix Kästner, Simona Pierdominici, Judith Elger, Alba Zappone, Jochem Kück, and Christian Berndt
Solid Earth, 11, 607–626, https://doi.org/10.5194/se-11-607-2020, https://doi.org/10.5194/se-11-607-2020, 2020
Short summary
Short summary
Knowledge about physical properties at depth is crucial to image and understand structures linked with orogenic processes. We examined seismic velocities from core and downhole data from the COSC-1 borehole, Sweden, and calibrated our results with laboratory measurements on core samples. Despite a strong mismatch between the core and downhole velocities due to microcracks, mafic units are resolved at all scales, while at sample scale, strong seismic anisotropy correlates with the rock foliation.
Elizabeth R. Jachens, David E. Rupp, Clément Roques, and John S. Selker
Hydrol. Earth Syst. Sci., 24, 1159–1170, https://doi.org/10.5194/hess-24-1159-2020, https://doi.org/10.5194/hess-24-1159-2020, 2020
Short summary
Short summary
Recession analysis uses the receding streamflow following precipitation events to estimate watershed-average properties. Two methods for recession analysis use recession events individually or all events collectively. Using synthetic case studies, this paper shows that analyzing recessions collectively produces flawed interpretations. Moving forward, recession analysis using individual recessions should be used to describe the average and variability of watershed behavior.
Nathan A. Wales, Jesus D. Gomez-Velez, Brent D. Newman, Cathy J. Wilson, Baptiste Dafflon, Timothy J. Kneafsey, Florian Soom, and Stan D. Wullschleger
Hydrol. Earth Syst. Sci., 24, 1109–1129, https://doi.org/10.5194/hess-24-1109-2020, https://doi.org/10.5194/hess-24-1109-2020, 2020
Short summary
Short summary
Rapid warming in the Arctic is causing increased permafrost temperatures and ground ice degradation. To study the effects of ice degradation on water distribution, tracer was applied to two end members of ice-wedge polygons – a ubiquitous landform in the Arctic. End member type was found to significantly affect water distribution as lower flux was observed with ice-wedge degradation. Results suggest ice degradation can influence partitioning of sequestered carbon as carbon dioxide or methane.
Michèle Marti, Michael Stauffacher, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 19, 2677–2700, https://doi.org/10.5194/nhess-19-2677-2019, https://doi.org/10.5194/nhess-19-2677-2019, 2019
Short summary
Short summary
Maps are an established way to illustrate natural hazards and regularly used to communicate with non-experts. However, there is evidence that they are frequently misconceived. Using a real case, our study shows that applying or disregarding best practices in visualization, editing, and presentation significantly impacts the comprehensibility of seismic hazard information. We suggest scrutinizing current natural-hazard communication strategies and empirically testing new products.
Annika Fiskal, Longhui Deng, Anja Michel, Philip Eickenbusch, Xingguo Han, Lorenzo Lagostina, Rong Zhu, Michael Sander, Martin H. Schroth, Stefano M. Bernasconi, Nathalie Dubois, and Mark A. Lever
Biogeosciences, 16, 3725–3746, https://doi.org/10.5194/bg-16-3725-2019, https://doi.org/10.5194/bg-16-3725-2019, 2019
Sonja Martens, Christopher Juhlin, Viktor J. Bruckman, Gregor Giebel, Thomas Nagel, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 49, 31–35, https://doi.org/10.5194/adgeo-49-31-2019, https://doi.org/10.5194/adgeo-49-31-2019, 2019
Lisbeth Langhammer, Melchior Grab, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019, https://doi.org/10.5194/tc-13-2189-2019, 2019
Short summary
Short summary
We have developed a novel procedure for glacier thickness estimations that combines traditional glaciological modeling constraints with ground-truth data, for example, those obtained with ground-penetrating radar (GPR) measurements. This procedure is very useful for determining ice volume when only limited data are available. Furthermore, we outline a strategy for acquiring GPR data on glaciers, such that the cost/benefit ratio is optimized.
Maria Andrianaki, Juna Shrestha, Florian Kobierska, Nikolaos P. Nikolaidis, and Stefano M. Bernasconi
Hydrol. Earth Syst. Sci., 23, 3219–3232, https://doi.org/10.5194/hess-23-3219-2019, https://doi.org/10.5194/hess-23-3219-2019, 2019
Short summary
Short summary
We tested the performance of the SWAT hydrological model after being transferred from a small Alpine watershed to a greater area. We found that the performance of the model for the greater catchment was satisfactory and the climate change simulations gave insights into the impact of climate change on our site. Assessment tests are important in identifying the strengths and weaknesses of the models when they are applied under extreme conditions different to the ones that were calibrated.
Maximilian Rieder, Wencke Wegner, Monika Horschinegg, Stefanie Klackl, Nereo Preto, Anna Breda, Susanne Gier, Urs Klötzli, Stefano M. Bernasconi, Gernot Arp, and Patrick Meister
Solid Earth, 10, 1243–1267, https://doi.org/10.5194/se-10-1243-2019, https://doi.org/10.5194/se-10-1243-2019, 2019
Short summary
Short summary
The formation of dolomite (CaMg(CO3)2), an abundant mineral in Earth's geological record, is still incompletely understood. We studied dolomites embedded in a 100 m thick succession of coastal alluvial clays of Triassic age in the southern Alps. Observation by light microscopy and Sr isotopes suggests that dolomites may spontaneously from concentrated evaporating seawater, in coastal ephemeral lakes or tidal flats along the western margin of the Triassic Tethys sea.
Quinn C. Wenning, Claudio Madonna, Antoine de Haller, and Jean-Pierre Burg
Solid Earth, 9, 683–698, https://doi.org/10.5194/se-9-683-2018, https://doi.org/10.5194/se-9-683-2018, 2018
Short summary
Short summary
We measured the elastic and fluid flow properties in a ductile-brittle shear zone. The results suggest that although brittle deformation has persisted in the recent fault evolution, precursory ductile microstructure continues to control the petrophysical properties outside the fault core. The results are a glimpse into the evolutionary path of a shear zone during the ductile to brittle transition and are insightful for geothermal energy and geologic waste disposal exploitation and usage.
Florian Amann, Valentin Gischig, Keith Evans, Joseph Doetsch, Reza Jalali, Benoît Valley, Hannes Krietsch, Nathan Dutler, Linus Villiger, Bernard Brixel, Maria Klepikova, Anniina Kittilä, Claudio Madonna, Stefan Wiemer, Martin O. Saar, Simon Loew, Thomas Driesner, Hansruedi Maurer, and Domenico Giardini
Solid Earth, 9, 115–137, https://doi.org/10.5194/se-9-115-2018, https://doi.org/10.5194/se-9-115-2018, 2018
Valentin Samuel Gischig, Joseph Doetsch, Hansruedi Maurer, Hannes Krietsch, Florian Amann, Keith Frederick Evans, Morteza Nejati, Mohammadreza Jalali, Benoît Valley, Anne Christine Obermann, Stefan Wiemer, and Domenico Giardini
Solid Earth, 9, 39–61, https://doi.org/10.5194/se-9-39-2018, https://doi.org/10.5194/se-9-39-2018, 2018
Ben Laurich, Janos L. Urai, Christian Vollmer, and Christophe Nussbaum
Solid Earth, 9, 1–24, https://doi.org/10.5194/se-9-1-2018, https://doi.org/10.5194/se-9-1-2018, 2018
Short summary
Short summary
In Switzerland, the Opalinus Clay (OPA) formation is favored to host a repository for nuclear waste. Thus, we must know its deformation behavior. In this study, we focused on the microstructure of gouge, a thin (< 2 cm), drastically strained clay layer at the so-called Main Fault in the Mont Terri rock laboratory. We suggest that in situ gouge deforms in a more viscous manner than undeformed OPA in laboratory conditions. Moreover, we speculate about the origin and evolution of the gouge layer.
Melchior Grab, Beatriz Quintal, Eva Caspari, Hansruedi Maurer, and Stewart Greenhalgh
Solid Earth, 8, 255–279, https://doi.org/10.5194/se-8-255-2017, https://doi.org/10.5194/se-8-255-2017, 2017
Short summary
Short summary
Hot fluids and hydraulically conductive rock formations are essential for the accessibility of geothermal resources. We use numerical modeling techniques to investigate how seismic waves change their shape in presence of these factors. We demonstrate how to parameterize such models depending on the local geology and as a function of depth. Finally, we show how the attenuation, i.e. the energy loss of the wave, can be indicative for permeable rock fractures saturated with a fluid of specific type.
Ben Laurich, Janos L. Urai, and Christophe Nussbaum
Solid Earth, 8, 27–44, https://doi.org/10.5194/se-8-27-2017, https://doi.org/10.5194/se-8-27-2017, 2017
Short summary
Short summary
Scaly clay is a well-known rock fabric that can develop in tectonic systems and that can alter the physical rock properties of a formation. However, the internal microstructure and evolution of this fabric remain poorly understood. We examined the scaly microstructure of progressively faulted Opalinus Clay using optical as well as scanning electron microscopy. We show that as little as 1 vol.% in scaly clay aggregates is strained and present an evolutionary model for this.
Irene Molinari, John Clinton, Edi Kissling, György Hetényi, Domenico Giardini, Josip Stipčević, Iva Dasović, Marijan Herak, Vesna Šipka, Zoltán Wéber, Zoltán Gráczer, Stefano Solarino, the Swiss-AlpArray Field Team, and the AlpArray Working Group
Adv. Geosci., 43, 15–29, https://doi.org/10.5194/adgeo-43-15-2016, https://doi.org/10.5194/adgeo-43-15-2016, 2016
Short summary
Short summary
AlpArray is a collaborative seismological project in Europe that includes ~ 50 research institutes and seismological observatories. At its heart is the collection of top-quality seismological data from a dense network of stations in the Alpine region: the AlpArray Seismic Network (AASN). We report the Swiss contribution: site selections, installation, data quality and management. We deployed 27 temporary BB stations across 5 countries as result of a fruitful collaboration between 5 institutes.
S. Eyer, B. Tuzson, M. E. Popa, C. van der Veen, T. Röckmann, M. Rothe, W. A. Brand, R. Fisher, D. Lowry, E. G. Nisbet, M. S. Brennwald, E. Harris, C. Zellweger, L. Emmenegger, H. Fischer, and J. Mohn
Atmos. Meas. Tech., 9, 263–280, https://doi.org/10.5194/amt-9-263-2016, https://doi.org/10.5194/amt-9-263-2016, 2016
Short summary
Short summary
We present a newly developed field-deployable, autonomous platform simultaneously measuring the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy.
The instrument consists of a compact quantum cascade laser absorption spectrometer (QCLAS) coupled to a preconcentration unit, called TRace gas EXtractor (TREX).
The performance of this new in situ technique was investigated during a 2-week measurement campaign and compared to other techniques.
F. Kobierska, T. Jonas, J. W. Kirchner, and S. M. Bernasconi
Hydrol. Earth Syst. Sci., 19, 3681–3693, https://doi.org/10.5194/hess-19-3681-2015, https://doi.org/10.5194/hess-19-3681-2015, 2015
C. von Sperber, F. Tamburini, B. Brunner, S. M. Bernasconi, and E. Frossard
Biogeosciences, 12, 4175–4184, https://doi.org/10.5194/bg-12-4175-2015, https://doi.org/10.5194/bg-12-4175-2015, 2015
N. Vogel, Y. Scheidegger, M. S. Brennwald, D. Fleitmann, S. Figura, R. Wieler, and R. Kipfer
Clim. Past, 9, 1–12, https://doi.org/10.5194/cp-9-1-2013, https://doi.org/10.5194/cp-9-1-2013, 2013
Related subject area
Subject area: Crustal structure and composition | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Geophysical downhole logging analysis within the shallow-depth ICDP STAR drilling project (central Italy)
Post-Caledonian tectonic evolution of the Precambrian and Paleozoic platform boundary zone offshore Poland based on the new and vintage multi-channel reflection seismic data
On crustal composition of the Sardinia-Corsica continental block inferred from receiver functions
Comparison of surface-wave techniques to estimate S- and P-wave velocity models from active seismic data
Complex fault system revealed by 3-D seismic reflection data with deep learning and fault network analysis
Advanced seismic characterization of a geothermal carbonate reservoir – insight into the structure and diagenesis of a reservoir in the German Molasse Basin
Electrical conductivity of anhydrous and hydrous gabbroic melt under high temperature and high pressure: implications for the high-conductivity anomalies in the mid-ocean ridge region
Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia
Utilisation of probabilistic magnetotelluric modelling to constrain magnetic data inversion: proof-of-concept and field application
Comparison of straight-ray and curved-ray surface wave tomography approaches in near-surface studies
3D deep geothermal reservoir imaging with wireline distributed acoustic sensing in two boreholes
3D high-resolution seismic imaging of the iron oxide deposits in Ludvika (Sweden) using full-waveform inversion and reverse time migration
Three-dimensional reflection seismic imaging of the iron oxide deposits in the Ludvika mining area, Sweden, using Fresnel volume migration
Drone-based magnetic and multispectral surveys to develop a 3D model for mineral exploration at Qullissat, Disko Island, Greenland
Ambient seismic noise analysis of LARGE-N data for mineral exploration in the Central Erzgebirge, Germany
Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland)
Imaging crustal structures through a passive seismic imaging approach in a mining area in Saxony, Germany
Reverse time migration (RTM) imaging of iron oxide deposits in the Ludvika mining area, Sweden
Near-surface structure of the Sodankylä area in Finland, obtained by passive seismic interferometry
Evolution of the Iberian Massif as deduced from its crustal thickness and geometry of a mid-crustal (Conrad) discontinuity
Four-dimensional tracer flow reconstruction in fractured rock through borehole ground-penetrating radar (GPR) monitoring
Moho topography beneath the European Eastern Alps by global-phase seismic interferometry
Seismic imaging across fault systems in the Abitibi greenstone belt – an analysis of pre- and post-stack migration approaches in the Chibougamau area, Quebec, Canada
Wireline distributed acoustic sensing allows 4.2 km deep vertical seismic profiling of the Rotliegend 150 °C geothermal reservoir in the North German Basin
Sparse 3D reflection seismic survey for deep-targeting iron oxide deposits and their host rocks, Ludvika Mines, Sweden
What can seismic noise tell us about the Alpine reactivation of the Iberian Massif? An example in the Iberian Central System
In situ hydromechanical responses during well drilling recorded by fiber-optic distributed strain sensing
Coherent diffraction imaging for enhanced fault and fracture network characterization
Seismic evidence for failed rifting in the Ligurian Basin, Western Alpine domain
Azimuth-, angle- and frequency-dependent seismic velocities of cracked rocks due to squirt flow
Characteristics of a fracture network surrounding a hydrothermally altered shear zone from geophysical borehole logs
Bayesian full-waveform inversion of tube waves to estimate fracture aperture and compliance
Correlation of core and downhole seismic velocities in high-pressure metamorphic rocks: a case study for the COSC-1 borehole, Sweden
Prediction of seismic P-wave velocity using machine learning
Large-scale electrical resistivity tomography in the Cheb Basin (Eger Rift) at an International Continental Drilling Program (ICDP) monitoring site to image fluid-related structures
Anisotropic P-wave travel-time tomography implementing Thomsen's weak approximation in TOMO3D
Full-waveform inversion of short-offset, band-limited seismic data in the Alboran Basin (SE Iberia)
Fault interpretation in seismic reflection data: an experiment analysing the impact of conceptual model anchoring and vertical exaggeration
Improving the quality of empirical Green's functions, obtained by cross-correlation of high-frequency ambient seismic noise
Quantifying the impact of the structural uncertainty on the gross rock volume in the Lubina and Montanazo oil fields (Western Mediterranean)
What happens to fracture energy in brittle fracture? Revisiting the Griffith assumption
Constraining the geotherm beneath the British Isles from Bayesian inversion of Curie depth: integrated modelling of magnetic, geothermal, and seismic data
Crustal-scale depth imaging via joint full-waveform inversion of ocean-bottom seismometer data and pre-stack depth migration of multichannel seismic data: a case study from the eastern Nankai Trough
Imaging the East European Craton margin in northern Poland using extended correlation processing of regional seismic reflection profiles
Ionian Abyssal Plain: a window into the Tethys oceanic lithosphere
Granite microporosity changes due to fracturing and alteration: secondary mineral phases as proxies for porosity and permeability estimation
3-D seismic travel-time tomography validation of a detailed subsurface model: a case study of the Záncara river basin (Cuenca, Spain)
The effect of rock composition on muon tomography measurements
Seismic imaging of dyke swarms within the Sorgenfrei–Tornquist Zone (Sweden) and implications for thermal energy storage
Paola Montone, Simona Pierdominici, M. Teresa Mariucci, Francesco Mirabella, Marco Urbani, Assel Akimbekova, Lauro Chiaraluce, Wade Johnson, and Massimiliano Rinaldo Barchi
Solid Earth, 15, 1385–1406, https://doi.org/10.5194/se-15-1385-2024, https://doi.org/10.5194/se-15-1385-2024, 2024
Short summary
Short summary
The STAR project set out to drill six shallow holes and use geophysical logging to find the best depth for placing seismometers and strainmeters to image the upper crust, in particular the Alto Tiberina fault, Italy. These measurements give us a better idea of what the rocks are like, helping us connect what we know from the literature with what we find underground, giving solid information on rock properties, which helps us understand the first few hundred meters of the Earth's crust.
Quang Nguyen, Michal Malinowski, Stanisław Mazur, Sergiy Stovba, Małgorzata Ponikowska, and Christian Hübscher
Solid Earth, 15, 1029–1046, https://doi.org/10.5194/se-15-1029-2024, https://doi.org/10.5194/se-15-1029-2024, 2024
Short summary
Short summary
Our work demonstrates the following: (1) an efficient seismic data-processing strategy focused on suppressing shallow-water multiple reflections. (2) An improvement in the quality of legacy marine seismic data. (3) A seismic interpretation of sedimentary successions overlying the basement in the transition zone from the Precambrian to Paleozoic platforms. (4) The tectonic evolution of the Koszalin Fault and its relation to the Caledonian Deformation Front offshore Poland.
Fabio Cammarano, Henrique Berger Roisenberg, Alessio Conclave, Islam Fadel, and Mark van der Meijde
EGUsphere, https://doi.org/10.5194/egusphere-2024-1515, https://doi.org/10.5194/egusphere-2024-1515, 2024
Short summary
Short summary
Sardinia and Corsica separated and drifting in the Mediterranean Sea for 35 my due to the retreat of the Ionian plate beneath the Tyrrhenian Sea. Using in-house and public data, we measured and interpreted receiver functions based on prior geophysical and petrological studies. Our findings indicate the islands' ancient continental structure remains mostly unchanged. Alpine orogenesis about 50 million years ago influenced Corsica's crust, enriching it with water-bearing minerals
Farbod Khosro Anjom, Frank Adler, and Laura Valentina Socco
Solid Earth, 15, 367–386, https://doi.org/10.5194/se-15-367-2024, https://doi.org/10.5194/se-15-367-2024, 2024
Short summary
Short summary
Most surface-wave techniques focus on estimating the S-wave velocity (VS) model and consider the P-wave velocity (VP) model as prior information in the inversion step. Here, we show the application of three surface-wave methods to estimate both VS and VP models. We apply the methods to the data from a hard-rock site that were acquired through the irregular source–receiver recording technique. We compare the outcomes and performances of the methods in detail.
Thilo Wrona, Indranil Pan, Rebecca E. Bell, Christopher A.-L. Jackson, Robert L. Gawthorpe, Haakon Fossen, Edoseghe E. Osagiede, and Sascha Brune
Solid Earth, 14, 1181–1195, https://doi.org/10.5194/se-14-1181-2023, https://doi.org/10.5194/se-14-1181-2023, 2023
Short summary
Short summary
We need to understand where faults are to do the following: (1) assess their seismic hazard, (2) explore for natural resources and (3) store CO2 safely in the subsurface. Currently, we still map subsurface faults primarily by hand using seismic reflection data, i.e. acoustic images of the Earth. Mapping faults this way is difficult and time-consuming. Here, we show how to use deep learning to accelerate fault mapping and how to use networks or graphs to simplify fault analyses.
Sonja H. Wadas, Johanna F. Krumbholz, Vladimir Shipilin, Michael Krumbholz, David C. Tanner, and Hermann Buness
Solid Earth, 14, 871–908, https://doi.org/10.5194/se-14-871-2023, https://doi.org/10.5194/se-14-871-2023, 2023
Short summary
Short summary
The geothermal carbonate reservoir below Munich, Germany, is extremely heterogeneous because it is controlled by many factors like lithology, diagenesis, karstification, and tectonic deformation. We used a 3D seismic single- and multi-attribute analysis combined with well data and a neural-net-based lithology classification to obtain an improved reservoir concept outlining its structural and diagenetic evolution and to identify high-quality reservoir zones in the Munich area.
Mengqi Wang, Lidong Dai, Haiying Hu, Ziming Hu, Chenxin Jing, Chuanyu Yin, Song Luo, and Jinhua Lai
Solid Earth, 14, 847–858, https://doi.org/10.5194/se-14-847-2023, https://doi.org/10.5194/se-14-847-2023, 2023
Short summary
Short summary
This is the first time that the electrical conductivity of gabbroic melt was assessed at high temperature and high pressure. The dependence of electrical conductivity on the degree of depolymerization was also explored. Electrical conductivity of gabbroic melts can be employed to interpret high-conductivity anomalies in the Mohns Ridge of the Arctic Ocean. This is of widespread interest to potential readers in high-pressure rock physics, solid geophysics, and deep Earth science.
Gesa Franz, Marion Jegen, Max Moorkamp, Christian Berndt, and Wolfgang Rabbel
Solid Earth, 14, 237–259, https://doi.org/10.5194/se-14-237-2023, https://doi.org/10.5194/se-14-237-2023, 2023
Short summary
Short summary
Our study focuses on the correlation of two geophysical parameters (electrical resistivity and density) with geological units. We use this computer-aided correlation to improve interpretation of the Earth’s formation history along the Namibian coast and the associated formation of the South Atlantic Ocean. It helps to distinguish different types of sediment cover and varieties of oceanic crust, as well as to identify typical features associated with the breakup of continents.
Jérémie Giraud, Hoël Seillé, Mark D. Lindsay, Gerhard Visser, Vitaliy Ogarko, and Mark W. Jessell
Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023, https://doi.org/10.5194/se-14-43-2023, 2023
Short summary
Short summary
We propose and apply a workflow to combine the modelling and interpretation of magnetic anomalies and resistivity anomalies to better image the basement. We test the method on a synthetic case study and apply it to real world data from the Cloncurry area (Queensland, Australia), which is prospective for economic minerals. Results suggest a new interpretation of the composition and structure towards to east of the profile that we modelled.
Mohammadkarim Karimpour, Evert Slob, and Laura Valentina Socco
Solid Earth, 13, 1569–1583, https://doi.org/10.5194/se-13-1569-2022, https://doi.org/10.5194/se-13-1569-2022, 2022
Short summary
Short summary
Near-surface characterisation is of great importance. Surface wave tomography (SWT) is a powerful tool to model the subsurface. In this work we compare straight-ray and curved-ray SWT at near-surface scale. We apply both approaches to four datasets and compare the results in terms of the quality of the final model and the computational cost. We show that in the case of high data coverage, straight-ray SWT can produce similar results to curved-ray SWT but with less computational cost.
Evgeniia Martuganova, Manfred Stiller, Ben Norden, Jan Henninges, and Charlotte M. Krawczyk
Solid Earth, 13, 1291–1307, https://doi.org/10.5194/se-13-1291-2022, https://doi.org/10.5194/se-13-1291-2022, 2022
Short summary
Short summary
We demonstrate the applicability of vertical seismic profiling (VSP) acquired using wireline distributed acoustic sensing (DAS) technology for deep geothermal reservoir imaging and characterization. Borehole DAS data provide critical input for seismic interpretation and help assess small-scale geological structures. This case study can be used as a basis for detailed structural exploration of geothermal reservoirs and provide insightful information for geothermal exploration projects.
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022, https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Short summary
Fast depletion of shallower deposits is pushing the mining industry to look for cutting-edge technologies for deep mineral targeting. We demonstrated a joint workflow including two state-of-the-art technologies: full-waveform inversion and reverse time migration. We produced Earth images with significant details which can help with better estimation of areas with high mineralisation, better mine planning and safety measures.
Felix Hloušek, Michal Malinowski, Lena Bräunig, Stefan Buske, Alireza Malehmir, Magdalena Markovic, Lukasz Sito, Paul Marsden, and Emma Bäckström
Solid Earth, 13, 917–934, https://doi.org/10.5194/se-13-917-2022, https://doi.org/10.5194/se-13-917-2022, 2022
Short summary
Short summary
Methods for mineral exploration play an important role within the EU. Exploration must be environmentally friendly, cost effective, and feasible in populated areas. Seismic methods have the potential to deliver detailed images of mineral deposits but suffer from these demands. We show the results for a sparse 3D seismic dataset acquired in Sweden. The 3D depth image allows us to track the known mineralizations beyond the known extent and gives new insights into the geometry of the deposit.
Robert Jackisch, Björn H. Heincke, Robert Zimmermann, Erik V. Sørensen, Markku Pirttijärvi, Moritz Kirsch, Heikki Salmirinne, Stefanie Lode, Urpo Kuronen, and Richard Gloaguen
Solid Earth, 13, 793–825, https://doi.org/10.5194/se-13-793-2022, https://doi.org/10.5194/se-13-793-2022, 2022
Short summary
Short summary
We integrate UAS-based magnetic and multispectral data with legacy exploration data of a Ni–Cu–PGE prospect on Disko Island, West Greenland. The basalt unit has a complex magnetization, and we use a constrained 3D magnetic vector inversion to estimate magnetic properties and spatial dimensions of the target unit. Our 3D modelling reveals a horizontal sheet and a strong remanent magnetization component. We highlight the advantage of UAS use in rugged and remote terrain.
Trond Ryberg, Moritz Kirsch, Christian Haberland, Raimon Tolosana-Delgado, Andrea Viezzoli, and Richard Gloaguen
Solid Earth, 13, 519–533, https://doi.org/10.5194/se-13-519-2022, https://doi.org/10.5194/se-13-519-2022, 2022
Short summary
Short summary
Novel methods for mineral exploration play an important role in future resource exploration. The methods have to be environmentally friendly, socially accepted and cost effective by integrating multidisciplinary methodologies. We investigate the potential of passive, ambient noise tomography combined with 3D airborne electromagnetics for mineral exploration in Geyer, Germany. We show that the combination of the two geophysical data sets has promising potential for future mineral exploration.
Chiara Colombero, Myrto Papadopoulou, Tuomas Kauti, Pietari Skyttä, Emilia Koivisto, Mikko Savolainen, and Laura Valentina Socco
Solid Earth, 13, 417–429, https://doi.org/10.5194/se-13-417-2022, https://doi.org/10.5194/se-13-417-2022, 2022
Short summary
Short summary
Passive-source surface waves may be exploited in mineral exploration for deeper investigations. We propose a semi-automatic workflow for their processing. The geological interpretation of the results obtained at a mineral site (Siilinjärvi phosphorus mine) shows large potentialities and effectiveness of the proposed workflow.
Hossein Hassani, Felix Hloušek, Stefan Buske, and Olaf Wallner
Solid Earth, 12, 2703–2715, https://doi.org/10.5194/se-12-2703-2021, https://doi.org/10.5194/se-12-2703-2021, 2021
Short summary
Short summary
Passive seismic imaging methods use natural earthquakes as seismic sources, while in active seismic imaging methods, artificial sources (e.g. explosives) are used to generate seismic waves. We imaged some structures related to a major fault plane through a passive seismic imaging approach using microearthquakes with magnitudes smaller than 0.9 (Mw). These structures have not been illuminated by a previously conducted 3D active seismic survey due to their large dip angles.
Yinshuai Ding and Alireza Malehmir
Solid Earth, 12, 1707–1718, https://doi.org/10.5194/se-12-1707-2021, https://doi.org/10.5194/se-12-1707-2021, 2021
Short summary
Short summary
In this article, we investigate the potential of reverse time migration (RTM) for deep targeting iron oxide deposits and the possible AVO effect that is potentially seen in the common image gathers from this migration algorithm. The results are promising and help to delineate the deposits and host rock structures using a 2D dataset from the Ludvika mines of central Sweden.
Nikita Afonin, Elena Kozlovskaya, Suvi Heinonen, and Stefan Buske
Solid Earth, 12, 1563–1579, https://doi.org/10.5194/se-12-1563-2021, https://doi.org/10.5194/se-12-1563-2021, 2021
Short summary
Short summary
In our study, we show the results of a passive seismic interferometry application for mapping the uppermost crust in the area of active mineral exploration in northern Finland. The obtained velocity models agree well with geological data and complement the results of reflection seismic data interpretation.
Puy Ayarza, José Ramón Martínez Catalán, Ana Martínez García, Juan Alcalde, Juvenal Andrés, José Fernando Simancas, Immaculada Palomeras, David Martí, Irene DeFelipe, Chris Juhlin, and Ramón Carbonell
Solid Earth, 12, 1515–1547, https://doi.org/10.5194/se-12-1515-2021, https://doi.org/10.5194/se-12-1515-2021, 2021
Short summary
Short summary
Vertical incidence seismic profiling on the Iberian Massif images a mid-crustal-scale discontinuity at the top of the reflective lower crust. This feature shows that upper- and lower-crustal reflections merge into it, suggesting that it has often behaved as a detachment. The orogen-scale extension of this discontinuity, present in Gondwanan and Avalonian affinity terranes into the Iberian Massif, demonstrates its relevance, leading us to interpret it as the Conrad discontinuity.
Peter-Lasse Giertzuch, Joseph Doetsch, Alexis Shakas, Mohammadreza Jalali, Bernard Brixel, and Hansruedi Maurer
Solid Earth, 12, 1497–1513, https://doi.org/10.5194/se-12-1497-2021, https://doi.org/10.5194/se-12-1497-2021, 2021
Short summary
Short summary
Two time-lapse borehole ground penetrating radar (GPR) surveys were conducted during saline tracer experiments in weakly fractured crystalline rock with sub-millimeter fractures apertures, targeting electrical conductivity changes. The combination of time-lapse reflection and transmission GPR surveys from different boreholes allowed monitoring the tracer flow and reconstructing the flow path and its temporal evolution in 3D and provided a realistic visualization of the hydrological processes.
Irene Bianchi, Elmer Ruigrok, Anne Obermann, and Edi Kissling
Solid Earth, 12, 1185–1196, https://doi.org/10.5194/se-12-1185-2021, https://doi.org/10.5194/se-12-1185-2021, 2021
Short summary
Short summary
The European Alps formed during collision between the European and Adriatic plates and are one of the most studied orogens for understanding the dynamics of mountain building. In the Eastern Alps, the contact between the colliding plates is still a matter of debate. We have used the records from distant earthquakes to highlight the geometries of the crust–mantle boundary in the Eastern Alpine area; our results suggest a complex and faulted internal crustal structure beneath the higher crests.
Saeid Cheraghi, Alireza Malehmir, Mostafa Naghizadeh, David Snyder, Lucie Mathieu, and Pierre Bedeaux
Solid Earth, 12, 1143–1164, https://doi.org/10.5194/se-12-1143-2021, https://doi.org/10.5194/se-12-1143-2021, 2021
Short summary
Short summary
High-resolution seismic profiles in 2D are acquired in the north and south of the Chibougamau area, Quebec, Canada located in the northeast of the Abitibi Greenstone belt. The area mostly includes volcanic rocks, and both profiles cross over several fault zones. The seismic method is acquired to image the subsurface down to depth of 12 km. The main aim of this study is to image major fault zones and the geological formations connected to those faults to investigate metal endowment in the area.
Jan Henninges, Evgeniia Martuganova, Manfred Stiller, Ben Norden, and Charlotte M. Krawczyk
Solid Earth, 12, 521–537, https://doi.org/10.5194/se-12-521-2021, https://doi.org/10.5194/se-12-521-2021, 2021
Short summary
Short summary
We performed a seismic survey in two 4.3 km deep geothermal research wells using the novel method of distributed acoustic sensing and wireline cables. The characteristics of the acquired data, methods for data processing and quality improvement, and interpretations on the geometry and structure of the sedimentary and volcanic reservoir rocks are presented. The method enables measurements at high temperatures and reduced cost compared to conventional sensors.
Alireza Malehmir, Magdalena Markovic, Paul Marsden, Alba Gil, Stefan Buske, Lukasz Sito, Emma Bäckström, Martiya Sadeghi, and Stefan Luth
Solid Earth, 12, 483–502, https://doi.org/10.5194/se-12-483-2021, https://doi.org/10.5194/se-12-483-2021, 2021
Short summary
Short summary
A smooth transition toward decarbonization demands access to more minerals of critical importance. Europe has a good geology for many of these mineral deposits, but at a depth requiring sensitive, environmentally friendly, and cost-effective methods for their exploration. In this context, we present a sparse 3D seismic dataset that allowed identification of potential iron oxide resources at depth and helped to characterise key geological structures and a historical tailing in central Sweden.
Juvenal Andrés, Puy Ayarza, Martin Schimmel, Imma Palomeras, Mario Ruiz, and Ramon Carbonell
Solid Earth, 11, 2499–2513, https://doi.org/10.5194/se-11-2499-2020, https://doi.org/10.5194/se-11-2499-2020, 2020
Yi Zhang, Xinglin Lei, Tsutomu Hashimoto, and Ziqiu Xue
Solid Earth, 11, 2487–2497, https://doi.org/10.5194/se-11-2487-2020, https://doi.org/10.5194/se-11-2487-2020, 2020
Short summary
Short summary
Spatially continuous strain responses in two monitoring wells induced by a well-drilling process were monitored using high-resolution fiber-optic distributed strain sensing (DSS). The modeling results suggest that the strain polarities and magnitudes along the wellbores may be indicative of the layered-permeability structure or heterogeneous formation damage. The performance and value of DSS as a novel hydrogeophysical tool for in situ subsurface monitoring are emphasized.
Benjamin Schwarz and Charlotte M. Krawczyk
Solid Earth, 11, 1891–1907, https://doi.org/10.5194/se-11-1891-2020, https://doi.org/10.5194/se-11-1891-2020, 2020
Short summary
Short summary
Intricate fault and fracture networks cut through the upper crust, and their detailed delineation and characterization play an important role in the Earth sciences. While conventional geophysical sounding techniques only provide indirect means of detection, we present scale-spanning field data examples, in which coherent diffraction imaging – a framework inspired by optics and visual perception – enables the direct imaging of these crustal features at an unprecedented spatial resolution.
Anke Dannowski, Heidrun Kopp, Ingo Grevemeyer, Dietrich Lange, Martin Thorwart, Jörg Bialas, and Martin Wollatz-Vogt
Solid Earth, 11, 873–887, https://doi.org/10.5194/se-11-873-2020, https://doi.org/10.5194/se-11-873-2020, 2020
Short summary
Short summary
The Ligurian Sea opened ~30–15 Ma during the SE migration of the Calabrian subduction zone. Seismic travel time tomography reveals the absence of oceanic crust, documenting that the extension of continental lithosphere stopped before seafloor spreading initiated. The extension led to extreme crustal thinning and possibly exhumed mantle accompanied by syn-rift sedimentation. Our new interpretation of the crust's nature is important for plate reconstruction modelling related to the Alpine orogen.
Yury Alkhimenkov, Eva Caspari, Simon Lissa, and Beatriz Quintal
Solid Earth, 11, 855–871, https://doi.org/10.5194/se-11-855-2020, https://doi.org/10.5194/se-11-855-2020, 2020
Short summary
Short summary
We perform a three-dimensional numerical study of the fluid–solid deformation at the pore scale. We show that seismic wave velocities exhibit strong azimuth-, angle- and frequency-dependent behavior due to squirt flow between interconnected cracks. We conclude that the overall anisotropy mainly increases due to squirt flow, but in some specific planes it can locally decrease as well as increase, depending on the material properties.
Eva Caspari, Andrew Greenwood, Ludovic Baron, Daniel Egli, Enea Toschini, Kaiyan Hu, and Klaus Holliger
Solid Earth, 11, 829–854, https://doi.org/10.5194/se-11-829-2020, https://doi.org/10.5194/se-11-829-2020, 2020
Short summary
Short summary
A shallow borehole was drilled to explore the petrophysical and hydraulic characteristics of a hydrothermally active fault in the crystalline Aar massif of the Alps. A key objective of studying surficial features of this kind is to establish analogies with natural and deep-seated engineered hydrothermal systems. A wide range of geophysical borehole logs was acquired, which revealed a complex fracture network in the damage zone of the fault and a related compartmentalized hydraulic behavior.
Jürg Hunziker, Andrew Greenwood, Shohei Minato, Nicolás Daniel Barbosa, Eva Caspari, and Klaus Holliger
Solid Earth, 11, 657–668, https://doi.org/10.5194/se-11-657-2020, https://doi.org/10.5194/se-11-657-2020, 2020
Short summary
Short summary
The characterization of fractures is crucial for a wide range of pertinent applications, such as geothermal energy production, hydrocarbon exploration, CO2 sequestration, and nuclear waste disposal. We estimate fracture parameters based on waves that travel along boreholes (tube waves) using a stochastic optimization approach.
Felix Kästner, Simona Pierdominici, Judith Elger, Alba Zappone, Jochem Kück, and Christian Berndt
Solid Earth, 11, 607–626, https://doi.org/10.5194/se-11-607-2020, https://doi.org/10.5194/se-11-607-2020, 2020
Short summary
Short summary
Knowledge about physical properties at depth is crucial to image and understand structures linked with orogenic processes. We examined seismic velocities from core and downhole data from the COSC-1 borehole, Sweden, and calibrated our results with laboratory measurements on core samples. Despite a strong mismatch between the core and downhole velocities due to microcracks, mafic units are resolved at all scales, while at sample scale, strong seismic anisotropy correlates with the rock foliation.
Ines Dumke and Christian Berndt
Solid Earth, 10, 1989–2000, https://doi.org/10.5194/se-10-1989-2019, https://doi.org/10.5194/se-10-1989-2019, 2019
Short summary
Short summary
Knowing the velocity with which seismic waves travel through the top of the crust is important both for identifying anomalies, e.g. the presence of resources, and for geophysical data evaluation. Traditionally this has been done by using empirical functions. Here, we use machine learning to derive better seismic velocity estimates for the crust below the oceans. In most cases this methods performs better than empirical averages.
Tobias Nickschick, Christina Flechsig, Jan Mrlina, Frank Oppermann, Felix Löbig, and Thomas Günther
Solid Earth, 10, 1951–1969, https://doi.org/10.5194/se-10-1951-2019, https://doi.org/10.5194/se-10-1951-2019, 2019
Short summary
Short summary
An active CO2 degassing site in the western Eger Rift, Czech Republic, was investigated with a 6.5 km long geophysical survey using a specific large-scale geoelectrical setup, supported by shallow geoelectrical surveys and gravity measurements. The experiment reveals unusually low resistivities in the sediments and basement below the degassing area of less than 10 Ω and provides a base for a custom geological model of the area for a future 400 m deep research drilling in this area.
Adrià Meléndez, Clara Estela Jiménez, Valentí Sallarès, and César R. Ranero
Solid Earth, 10, 1857–1876, https://doi.org/10.5194/se-10-1857-2019, https://doi.org/10.5194/se-10-1857-2019, 2019
Short summary
Short summary
A new code for anisotropic travel-time tomography is presented. We describe the equations governing the anisotropic ray propagation algorithm and the modified inversion solver. We study the sensitivity of two medium parameterizations and compare four inversion strategies on a canonical model. This code can provide better understanding of the Earth's subsurface in the rather common geological contexts in which seismic velocity displays a weak dependency on the polar angle of ray propagation.
Clàudia Gras, Daniel Dagnino, Clara Estela Jiménez-Tejero, Adrià Meléndez, Valentí Sallarès, and César R. Ranero
Solid Earth, 10, 1833–1855, https://doi.org/10.5194/se-10-1833-2019, https://doi.org/10.5194/se-10-1833-2019, 2019
Short summary
Short summary
We present a workflow that combines different geophysical techniques, showing that a detailed seismic velocity model can be obtained even for non-optimal data sets, i.e. relatively short-offset, band-limited streamer data recorded in deep water. This fact has an important implication for the Marine seismic community, suggesting that many of the existing data sets should be revisited and analysed with new techniques to enhance our understanding of the subsurface, as in the Alboran Basin case.
Juan Alcalde, Clare E. Bond, Gareth Johnson, Armelle Kloppenburg, Oriol Ferrer, Rebecca Bell, and Puy Ayarza
Solid Earth, 10, 1651–1662, https://doi.org/10.5194/se-10-1651-2019, https://doi.org/10.5194/se-10-1651-2019, 2019
Nikita Afonin, Elena Kozlovskaya, Jouni Nevalainen, and Janne Narkilahti
Solid Earth, 10, 1621–1634, https://doi.org/10.5194/se-10-1621-2019, https://doi.org/10.5194/se-10-1621-2019, 2019
Carla Patricia Bárbara, Patricia Cabello, Alexandre Bouche, Ingrid Aarnes, Carlos Gordillo, Oriol Ferrer, Maria Roma, and Pau Arbués
Solid Earth, 10, 1597–1619, https://doi.org/10.5194/se-10-1597-2019, https://doi.org/10.5194/se-10-1597-2019, 2019
Timothy R. H. Davies, Maurice J. McSaveney, and Natalya V. Reznichenko
Solid Earth, 10, 1385–1395, https://doi.org/10.5194/se-10-1385-2019, https://doi.org/10.5194/se-10-1385-2019, 2019
Short summary
Short summary
Griffith (1921) assumed that energy used to create new surface area by breaking intact rock immediately becomes surface energy which is not available for further breakage. Our lab data disprove this assumption; we created much more new surface area, 90 % on submicron fragments, than the energy involved should allow. As technology allows ever smaller fragments to be measured, continued use of the Griffith assumption will lead to incorrect energy budgets for earthquakes and rock avalanches.
Ben Mather and Javier Fullea
Solid Earth, 10, 839–850, https://doi.org/10.5194/se-10-839-2019, https://doi.org/10.5194/se-10-839-2019, 2019
Short summary
Short summary
The temperature in the crust can be constrained by the Curie depth, which is often interpreted as the 580 °C isotherm. We cast the estimation of Curie depth, from maps of the magnetic anomaly, within a Bayesian framework to properly quantify its uncertainty across the British Isles. We find that uncertainty increases considerably for deeper Curie depths, which demonstrates that generally this method is only reliable in hotter regions, such as Scotland and Northern Ireland.
Andrzej Górszczyk, Stéphane Operto, Laure Schenini, and Yasuhiro Yamada
Solid Earth, 10, 765–784, https://doi.org/10.5194/se-10-765-2019, https://doi.org/10.5194/se-10-765-2019, 2019
Short summary
Short summary
In order to broaden our knowledge about the deep lithosphere using seismic methods, we develop leading-edge imaging workflows integrating different types of data. Here we exploit the complementary information carried by seismic wavefields, which are fundamentally different in terms of acquisition setting. We cast this information into our processing workflow and build a detailed model of the subduction zone, which is subject to further geological interpretation.
Miłosz Mężyk, Michał Malinowski, and Stanisław Mazur
Solid Earth, 10, 683–696, https://doi.org/10.5194/se-10-683-2019, https://doi.org/10.5194/se-10-683-2019, 2019
Short summary
Short summary
The Precambrian East European Craton is one of the most important building blocks of the European plate. Unlike in Scandinavia, its crystalline crust in Poland is concealed beneath younger sediments. Reprocessing of ca. 950 km regional reflection seismic profiles acquired during shale gas exploration in NE Poland revealed reflectivity patterns interpreted as signs of Svekofennian orogeny, proving a similar mechanism of Paleoproterozoic crustal formation across the Baltic Sea.
Anke Dannowski, Heidrun Kopp, Frauke Klingelhoefer, Dirk Klaeschen, Marc-André Gutscher, Anne Krabbenhoeft, David Dellong, Marzia Rovere, David Graindorge, Cord Papenberg, and Ingo Klaucke
Solid Earth, 10, 447–462, https://doi.org/10.5194/se-10-447-2019, https://doi.org/10.5194/se-10-447-2019, 2019
Short summary
Short summary
The nature of the Ionian Sea crust has been the subject of scientific debate for more than 30 years. Seismic data, recorded on ocean bottom instruments, have been analysed and support the interpretation of the Ionian Abyssal Plain as a remnant of the Tethys oceanic lithosphere with the Malta Escarpment as a transform margin and a Tethys opening in the NNW–SSE direction.
Martin Staněk and Yves Géraud
Solid Earth, 10, 251–274, https://doi.org/10.5194/se-10-251-2019, https://doi.org/10.5194/se-10-251-2019, 2019
Short summary
Short summary
Granite is suitable to host geothermal wells or disposals of hazardous waste and in these cases the rock porosity and permeability are critical. Our detailed porosity and permeability data on variously deformed Lipnice granite yield a span of 5 orders of magnitude in permeability between the least and the most deformed facies. To facilitate the estimation of porosity and permeability in similar settings, we provide optical and chemical data on the characteristic minerals of each facies.
David Marti, Ignacio Marzan, Jana Sachsenhausen, Joaquina Alvarez-Marrón, Mario Ruiz, Montse Torne, Manuela Mendes, and Ramon Carbonell
Solid Earth, 10, 177–192, https://doi.org/10.5194/se-10-177-2019, https://doi.org/10.5194/se-10-177-2019, 2019
Short summary
Short summary
A detailed knowledge of the very shallow subsurface has become of crucial interest for modern society, especially if it hosts critical surface infrastructures such as temporary waste storage sites. The use of indirect methods to characterize the internal structure of the subsurface has been successfully applied, based on the 3-D distribution of seismic velocities and well-log data, which are of great interest for civil engineering companies.
Alessandro Lechmann, David Mair, Akitaka Ariga, Tomoko Ariga, Antonio Ereditato, Ryuichi Nishiyama, Ciro Pistillo, Paola Scampoli, Fritz Schlunegger, and Mykhailo Vladymyrov
Solid Earth, 9, 1517–1533, https://doi.org/10.5194/se-9-1517-2018, https://doi.org/10.5194/se-9-1517-2018, 2018
Short summary
Short summary
Muon tomography is a technology, similar to X-ray tomography, to image the interior of an object, including geologically interesting ones. In this work, we examined the influence of rock composition on the physical measurements, and the possible error that is made by assuming a too-simplistic rock model. We performed numerical simulations for a more realistic rock model and found that beyond 300 m of rock, the composition starts to play a significant role and has to be accounted for.
Alireza Malehmir, Bo Bergman, Benjamin Andersson, Robert Sturk, and Mattis Johansson
Solid Earth, 9, 1469–1485, https://doi.org/10.5194/se-9-1469-2018, https://doi.org/10.5194/se-9-1469-2018, 2018
Short summary
Short summary
Interest and demand for green-type energy usage and storage are growing worldwide. Among several, thermal energy storage that stores energy (excess heat or cold) in fluids is particularly interesting. For an upscaling purpose, three seismic profiles were acquired within the Tornquist suture zone in the southwest of Sweden and historical crustal-scale offshore BABEL lines revisited. A number of dykes have been imaged and implications for the storage and tectonic setting within the zone discussed.
Cited articles
Aagaard, B. K., Skurtveit E., and Wangen, M.: Critical Factors for Considering CO2 Injectivity in Saline Aquifers, FME SUCCESS Synthesis report Volume 3, edited by: Miri, R. and Hellevang, H., pp. 24, 2018.
Alemu, B. L., Aagaard, P., Munz, I. A., and Skurtveit, E.: Caprock
interaction with CO2: A laboratory study of reactivity of shale with
supercritical CO2 and brine, Appl. Geochem., 26, 1975–1989,
2011.
Al Hosni, M., Vialle, S., Gurevich, B., and Daley, T. M.: Estimation of rock
frame weakening using time-lapse crosswell: The Frio brine pilot project,
Geophysics, 81, B235–B245, 2016.
Amann, F., Wild, K. M., Loew, S., Yong, S., Thoeny, R., and Frank, E.:
Geomechanical behaviour of Opalinus Clay at multiple scales: results from
Mont Terri rock laboratory (Switzerland), Swiss J. Geosci., 110, 151–171, 2017.
Blaesi, H. R., Moeri, A., and Bossart, P.: Results of the Phase 1 drilling
campaign, Mont Terri Technical Report, TR96-01, Federal Office of Topography
(swisstopo), Wabern, Switzerland, 1996.
Bossart, P., Bernier, F., Birkholzer, J., Bruggeman, C., Connolly, P.,
Dewonck, S., Fukaya, M., Herfort, M., Jensen, M., Matray, J.-M., Mayor, J.
C., Moeri, A., Oyama, T., Schuster, K., Shigeta, N., Vietor, T., and
Wieczorek, K.: Mont Terri rock laboratory, 20 years of research:
introduction, site characteristics and overview of experiments, Swiss
J. Geosci., 110, 3–22, 2017.
Bossart, P., Meier, P. M., Moeri, A., Trick, T., and Mayor, J.-C.: Geological
and hydraulic characterisation of the excavation disturbed zone in the
Opalinus Clay of the Mont Terri Rock Laboratory, Eng. Geol., 66, 19–38, 2002.
Brennwald, M. S., Schmidt, M., Oser, J., and Kipfer, R. A: Portable and
Autonomous Mass Spectrometric System for On-Site Environmental Gas Analysis,
Environ. Sci. Technol., 50, 13455–13463, 2016.
Busch, A. and Kampman, N.: Migration and Leakage of CO2 From Deep
Geological Storage Sites, in: Geological Carbon Storage: Subsurface seals and
caprock integrity, edited by: Vialle, S., Ajo-Franklin, J., and Carey, J. W.,
Geophysical Monograph Series, https://doi.org/10.1002/9781119118657.ch14, 285–303, 2018.
Caine, J. S., Evans, J. P., and Forster C. B.: Fault zone architecture and
permeability structure, Geology, 24, 1025–1028 https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2, 1996.
Cooper, H. H., Bredehoeft, J. D., and Papadopulos I. S.: Response of a
finite-diameter well to an instantaneous charge of water, Water Resour. Res.,
3, 263–269, 1967.
Cozier, M.: The UN COP21 Climate Change Conference and the role of CCS,
Greenh. Gases, 5, 697–700, https://doi.org/10.1002/ghg.1577, 2015.
Credoz, A., Bildstein, O., Jullien, M., Raynal, J., Pétronin, J.-C.,
Lillo, M., Pozo, C., and Geniaut, G.: Experimental and modeling study of
geochemical reactivity between clayey caprocks and CO2 in geological
storage conditions, Enrgy. Proced., 1, 3445–3452, 2009.
Dick, P., Wittebroodt, C., Courbet, C., Sammaljärvi, J., Estève, I., Matray, J.-M., Siitari-Kauppi, M., Voutilainen, M., Dauzères, A.:: The internal architecture and permeability
structures of faults in shale formations, The Clay Minerals Society Workshop
Lectures Series, 21, 227–242, 2016.
Fang, Y., Baojun, B., Dazhen, T., Dunn-Norman, S., and Wronkiewicz, D.:
Characteristics of CO2 sequestration in saline aquifers, Pet. Sci., 7, 83–92, https://doi.org/10.1007/s12182-010-0010-3, 2010.
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., and Withjack, M. O.: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., 32, 1557–1575, https://doi.org/10.1016/j.jsg.2010.06.009, 2010.
Feitz, A., Tertyshnikov, K., Pevzner, R., Ricard, L., Harris, B., Schaa, R.,
Schacht, U., Kalinowski, A., Vialle, S., Glubokovskikh, S., Lebedev, M.,
Tenthorey, E., Pan, Z., Ennis-King, J., Wang, L., Hossein, S., Ransley, T.,
Radke, B., Urosevic, M., Singh, R.: The CO2CRC Otway shallow CO2
controlled release experiment: Preparation for Phase 2, Enrgy. Proced.,
154, 145–150, https://doi.org/10.1016/j.egypro.2018.11.024, 2018.
Gemmer, L., Hansen, O., Iding, M., Leary, S., and Ringrose, P.: Geomechanical
response to CO2 injection at Krechba, In Salah, Algeria, First Break,
30, 79–84, 2012.
Guglielmi, Y. , Cappa, F., Lançon, H., Janowczyk, J. B., Rutqvist, J.,
Tsang C. F., and Wang, J. S. Y.: ISRM Suggested Method for Step-Rate
Injection Method for Fracture In-Situ Properties (SIMFIP): Using a
3-Components Borehole Deformation Sensor, in: The ISRM Suggested Methods for
Rock Characterization, Testing and Monitoring: 2007–2014, edited by: Ulusay
R., Springer, Cham, https://doi.org/10.1007/978-3-319-07713-0_
14, 2013.
Guglielmi, Y., Birkholzer, J., Rutqvist, J., Jeanne P., and Nussbaum C.: Can
fault leakage occur before or without reactivation? Results from an in situ
fault reactivation experiment at Mont Terri, Enrgy. Proced., 114, 3167–3174, 2016.
Guglielmi, Y., Nussbaum, C., Robertson, M., Ajo-Franklin, J., Zappone, A.,
Kloppenburg, A., and Birkholzer, J.: FS-B Experiment: Imaging the long-term
loss of faulted host rock integrity - Test plan, Mont Terri Technical Note
TN2018-20, 2019.
Guglielmi, Y., Nussbaum, C., Jeanne, P., Rutqvist, J., Cappa, F., and
Birkholzer, J.: Complexity of fault rupture and fluid leakage in shale:
Insights from a controlled fault activation experiment, J.
Geophys.l Res.-Sol. Ea., 125, e2019JB017781, https://doi.org/10.1029/2019JB017781, 2020a.
Guglielmi, Y., Nussbaum, C., Rutqvist, J., Cappa, F., Jeanne, P., and
Birkholzer, J.: Estimating perturbed stress from 3-D borehole displacements
induced by fluid injection in fractured or faulted shales, Geophys.
J. Int., 221, 1684–1695, https://doi.org/10.1093/gji/ggaa103, 2020b.
Hangx, S., van der Linden, A., Marcelis, F., and Bauer, A.: The effect of
CO2 on the mechanical properties of the Captain Sandstone: Geological
storage of CO2 at the Goldeneye field (UK), Int. J.
Greenh. Gas Con., 19, 609–619, 2013.
Hostettler, B., Reisdorf, A. G., Jaeggi, D., Deplazes, G., Bläsi, H.-R.,
Morard, A., Feist-Burkhardt, S., Waltschew, A., Dietze, V., and
Menkveld-Gfeller, U.: Litho- and biostratigraphy of the Opalinus Clay and
bounding formations in the Mont Terri rock laboratory (Switzerland), Swiss
J. Geosci., 110, 23–29, https://doi.org/10.1007/s00015-016-0250-3, 2017.
Hovorka, S. D., Meckel, T. A., and Treviño, R. H.: Monitoring a
large-volume injection at Cranfield, Mississippi–Project design and
recommendations, Int. J. Greenh. Gas Con., 18, 345–360, 2013.
IPCC 2005: Carbon Dioxide Capture and Storage. An IPCC Special Report on
Carbon Dioxide Capture and Storage, in: IPCC special report on carbon dioxide capture and storage, edited by: Metz, B., Davidson, O., de Coninck, H.,
Loos, M., and Meyer, L., Cambridge University Press, Cambridge United Kingdom and New York, NY, USA, 2005.
IPCC 2018: Global warming of 1.5∘C. An IPCC Special Report on the
impacts of global warming of 1.5∘C above pre-industrial levels
and related global greenhouse gas emission pathways, in the context of
strengthening the global response to the threat of climate change, available at: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories, (last access: 21 January 2021), 2018.
IPCC 2019: Refinement to the 2006 IPCC Guidelines for National Greenhouse
Gas Inventories, available at: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories, (last access: 21 January 2021), 2019.
Ishida, T.: Acoustic emission monitoring of hydraulic fracturing in
laboratory and field, Constr. Build. Mater., 15, 283–295, https://doi.org/10.1016/S0950-0618(00)00077-5, 2001.
Jaeggi, D., Laurich, B., Nussbaum, C., Schuster, K., and Connolly, P.: Tectonic structure of the “Main Fault” in the Opalinus Clay, Mont Terri rock laboratory (Switzerland), Swiss J. Geosci., 110, 67–84,
https://doi.org/10.1007/s00015-016-0243-2, 2017.
Jha, B. and Juanes, R.: Coupled modeling of multiphase flow and fault
poromechanics during geologic CO2 storage, Energy. Proced.,
63, 3313–3329, https://doi.org/10.1016/j.egypro.2014.11.360, 2014.
Jia, B., Tsau, J.-S., and Barati, R.: A review of the current progress of
CO2 injection EOR and carbon storage in shale oil reservoirs, Fuel,
236, 404–427, https://doi.org/10.1016/j.fuel.2018.08.103, 2019.
Kampman, N., Busch, A., Bertier, P., Snippe, J., Hangx, S., Pipich, V., Di,
Z., Rother, G., Harrington, J. F., Evans, J. P., Maskell, A., Chapman, H. J.,
and Bickle, M. J.: Observational evidence confirms modelling of the
long-term integrity of CO2-reservoir caprocks, Nat. Commun.,
7, 12268, https://doi.org/10.1038/ncomms12268, 2016.
Kaszuba, J. P., Janecky, D. R., and Snow, M. G.: Experimental evaluation of
mixed fluid reactions between supercritical carbon dioxide and NaCl brine:
Relevance to the integrity of a geologic carbon repository, Chem.
Geol., 217, 277–293, 2005.
Kwiatek, G., Plenkers, K., Dresen, G., and Group, J. R.: Source pa-rameters
of picoseismicity recorded at mponeng deep gold mine, South Africa:
implications for scaling relations, B. Seismol. Soc. Am., 101, 2592–2608,
https://doi.org/10.1785/0120110094, 2011.
Lanz, E., Maurer, H., and Green, A. G.: Refraction tomography over a buried
waste disposal site, Geophysics, 63, 1414–1433, 1998.
Le Guen, Y., Renard, F., Hellmann, R., Brosse, E., Collombet, M., Tisserand,
D., and Gratier, J.-P.: Enhanced deformation of limestone and sandstone in
the presence of high pCO2 fluids, J. Geophys. Res., 112, B5, https://doi.org/10.1029/2006JB004637, 2007.
Manceau, J. C., Tremosa, J., Lerouge, C., Gherardi, F. , Nussbaum, C., Wasch,
L. J., Alberic, P. , Audigane, P., and Claret, F.: Well integrity assessment by a 1:1 scale wellbore experiment: Exposition to dissolved CO2 and
overcoring, Int. J. Greenh. Gas Con., 54, 258–271, 2016.
Manukyan, E. and Maurer, H.: Imaging of radioactive waste repository with
vertically transversely isotropic full waveform inversion, SEG Technical
Program Expanded Abstracts, 4743–4747, https://doi.org/10.1190/segam2018-2995460.1, 2018.
Marschall, P., Crosisé, J., Schlickenrieder, L., Boisson, J. Y., Vogel,
P., and Yamamoto, S.: Synthesis of hydrogeological investigations at the Mont
Terri site (Phases 1 to 5), Mont Terri Technical Report, TR2001-02, Federal
Office of Topography (swisstopo), Wabern, Switzerland, 2003.
Marschall, P., Horseman, S., and Gimmi, T.: Characterisation of gas
transport properties of the Opalinus Clay, a potential host rock formation
for radioactive waste disposal, Oil Gas Sci. Technol., 60, 121–139, 2005.
Mavko, G., Mukerji, T., and Dvorkin, J.: The Rock Physics Handbook: Tools
for Seismic Analysis of Porous Media (2nd Edn.), Cambridge University Press, https://doi.org/10.1017/CBO9780511626753, 2009.
Michael, K., Avijegon, A., Ricard, L., Myers, M., Tertyshnikov, K., Pevzner, R., Strand, J., Freifeld, B.,Woitt, M., Pervukhina, M., Feitz,, A., Pejcic, B., Stalker, L., Harris, B., Myers, J., Larcher, A., Rachakonda, P., Langhi, L., Dance, T., Hortle, A. ,Roberts, J., Woltering, M., White, C., and Delle-Piane, C.: In-Situ Laboratory for CO2 controlled-release experiments and monitoring in a fault zone in Western Australia, ASEG Extended Abstracts, 1, 1–3, https://doi.org/10.1080/22020586.2019.12073207, 2019.
Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma,
S., and Aiken, T.: Geological storage of CO2 in saline aquifers—A
review of the experience from existing storage operations, Int.
J. Greenh. Gas Con., 4, 659–667, https://doi.org/10.1016/j.ijggc.2009.12.011, 2010.
Mikhaltsevitch, V., Lebedev, M., and Gurevich, B. A.: Laboratory Study of the
Elastic and Anelastic Properties of the Sandstone Flooded with Supercritical
CO2 at Seismic Frequencies, Enrgy. Proced., 63, 4289–4296, 2014.
Minardi, A., Stavropoulou, E., Kim, T., Ferrari, A., and Laloui, L.:
Experimental assessment of the hydro-mechanical behaviour of a shale caprock
during CO2 injection, Int. J. Gas Con., submitted, 2020.
Myers, M., White, C., Pejcic, B., Feitz, A., Roberts, J., Oh,Y-Y., Xu, L.,
Ricard, L., Michael, K., Avijegon, A., Rachakonda, P. K., Woltering, M.,
Larcher, A., Stalker, L., Hortle, A.: CSIRO In-Situ Lab: A multi-pronged
approach to surface gas and groundwater monitoring at geological CO2 storage sites, Chem. Geol., 545, 119642, https://doi.org/10.1016/j.chemgeo.2020.119642, 2020.
Neuzil, C. E.: On conducting the modified slug test in tight formations,
Water Resour. Res.., 18, 439–441, 1982.
Nicollin, F., Gibert, D., Bossart, P., Nussbaum, C., and Guervilly, C.:
Seismic tomography of the excavation damaged zone of the Gallery 04 in the
Mont Terri Rock Laboratory, Geophys. J. Int., 172, 226–239, 2008.
Nicollin, F., Gibert, D., Lesparre, N., and Nussbaum, C.: Anisotropy of
electrical conductivity of the excavation damaged zone in the Mont Terri
Underground Rock Laboratory, Geophys. J. Int., 181, 303–320, 2010.
Nussbaum, C., Bossart, P., Amann, F., and Aubourg, C.: Analysis of tectonic
structures and excavation induced fractures in the Opalinus Clay, Mont Terri
underground rock laboratory (Switzerland), Swiss J. Geosci., 104, 187–210, 2011.
Nussbaum, C., Kloppenburg, A., Bossart, P., and Caër, T.: Tectonic evolution around the Mont Terri rock laboratory, northwestern Swiss Jura: constraints from kinematic forward modelling, Swiss J. Geosci., 110, 39–66,
https://doi.org/10.1007/s00015-016-0248-x, 2017.
Orellana, L. F., Scuderi, M. M., Collettini, C., and Violay, M.: Frictional
Properties of Opalinus Clay: Implications for Nuclear Waste Storage, J.
Geophys. Res.-Sol. Ea. 123, 157–175, https://doi.org/10.1002/2017JB014931, 2018.
Pfiffner, O. A.: Geology of the Alps, Wiley-Blackwell, Chichester, 376 pp.,
2014.
Renard, P.: Hytool: an open source matlab toolbox for the interpretation of
hydraulic tests using analytical solutions, J. Open Source Soft.,
2, 441, https://doi.org/10.21105/joss.00441, 2017.
Rillard, J., Loisy, C., Le Roux, O., Cerepi, A., Garcia, B., Noirez, S.,
Rouchon, V., Delaplace, P., Willequet, O., and Bertrand, C.: The DEMO-
CO2 project: A vadose zone CO2 and tracer leakage field
experiment, Int. J. Greenh. Gas Con., 39, 302–317,
https://doi.org/10.1016/j.ijggc.2015.04.012, 2015.
Rinaldi, A. P. and Rutqvist, J.: Modeling of deep fracture zone opening and
transient ground surface uplift at KB-502 CO2 injection well, In Salah,
Algeria, Int, J. Greenh. Gas Con., 12, 155–167,
https://doi.org/10.1016/j.ijggc.2012.10.017, 2013.
Rinaldi, A. P. and Rutqvist, J.: Joint opening or hydroshearing? Analyzing
a fracture zone stimulation at Fenton Hill, Geothermics, 77, 83–98,
https://doi.org/10.1016/ 10.1016/j.geothermics.2018.08.006, 2019.
Rinaldi, A. P., Jeanne, P., Rutqvist, J., Cappa, F., and Guglielmi, Y.:
Effects of fault-zone architecture on earthquake magnitude and gas leakage
related to CO2 injection in a multi-layered sedimentary system,
Greenh. Gases, 4, 99–120, 2014.
Rinaldi, A. P., Rutqvist, J., Finsterle, S., and Liu, H. H.: Inverse modeling
of ground surface uplift and pressure with iTOUGH-PEST and TOUGH-FLAC: the
case of CO2 injection at In Salah Algeria, Comput. Geosci.,
108, 98–109, https://doi.org/10.1016/j.cageo.2016.10.009, 2017.
Rinaldi, A. P., Guglielmi, Y., Zappone, A., Soom, F., Robertson, M., Cook, P., Kakurina, M., Wenning, Q., Rebscher, D., and Nussbaum, C.: Coupled processes in clay during tunnel excavation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18041, https://doi.org/10.5194/egusphere-egu2020-18041, 2020.
Rinehart, A. J., Dewers, T. A., Broome, S. T., and Eichhubl, P.: Effects of CO2 on mechanical variability and constitutive behavior of the Lower Tuscaloosa Formation, Cranfield Injection Site, USA, International Journal of Greenhouse Gas Control, 53, 305–318, 2016.
Roberts, J. J. and Stalker, L.: What have we learned about CO2 leakage
from field Injection tests? Enrgy. Proced., 114, 5711–5731,
https://doi.org/10.1016/j.egypro.2017.03.1710, 2017.
Roques, C., Weber, U. W., Brixel, B., Krietsch, H., Dutler, N., Brennwald,
M. S., Villiger, L., Doetsch, J., Jalali, M., Gischig, V., Amann, F.,
Valley, B., Klepikova, M., and Kipfer, R.: In situ observation of helium and
argon release during fluid-pressure-triggered rock deformation, Sci.
Rep.-UK, 10, 6949, https://doi.org/10.1038/s41598-020-63458-x, 2020.
Rutqvist, J.: Status of TOUGH-FLAC simulator and recent applications related
to coupled fluid flow and crustal deformations, Comput. Geosci.,
37, 739–750, 2011.
Rutqvist, J.: The Geomechanics of CO2 storage in deep sedimentary
formations, Geotech. Geol. Eng., 30, 525–551
https://doi.org/10.1007/s10706-011-9491-0, 2012.
Rutqvist, J., Rinaldi, A. P., Cappa, F., Jeanne, P., Mazzoldi, A., Urpi, L.,
Guglielmi, Y., and Vilarrasa, V.: Fault activation and induced seismicity in
geological carbon storage – Lessons learned from recent modeling studies,
J. Rock Mech. Geotech. Eng., 8, 789–804,
https://doi.org/10.1016/j.jrmge.2016.09.001, 2016.
Schuster, K., Amann, F., Yong, S., Bossart, P., and Connolly, P.:
High-resolution mini-seismic methods applied in the Mont Terri rock
laboratory (Switzerland), Swiss J. Geosci., 110, 213–231, 2017.
Skurtveit, E., Miri, R., and Hellevang, H.: Fluid-Rock Interactions in
Clay-Rich Seals, in: Geological Carbon Storage: Subsurface seals and caprock
integrity, edited by: Vialle, S., Ajo-Franklin, J., and Carey, J. W., American Geophysical Union, Geophysical Monograph Series,
https://doi.org/10.1002/9781119118657.ch8, 2018.
Shi, J.-Q., Smith, J., Durucan, S., and Korre, A.: A Coupled Reservoir
Simulation-geomechanical Modeling Study of the CO2 Injection-induced
Ground Surface Uplift Observed at Krechba, in Salah, Enrgy. Proced., 37,
3719–3726, 2013.
Tenthorey, E., Feitz, A., Credoz, A., Lavina, M., Coene, E., Idiart, A., and Jordana, S.: The CO2CRC Otway Controlled CO2 Release Experiment in a Fault: geomechanical Characterisation Pre-Injection
European Association of Geoscientists & Engineers, Conference Proceedings, Fifth International Conference on Fault and Top Seals, Sep 2019, Palermo, Italy, 2019, 1–5, https://doi.org/10.3997/2214-4609.201902321, 2019.
Thury M. and Bossart P.: The Mont Terri Rock Laboratory, a New International Research Project in Mesozoic Shale Formation in Switzerland, Eng. Geol., 52, 347–359, 1999.
Vasco, D. W., Rucci, A., Ferretti, A., Novali, F., Bissell, R. C., Ringrose,
P. S., Mathieson, A. S., and Wright, I. W.: Satellite-based measurements of
surface deformation reveal fluid flow associated with the geological storage
of carbon dioxide, Geophys. Res. Lett., 37, L03303,
https://doi.org/10.1029/2009GL041544, 2010.
Vasco, D. W., Bissell, R. C., Bohloli, B., Daley, T. M., Ferretti, A.,
Foxall, W., Goertz-Allmann, B. P., Korneev, V., Morris, J. P., Oye, V.,
Ramirez A., Rinaldi A. P., Rucci, A., Rutqvist J., White J., and Zhang, R.:
Monitoring and Modeling Caprock Integrity at the In Salah Carbon Dioxide
Storage Site, Algeria, in: Geological Carbon Storage: Subsurface Seals and
Caprock Integrity, edited by: Stéphanie, V., Ajo-Franklin, J., and Carey,
J. W., American Geophysical Union, Geophysical Monograph Series, 243–269, 2018.
Vialle, S. and Vanorio, T.: Laboratory measurements of elastic properties of
carbonate rocks during injection of reactive CO2 -saturated water,
Geophys. Res. Lett., 38, L01302,
https://doi.org/10.1029/2010GL045606, 2011.
Vilarrasa, V. and Carrera, J.: Geologic carbon storage is unlikely to
trigger large earthquakes and reactivate faults through which CO2 could
leak, P. Natl Acad. Sci., 112, 5938–5943, https://doi.org/10.1073/pnas.1413284112, 2015.
Vilarrasa, V., Carrera, J., Olivella, S., Rutqvist, J., and Laloui, L.: Induced seismicity in geologic carbon storage, Solid Earth, 10, 871–892, https://doi.org/10.5194/se-10-871-2019, 2019.
Vilarrasa, V. and Makhnenko, R. Y.: Caprock Integrity and Induced Seismicity
from Laboratory and Numerical Experiments, Enrgy. Proced., 125, 494–503,
2017.
Vilarrasa, V., Rinaldi, A. P., and Rutqvist, J.: Long-term thermal effects on
injectivity evolution during CO2 storage, Int. J.
Greenh. Gas Con., 64, 314–322, 2017.
Wenning, Q. C., Madonna, C., Kurotori, T., and Pini, R.: Spatial mapping of
fracture aperture changes with shear displacement using X-ray computerized
tomography, J. Geophys. Res.-Sol. Ea., 2019a.
Wenning, Q. C., Madonna, C., Kurotori, T., Pini, R., and Zappone, A.:
Fracture aperture and flow evolution due to confined shear displacement
using X-ray computerized tomography on crystalline and clay-rich rocks, 13th
EURO – Conference on Rock Physics and Geomechanics, Potsdam, Germany, 2019b.
Wenning, Q.C., Madonna, C., Zappone, A., Grab, M., Rinaldi, A. P., Plötze, M., Nussbaum, C., Giardini, D., Wiemer, S.: Shale fault zone structure and stress dependent anisotropic permeability and seismic velocity properties (Opalinus Clay, Switzerland), J. Struct. Geol., 144, 104273, https://doi.org/10.1016/j.jsg.2020.104273, 2021.
Zappone, A., Rinaldi, A. P., Grab, M., Obermann, A., Madonna, C., Nussbaum,
C., and Wiemer, S.: CO2 Sequestration: Studying Caprock And Fault
Sealing Integrity, The CS-D Experiment In Mont Terri, European Association
of Geoscientists & Engineers, Conference Proceedings, Fifth CO2
Geological Storage Workshop, Nov 2018, 1–5,
https://doi.org/10.3997/2214-4609.201803002, 2018.
Zoback, M. D. and Gorelick, S. M.: Earthquake triggering and large-scale
geologic storage of carbon dioxide, P. Natl Acad. Sci., 109, 10164–10168, https://doi.org/10.1073/pnas.1202473109, 2012.
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
The success of the geological storage of carbon dioxide is linked to the availability at depth...