Archimedes: On floating bodies, in: The Works of Archimedes, edited in Modern Notation with Introductory Chapters, edited by: Heath, T. L., Cambridge Library Collection – Mathematics, 253–262, 246 BCE, 2009.
Biehl, B., Reuning, L., Strozyk, F., and Kukla, P.: Origin and deformation
of intra-salt sulphate layers: an example from the Dutch Zechstein (Late
Permian), Int. J. Earth Sci., 103, 697–712, 2014.
Cartwright, J., Steward, S., and Clark, J.: Salt dissolution and
salt-related deformation of the Forth Approaches Basin, UK North Sea, Mar.
Petrol. Geol., 18, 757–778, 2001.
Davison, I.: Faulting and fluid flow through salt, J. Geol.
Soc. Lond., 166, 205–216, 2009.
Davison, I., Alsop, G. I., and Blundell, D. J.: Salt tectonics: some aspects
of deformation mechanics, in: Salt Tectonics, edited by: Alsop, G. I.,
Blundell, D. J., and Davison, I., Geol. Soc. Lond. Spec.
Publ., 100, 1–10, 1996.
DINOLoket: Data and Information on the Dutch Subsurface – Stratigraphic Nomenclature, TNO,
https://www.dinoloket.nl/en/stratigraphic-nomenclature, last access: 14 June 2022.
Duin, E. J. T, Doornenbal, J. C., Rijkers, R. H. B., Verbeek, J. W., and Wong, T.:
Subsurface structure of the Netherlands: Results of recent onshore and
offshore mapping, Neth. J. Geosci.,
85, 245–276, 2006.
Duffy, O. B., Fernandez, N., Peel, F.J., Hudec, M., Dooley, T. P., and
Jackson, C. A.-L.: Obstructed Minibasins on a Salt-Detached Slope: An Example
from above the Sigsbee Canopy, Northern Gulf of Mexico, Basin Res., 32,
505–524, 2019.
Fletcher, R. C., Hudec, M., and Watson, I. A.: Salt glacier and composite
sediment-salt glacier models for the emplacement and early burial of
allochthonous salt sheets, in: Salt tectonics: a global perspective, edited
by: Jackson, M. P. A., Roberts, D. G., and Snelson, S., AAPG Bull., 65, 77–108, 1996.
Fort, X. and Brun, J.-P.: Kinematics of regional salt flow in the northern
Gulf of Mexico, in: Salt Tectonics, Sediments and Prospectivity, edited by:
Alsop, G. I., Archer, S. G., Hartley, A. J., Grant, N. T., and Hodgkinson, R.,
Geol. Soc. Lond. Spec. Publ., 363, 265–287, 2012.
Fort, X., Brun, J.-P., and Chauvel, F.: Salt tectonics on the Angolan
margin, synsedimentary deformation processes, AAPG Bull., 88, 1523–1544, 2004.
Geluk, M. C.: Late Permian (Zechstein) rifting in the Netherlands: models and
implications for petroleum geology, Petrol. Geosci., 5, 189–199, 1999.
Geluk, M. C.: Permian, in: Geology of the Netherlands, edited by: Wong, T. E., Batjes, D. A. J., and De Jager, J.,
Royal Netherlands Academy of Arts and
Sciences, Amsterdam, 63–84, ISBN 978-90-6984-481-7, 2007.
Gemmer, L., Ings, S. J., Medvedev, S., and Beaumont, C.: Salt tectonics
driven by differential sediment loading: stability analysis and finite
element experiments, Basin Res., 16, 199–218, 2004.
Giles, K. A. and Rowan, M. G.: Concepts in halokinetic-sequence deformation
and stratigraphy, in: Salt Tectonics, Sediments and Prospectivity, edited
by: Alsop, G. I., Archer, S. G., Hartley, A. J., Grant, N. T., and Hodgkinson,
R., Geol. Soc. Lond. Spec. Publ., 363, 7–31, 2012.
Granjeon, D.: 3D forward modelling of the impact of sediment transport and
base level cycles on continental margins and incised valleys, in: From
Depositional Systems to Sedimentary Successions on the Norwegian Continental
Margin, edited by: Martinius, A. W., Ravnås, R., Howell, J. A., Steel, R.
J., and Wonham, J. P., Int. Assoc. Sediment. Spec.
Publ., 46, 453–472, 2014.
Grohmann, S., Fietz, W. S., Nader, F. H., Romero-Sarmiento, M.-F., Baudin, F.,
and Littke, R.: Characterization of Late Cretaceous to Miocene source rocks
in the Eastern Mediterranean Sea: An integrated numerical approach of
stratigraphic forward modelling and petroleum system, Basin Res., 33,
846–874, 2021
Hudec, M. and Jackson, M. P. A.: Regional restoration across the Kwanza
Basin, Angola: Salt tectonics triggered by repeated uplift of a metastable
passive margin, AAPG Bull., 88,
971–990, 2004.
Hunfeld, L. B., Foeken, J. P. T., and van Kempen, B. M. M.: Geomechanical
parameters derived from compressional and shear sonic logs for main
geothermal targets in The Netherlands, TNO,
https://www.nlog.nl/sites/default/files/2021-12/data_selection_and_methods.pdf, (last access:
11 April 2022), 2021.
Jackson, C. A. L., Jackson, M. P. A., Hudec, M. R., and Rodriguez, C. R.:
Enigmatic structures within salt walls of the Santos Basin – Part 1:
Geometry and kinematics from 3D seismic reflection and well data, J.
Struct. Geol., 75, 135–162, 2015.
Jackson, M. P. A. and Hudec, M.: Salt Tectonics: Principles and Practice,
Cambridge University Press, 498 pp., https://doi.org/10.1017/9781139003988, 2017.
Kehle, R. O.: Identifying suitable “piercement” salt domes for nuclear
waste storage sites, Report PNL-2864 UC-70 prepared for the Office of
Nuclear Waste Isolation under its Contract with the U.S. Department of
Energy, Batelle Memorial Institute, 1–30, Pacific Northwest Laboratory, Batelle Memorial Institute, 1980.
Kehle, R. O.: The origin of salt structures, in:
Evaporites and Hydrocarbons, edited by: Schreiber, B. C., Columbia University Press, New York,
345–404, 1988.
Khalifa, N. and Back, S.: Folding and faulting offshore Libya: Partly
decoupled tectonics above evaporites, Mar. Petrol. Geol., 124,
104840, https://doi.org/10.1016/j.marpetgeo.2020.104840, 2021.
Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in central
Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision,
Geology, 36, 839–842, 2008.
Koyi, H. A.: Modeling the influence of sinking anhydrite blocks on salt
diapirs targeted for hazardous waste disposal, Geology, 29, 387–390,
2001.
Kukla, P. A., Urai, J. L., and Mohr, M.: Dynamics of salt structures, in:
Dynamics of complex intracontinental basins: The Central European Basin
System, edited by: Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S.,
Berlin, Springer-Verlag, 291–306, 2008.
Mohr, M., Kukla, P. A., Urai, J. L., and Bresser, G.: Multiphase salt tectonic
evolution in NW Germany: seismic interpretation and retrodeformation,
Int. J. Earth Sci., 94, 917–941, 2005.
Nettleton, L. L.: Recent experiments and geophysical evidence of mechanics of
salt dome formation, AAPG Bull., 27, 51–63, 1934.
Neumaier, M., Back, S., Littke, R., Kukla, P. A., Schnabel, M., and Reichert,
C.: Late Cretaceous to Cenozoic geodynamic evolution of the Atlantic margin
offshore Essaouira (Morocco), Basin Res., 28, 712–730, 2016.
Remmelts, G.: Fault-related salt tectonics in the Southern North Sea, The
Netherlands, in: Salt tectonics – a global perspective, edited by: Jackson,
M. P. A., Roberts, D. G., and Snelson, S., AAPG Memoir, 65, 261–272, 1995.
Richter-Bernburg, G.: Salt Tectonics, Interior Structures of Salt Bodies,
Bulletin Centres Recherches Exploration, Production Elf Aquitaine, 4,
373–389, 1980.
Rowan, M. G.: A systematic technique for the sequential restoration of salt
structures, Tectonophysics, 228, 331–348, 1995.
Sclater, J. G. and Christie, P. A. F.: Continental stretching: An explanation
of the Post-Mid-Cretaceous subsidence of the central North Sea Basin,
J. Geophys. Res., 85, 3711–3739, 1980.
Strozyk, F., van Gent, H. W., Urai, J. L., and Kukla, P. A.: 3D seismic study
of complex intra-salt deformation: An example from the Upper Permian
Zechstein 3 stringer, western Dutch offshore, in: Salt tectonics, sediments
and prospectivity, edited by: Alsop, G. I., Archer, S. G., Hartley, A. J.,
Grant, N. T., and Hodgkinson, R., Geol. Soc. Lond. Spec.
Publ., 363, 489–501, 2012.
Strozyk, F., Urai, J. L., van Gent, H. W., de Keijzer, M., and Kukla, P. A.:
Regional variations in the structure of the Permian Zechstein 3 intrasalt
stringer in the northern Netherlands: 3D seismic interpretation and
implications for salt tectonic evolution, Interpretation, 2, 1–17, https://doi.org/10.1190/INT-2014-0037.1,
2014.
TNO-NITG: Geological Atlas of the Subsurface of the Netherlands – onshore,
Netherlands Organisation for Applied Scientific Research, Netherlands Organisation for Applied Scientific Research (TNO), 103 pp., 2004.
TNO-NLOG: DGM-deep V5 regional subsurface layer model of The Netherlands,
TNO,
https://www.nlog.nl/en/details-dgm-deep-v5, last access: 8 May 2022.
Trusheim, F.: Über Halokinese und ihre Bedeutung für die
strukturelle Entwicklung Norddeutschlands, Z. Dt.
Geol. Gesell., 109, 111–151, 1957.
Trusheim, F.: Mechanism of salt migration in northern Germany, AAPG
Bull., 44, 1519–1540, 1960.
Vackiner, A. A., Antrett, P., Strozyk, F., Back, S., Kukla, P. A., and
Stollhofen, H.: Salt kinematics and regional tectonics across a Permian gas
field: a case study from East Frisia, NW Germany, Int. J.
Earth Sci., 102, 1701–1716, 2013.
Van Dalfsen, W., Doornenbal, J. C., Dortland, S., and Gunnink, J.: A
comprehensive seismic velocity model for the Netherlands based on
lithostratigraphic layers, Neth. J. Geosci., 85, 277–292, 2006.
van Keken, P. E., Spiers, C. J., van den Berg, A. P., and Muyzent, E. J.: The
effective viscosity of rocksalt: implementation of steady-state creep laws
in numerical models of salt diapirism, Tectonophysics, 225, 457–476,
1993.
Waltham, D.: Why does salt start to move?, Tectonophysics, 282, 117–128,
1997.
Warren, J. K.: Evaporites, Springer International Publishing, 1813 pp., https://doi.org/10.1007/978-3-319-13512-0, 2016.
Wong, T. E., Batjes, D. A. J., and de Jager, J. (Eds.): Geology of the
Netherlands, Amsterdam, Royal Netherlands Academy of Arts and Sciences
(KNAW), 354 pp., ISBN 978-90-6984-481-7, 2007.
Zirngast, M.: The development of the Gorleben salt dome (northwest Germany)
based on quantitative analysis of peripheral sinks, in: Salt Tectonics,
edited by: Alsop, G. I., Blundell, D. J., and Davison, I., Geol. Soc.
Lond. Spec. Publ., 100, 203–226, 1996.