Articles | Volume 13, issue 8
https://doi.org/10.5194/se-13-1259-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1259-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Whole-rock and zircon evidence for evolution of the Late Jurassic high-Sr ∕ Y Zhoujiapuzi granite, Liaodong Peninsula, North China Craton
Renyu Zeng
CORRESPONDING AUTHOR
State Key Laboratory of Nuclear Resources and Environment, East China
University of Technology, Nanchang, 330013, Jiangxi, China
School of Earth Sciences, East China University of Technology,
Nanchang, 330013, China
Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK
Mark B. Allen
Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK
Xiancheng Mao
School of Geosciences and Info-Physics, Central South University,
Changsha, 410083, China
Jianqing Lai
School of Geosciences and Info-Physics, Central South University,
Changsha, 410083, China
Jie Yan
State Key Laboratory of Nuclear Resources and Environment, East China
University of Technology, Nanchang, 330013, Jiangxi, China
School of Earth Sciences, East China University of Technology,
Nanchang, 330013, China
Jianjun Wan
State Key Laboratory of Nuclear Resources and Environment, East China
University of Technology, Nanchang, 330013, Jiangxi, China
School of Earth Sciences, East China University of Technology,
Nanchang, 330013, China
Related authors
Renyu Zeng, Hui Su, Mark B. Allen, Haiyan Shi, Houfa Dua, Chenguang Zhange, and Jie Yan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1145, https://doi.org/10.5194/egusphere-2024-1145, 2024
Short summary
Short summary
There has long been debate regarding the tectonic affinity and tectonic evolution of the Longshoushan, Alxa Block, during the Paleozoic. In this study, we present new geochronological and geochemical data for early Paleozoic granitoids from the Longshoushan. The main conclusions are as follows: (1) the Longshoushan was primarily influenced by the North Qilian Orogenic Belt; (2) The transition in crustal thickness occurred at ~435 Ma; (3) A three-stage Early Paleozoic tectonic model is proposed.
Malte Froemchen, Ken J. W. McCaffrey, Mark B. Allen, Jeroen van Hunen, Thomas B. Phillips, and Yueren Xu
Solid Earth, 15, 1203–1231, https://doi.org/10.5194/se-15-1203-2024, https://doi.org/10.5194/se-15-1203-2024, 2024
Short summary
Short summary
The Shanxi Rift is a young, active rift in northern China that formed atop a Proterozoic orogen. The impact of these structures on active rift faults is poorly understood. Here, we quantify the landscape response to active faulting and compare it with published maps of inherited structures. We find that inherited structures played an important role in the segmentation of the Shanxi Rift and in the development of rift interaction zones, which are the most active regions in the Shanxi Rift.
Renyu Zeng, Hui Su, Mark B. Allen, Haiyan Shi, Houfa Dua, Chenguang Zhange, and Jie Yan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1145, https://doi.org/10.5194/egusphere-2024-1145, 2024
Short summary
Short summary
There has long been debate regarding the tectonic affinity and tectonic evolution of the Longshoushan, Alxa Block, during the Paleozoic. In this study, we present new geochronological and geochemical data for early Paleozoic granitoids from the Longshoushan. The main conclusions are as follows: (1) the Longshoushan was primarily influenced by the North Qilian Orogenic Belt; (2) The transition in crustal thickness occurred at ~435 Ma; (3) A three-stage Early Paleozoic tectonic model is proposed.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochemistry
Magnesium isotope fractionation processes during seafloor serpentinization and implications for serpentinite subduction
Epidote dissolution–precipitation during viscous granular flow: a micro-chemical and isotope study
Comparative geochemical study on Furongian–earliest Ordovician (Toledanian) and Ordovician (Sardic) felsic magmatic events in south-western Europe: underplating of hot mafic magmas linked to the opening of the Rheic Ocean
Bromine speciation and partitioning in slab-derived aqueous fluids and silicate melts and implications for halogen transfer in subduction zones
Boninite and boninite-series volcanics in northern Zambales ophiolite: doubly vergent subduction initiation along Philippine Sea plate margins
Sune G. Nielsen, Frieder Klein, Horst R. Marschall, Philip A. E. Pogge von Strandmann, and Maureen Auro
Solid Earth, 15, 1143–1154, https://doi.org/10.5194/se-15-1143-2024, https://doi.org/10.5194/se-15-1143-2024, 2024
Short summary
Short summary
Magnesium isotope ratios of arc lavas have been proposed as a proxy for serpentinite subduction, but uncertainties remain regarding their utility. Here we show that bulk serpentinite Mg isotope ratios are identical to the mantle, whereas the serpentinite mineral brucite is enriched in heavy Mg isotopes. Thus, Mg isotope ratios may only be used as serpentinite subduction proxies if brucite is preferentially mobilized from the slab at pressures and temperatures within the arc magma source region.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Pierre Lanari, Igor Maria Villa, and Marco Herwegh
Solid Earth, 13, 1803–1821, https://doi.org/10.5194/se-13-1803-2022, https://doi.org/10.5194/se-13-1803-2022, 2022
Short summary
Short summary
This work studies the interplay of epidote dissolution–precipitation and quartz dynamic recrystallization during viscous granular flow in a deforming epidote–quartz vein. Pb and Sr isotope data indicate that epidote dissolution–precipitation is mediated by internal/recycled fluids with an additional external fluid component. Microstructures and geochemical data show that the epidote material is redistributed and chemically homogenized within the deforming vein via a dynamic granular fluid pump.
J. Javier Álvaro, Teresa Sánchez-García, Claudia Puddu, Josep Maria Casas, Alejandro Díez-Montes, Montserrat Liesa, and Giacomo Oggiano
Solid Earth, 11, 2377–2409, https://doi.org/10.5194/se-11-2377-2020, https://doi.org/10.5194/se-11-2377-2020, 2020
Short summary
Short summary
A geochemical comparison of early Palaeozoic felsic magmatic episodes throughout the south-western European margin of Gondwana is analysed and includes data from the Iberian Massif, the Eastern Pyrenees, southern France and Sardinia. This dataset favours partial melting of sediments and/or granitoids in the lower continental crust during extensional movements related to the opening of the Rheic Ocean.
Marion Louvel, Carmen Sanchez-Valle, Wim J. Malfait, Gleb S. Pokrovski, Camelia N. Borca, and Daniel Grolimund
Solid Earth, 11, 1145–1161, https://doi.org/10.5194/se-11-1145-2020, https://doi.org/10.5194/se-11-1145-2020, 2020
Short summary
Short summary
Here, we conducted spectroscopic measurements on high-pressure, high-temperature fluids and melts to study how halogens, in particular bromine, can be incorporated in subduction zone fluids and melts. We find that a gradual evolution of bromine speciation with liquid composition enables the incorporation of high amounts of Br in both phases. Thus, bromine and, by extension, chlorine are expected to be efficiently recycled from the slab towards the volcanic arc.
Americus Perez, Susumu Umino, Graciano P. Yumul Jr., and Osamu Ishizuka
Solid Earth, 9, 713–733, https://doi.org/10.5194/se-9-713-2018, https://doi.org/10.5194/se-9-713-2018, 2018
Short summary
Short summary
The occurrence of boninite in the northern Zambales ophiolite is reported. Boninite is a relatively rare high-magnesium andesite that is intimately associated with early arc volcanism and the initiation of subduction zones. Taken as a whole, the geological and geochemical characteristics of Zambales and Izu-Ogasawara–Mariana forearc volcanic sequences enables a refined geodynamic reconstruction of subduction initiation.
Cited articles
Allmendinger, R. W., Jordan, T. E., Kay, S. M., and Isacks, B. L.: The
evolution of the Altiplano-Puna plateau of the Central Andes, Annu. Rev.
Earth Pl. Sc., 25, 139–174, https://doi.org/10.1146/annurev.earth.25.1.139,
1997.
Altherr, R., Holl, A., Hegner, E., Langer, C., and Kreuzer, H.:
High-potassium, calc-alkaline I-type plutonism in the European Variscides:
northern Vosges (France) and northern Schwarzwald (Germany), Lithos,
50, 51–73, https://doi.org/10.1016/S0024-4937(99)00052-3, 2000.
Ballard, J. R., Palin, M. J., and Campbell, I. H.: Relative oxidation states
of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry
copper deposits of northern Chile, Contrib. Mineral. Petr., 144, 347–364,
https://doi.org/10.1007/s00410-002-0402-5, 2002.
Barbarin, B.: Granitoids: main petrogenetic classifification in relation to
origin and tectonic setting, Geol. J., 25, 227–238, 1990.
Belousova, E., Griffin, W., O'Reilly, S. Y., and Fisher, N.: Igneous zircon:
trace element composition as an indicator of source rock type, Contrib.
Mineral. Petr., 143, 602–622, https://doi.org/10.1007/s00410-002-0364-7,
2002.
Blichert-Toft, J. and Albarède, F.: The Lu-Hf isotope geochemistry of
chondrites and the evolution of the mantle-crust system, Earth. Planet. Sc.
Lett., 148, 243–258, https://doi.org/10.1016/S0012-821X(97)00040-X,
1997.
Breiter, K., Lamarão, C. N., Borges, R. M. K., and Dall'Agnol, R.:
Chemical characteristics of zircon from A-type granites and comparison to
zircon of S-type granites, Lithos, 192–195, 208–225,
https://doi.org/10.1016/j.lithos.2014.02.004, 2014.
Castillo, P. R., Janney, P. E., and Solidum, R. U.: Petrology and
geochemistry of Camiguin Island, southern Philippines: Insights to the
source of adakites and other lavas in a complex arc setting, Contrib.
Mineral. Petr., 134, 33–51, https://doi.org/10.1007/s004100050467,
1999.
Castro, A., Moreno-Ventas, I., and Rosa, J.: H-type (hybrid) granitoids: a
proposed revision of the granite-type classification and nomenclature,
Earth. Sci. Rev., 31, 237–253,
https://doi.org/10.1016/0012-8252(91)90020-G, 1991.
Chappell, B. W. and White, A. J. R.: I-and S-type granites in the Lachlan
Fold Belt, Geol. Soc. Am. Spec. Pap., 272, 1–26,
https://doi.org/10.1130/SPE272-p1, 1992.
Chen, S. R., Wang, Q., Zhu, D. C., Weinberg, R. F., Zhang, L. L., and Zhao,
Z. D.: Reheating and magma mixing recorded by zircon and quartz from
high-silica rhyolite in the Coqen region, southern Tibet, Am. Mineral., 106, 112–122,
https://doi.org/10.2138/am-2020-7426, 2020.
Chu, Y., Lin, W., Faure, M., Allen, M. B., and Feng, Z.: Cretaceous
exhumation of the Triassic intracontinental Xuefengshan Belt: Delayed
unroofing of an orogenic plateau across the South China Block?,
Tectonophysics, 793, 228592, https://doi.org/10.1016/j.tecto.2020.228592, 2020.
Claiborne, L. L., Miller, C. F., Walker, B. A., Wooden, J. L., Mazdab, F.
K., and Bea, F.: Tracking magmatic processes through Zr/Hf ratios in rocks
and Hf and Ti zoning in zircons: An example from the Spirit Mountain
batholith, Nevada, Mineral. Mag., 70, 517–543,
https://doi.org/10.1180/0026461067050348, 2006.
Collins, W. J., Beams, S. D., White, A. J. R., and Chappell, B. W.: Nature
and origin of A-type granites with particular reference to southeastern
Australia, Contrib. Mineral. Petr., 80, 189–200,
https://doi.org/10.1007/BF00374895, 1982.
Collins, W. J., Huang, H. Q., and Jiang, X. Y.: Water-fluxed crustal melting
produces Cordilleran batholiths, Geology, 44, 143–146,
https://doi.org/10.1130/G37398.1, 2016.
Conrad, W. K., Nicholls, I. A., and Wall, V. J.: Water-saturated and
-undersaturated melting of metaluminous and peraluminous crustal
compositions at 10 kb: evidence for the origin of silisic magmas in the
Taupo Volcanic Zone, New Zealand, and other occurrences, J. Petrol., 29,
765–803, https://doi.org/10.1093/petrology/29.4.765, 1988.
Defant, M. J. and Drummond, M. S.: Derivation of some modern arc magmas by
melting of young subducted lithosphere, Nature, 347, 662–665,
https://doi.org/10.1038/347662a0, 1990.
Douce, A. E. P.: Generation of metaluminous A-type granites by low-pressure
melting of calc-alkaline granitoids, Geology, 25, 743–746,
https://doi.org/10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2, 1997.
Drummond, M. S., Defant, M. J., and Kepezhinskas, P. K.: Petrogenesis of
slab-derived trondhjemite–tonalite–dacite/adakite magmas, T. Roy. Soc.
Edin., 87, 205–215, https://doi.org/10.1017/S0263593300006611, 1996.
Faure, M., Lin, W., Moni, P., and Bruguier, O.: Paleoproterozoic arc
magmatism and collision in Liaodong Peninsula, NE China, Terra Nova, 16,
75–80, https://doi.org/10.1111/j.1365-3121.2004.00533.x, 2004.
Ferry, J. M. and Watson, E. B.: New thermodynamic models and revised
calibrations for the Ti-in-zircon and Zr-in-rutile thermometers, Contrib.
Mineral. Petr., 154, 429–437, https://doi.org/10.1007/s00410-007-0201-0,
2007.
Gao, S., Rudnick, R. L., Yuan, H. L., Liu, X. M., Liu, Y. S., Xu, W. L.,
Ling, W. L., Ayers, J. C., Wang, X. C., and Wang, Q. H.: Recycling lower
continental crust in the North China craton, Nature, 432, 892–897,
https://doi.org/10.1038/nature03162, 2004.
Gao, Y. F., Hou, Z. Q., Kamber, B. S., Wei, R. H., Meng, X.J., and Zhao, R.
S.: Adakite-like porphyries from the southern Tibetan continental collision
zones: evidence for slab melt metasomatism, Contrib. Mineral. Petr., 153,
105–120, https://doi.org/10.1007/s00410-006-0137-9, 2007.
Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J., and O'Reilly,
S. Y.: Archean crustal evolution in the northern Yilgarn Craton: U-Pb and
Hf-isotope evidence from detrital zircons, Precambrian. Res., 131, 231–282,
https://doi.org/10.1016/J.PRECAMRES.2003.12.011, 2004.
He, P. L., Huang, X. L., Yang, F., and Wang, X.: Mineralogy constraints on
magmatic processes controlling adakitic features of Early Permian
high-magnesium diorites in the Western Tianshan orogenic belt, J. Petrol.,
61, a114, https://doi.org/10.1093/petrology/egaa114, 2021.
Hoskin, P. W. and Schaltegger, U.: The composition of zircon and igneous
and metamorphic petrogenesis, Rev. Mineral. Geochem., 53, 27–62,
https://doi.org/10.2113/0530027, 2003.
Hoskin, P. W. O.: Trace-element composition of hydrothermal zircon and the
alteration of Hadean zircon from the Jack Hills, Australia, Geochim.
Cosmochim. Ac., 69, 637–648, https://doi.org/10.1016/j.gca.2004.07.006,
2005.
Huang, F. and He, Y. S.: Partial melting of the dry mafic continental crust:
Implications for petrogenesis of C-type adakites, Chinese Sci. Bull., 55,
1255–1267, https://doi.org/10.1007/s11434-010-3224-2, 2010.
Jackson, S. E., Pearson, N. J., Griffin W L, and Belousova, E. A.: The
application of laser ablation-inductively coupled plasma-mass spectrometry
to in situ U-Pb zircon geochronology, Chem. Geol., 211, 47–69,
https://doi.org/10.1016/j.chemgeo.2004.06.017, 2004.
Jiang, H., Jiang, S. Y., Li, W. Q., Zhao, K. D., and Peng, N. J.: Highly
fractionated Jurassic I-type granites and related tungsten mineralization in
the Shirenzhang deposit, northern Guangdong, South China: Evidence from
cassiterite and zircon U-Pb ages, geochemistry and Sr-Nd-Pb-Hf isotopes,
Lithos, 312–313, 186–203, https://doi.org/10.1016/j.lithos.2018.04.030, 2018.
Jiang, Y. H., Jiang, S. Y., Zhao, K. D., Ni, P., Ling, H. F., and Liu, D. Y.:
SHRIMP U-Pb zircon dating for lamprophyre from Liaodong Peninsula:
Constraints on the initial time of Mesozoic lithosphere thinning beneath
eastern China, Chinese Sci. Bull., 50,
2612–2620, https://doi.org/10.1360/982005-373, 2005.
Kamei, A., Miyake, Y., Owada, M., and Kimura, J.: A pseudo adakite derived
from partial melting of tonalitic to granodioritic crust, Kyushu, southwest
Japan arc, Lithos, 112, 615–625,
https://doi.org/10.1016/j.lithos.2009.05.024, 2009.
Kay, R. W. and Kay, S. M.: Delamination and delamination magmatism,
Tectonophysics, 219, 177–189, https://doi.org/10.1016/0040-1951(93)90295-U,
1993.
King, S. D., Frost, D. J., and Rubie D. C.: Why cold slabs stagnate in the
transition zone, Geology, 43, 231–234, https://doi.org/10.1130/G36320.1,
2015.
Li, C. M., Zhang, C. H., Cope, T. D., and Lin, Y.: Out-of-sequence thrusting in
polycyclic thrust belts: An example from the Mesozoic Yanshan belt, North
China Craton, Tectonics, 35, 2082–2116,
https://doi.org/10.1002/2016TC004187, 2016.
Li, S. Z. and Zhao, G. C.: SHRIMP U-Pb zircon geochronology of the Liaoji
granitoids: Constraints on the evolution of the Paleoproterozoic
Jiao-Liao-Ji belt in the Eastern Block of the North China Craton,
Precambrian. Res., 158, 1–16,
https://doi.org/10.1016/j.precamres.2007.04.001, 2007.
Li, S. Z., Liu, J. Z., Zhao, G. C., Wu, F. Y., Han, Z. Z., and Yang, Z. Z.: Key
geochronology of Mesozoic deformation in the eastern block of the North
China Craton and its constraints on regional tectonics: A case of Jiaodong
and Liaodong Peninsula, Acta. Petrol. Sin., 2, 633–646,
https://doi.org/10.1007/BF02873097, 2004.
Li, S. Z., Zhao, G. C., Sun, M., Han, Z. Z., Hao, D. F., Luo, Y., and Xia,
X. P.: Deformation history of the Paleoproterozoic Liaohe Group in the
Eastern Block of the North China Craton, J. Asian Earth. Sci., 24,
659–674, https://doi.org/10.1016/j.jseaes.2003.11.008, 2005.
Li, X. H., Long, W. G., Li, Q. L., Liu, Y., Zheng, Y. F., Yang, Y. H.,
Chamberlain, K. R., Wan, D. F., Guo, C. H., and Wang, X. C.: Penglai Zircon
Megacrysts: A Potential New Working Reference Material for Microbeam
Determination of Hf-O Isotopes and U-Pb Age, Geostand. Geoanal. Res., 34,
117–134, https://doi.org/10.1111/j.1751-908X.2010.00036.x, 2010.
Li, Z., Chen, B., Liu, J. W., Zhang, L., and Yang, C.: Zircon U-Pb ages and
their implications for the South Liaohe Group in the Liaodong Peninsula,
Northeast China, Acta Petrol. Sin.,
31, 1589–1605, 2015 (in Chinese with English abstract).
Liu, Y. S., Hu, Z. C., Zong, K. Q., Gao, C. G., Gao, S., Xu, J., and Chen, H. H.:
Reappraisement and refinement of zircon U-Pb isotope and trace element
analyses by LA-ICP-MS, Chinese Sci. Bull., 55, 1535–1546,
https://doi.org/10.1007/s11434-010-3052-4, 2010.
Loader, M. A., Wilkinson, J. J., and Armstrong, R. N.: The effect of
titanite crystallisation on Eu and Ce anomalies in zircon and its
implications for the assessment of porphyry Cu deposit fertility, Earth.
Planet. Sc. Lett., 472, 107–119,
https://doi.org/10.1016/j.epsl.2017.05.010, 2017.
Ludwig, K. R.: User's manual for Isoplot 3.00: a geochronological toolkit
for Microsoft Excel, Spec. Publ./Berkeley Geochronol. Cent., 4, Kenneth R. Ludwig, Berkeley, Calif, 2003.
Ma, L., Jiang, S. Y., Dai, B. Z., Jiang, Y. H., Hou, M. L., Pu, W., and Xu, B.:
Multiple sources for the origin of Late Jurassic Linglong adakitic granite
in the Shandong Peninsula, eastern China: Zircon U-Pb geochronological,
geochemical and Sr-Nd-Hf isotopic evidence, Lithos, 162–163, 251–263,
https://doi.org/10.1016/j.lithos.2013.01.009, 2013.
Ma, Q., Zheng, J. P., Griffin, W. L., Zhang, M., Tang, H. Y., Su, Y. P., and
Ping, X. Q.: Triassic “adakitic” rocks in an extensional setting (North
China): Melts from the cratonic lower crust, Lithos, 149, 159–173,
https://doi.org/10.1016/j.lithos.2012.04.017, 2012.
Ma, Q., Zheng, J. P., Xu, Y. G., Griffin, W. L., and Zhang, R. S.: Are
continental “adakites” derived from thickened or foundered lower crust?,
Earth. Planet. Sc. Lett., 419, 125–133,
https://doi.org/10.1016/j.epsl.2015.02.036, 2015.
Ma, X. H., Chen, B., and Yang, M. C.: Magma mixing origin for the Aolunhua
porphyry related to Mo-Cu mineralization, eastern Central Asian Orogenic
Belt, Gondwana. Res., 24, 1152–1171,
https://doi.org/10.1016/j.gr.2013.02.010, 2013.
Macpherson, C. G., Dreher, S. T., and Thirlwall, M. F.: Adakites without
slab melting: High pressure differentiation of island arc magma, Mindanao,
the Philippines, Earth. Planet. Sc. Lett., 243, 581–593,
https://doi.org/10.1016/j.epsl.2005.12.034, 2006.
Mahon, K. I.: The New “York” regression: Application of an improved
statistical method to geochemistry, Int. Geol. Rev., 38, 293–303,
https://doi.org/10.1080/00206819709465336, 1996.
Maniar, P. D. and Piccoli, P. M.: Tectonic discrimination of granitoids,
Geol. Soc. Am. Bull., 101, 635–643, https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2, 1989.
Martin, H., Smithies, R. H., Rapp, R., Moyen, J.-F., and Champion, D.: An
overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and
sanukitoid: relationships and some implications for crustal evolution,
Lithos, 79, 1–24, https://doi.org/10.1016/j.lithos.2004.04.048, 2005.
Meng, E., Liu, F. L., Liu, P. H., Liu, C. H., Yang, H., Wang, F., Shi, J. R.,
and Cai, J.: Petrogenesis and tectonic significance of Paleoproterozoic
meta-mafic rocks from central Liaodong Peninsula, northeast China: Evidence
from zircon U-Pb dating and in situ Lu-Hf isotopes, and whole-rock
geochemistry, Precambrian. Res., 247, 92–109,
https://doi.org/10.1016/j.precamres.2014.03.017, 2014.
Meng, Q. R.: What drove late Mesozoic extension of the northern
China-Mongolia tract?, Tectonophysics, 369, 155–174,
https://doi.org/10.1016/S0040-1951(03)00195-1, 2003.
Mezger, K. and Krogstad, E. J.: Interpretation of discordant U-Pb zircon
ages: An evaluation, J. Metamorph. Geol., 15, 127–140,
https://doi.org/10.1111/j.1525-1314.1997.00008.x, 1997.
Middlemost, E. A. K.: Naming materials in the magma/igneous rock system, Earth-Sci. Rev., 37, 215–224, https://doi.org/10.1016/0012-8252(94)90029-9, 1994.
Miller, C. F., McDowell, S. M., and Mapes, R. W.: Hot and cold granites?
Implications of zircon saturation temperatures and preservation of
inheritance, Geology, 31, 529–532,
https://doi.org/10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2, 2003.
Miller, J. F. and Harris, N. B. W.: Evolution of continental crust in the
Central Andes; constraints from Nd isotope systematics, Geology, 17,
615–617, https://doi.org/10.1130/0091-7613(1989)017<0615:EOCCIT>2.3.CO;2, 1989.
Moyen, J.: High and ratios: The meaning of the “adakitic
signature”, Lithos, 112, 556–574,
https://doi.org/10.1016/j.lithos.2009.04.001, 2009.
Nakamura, H. and Iwamori, H.: Generation of adakites in a cold subduction
zone due to double subducting plates, Contrib. Mineral. Petr., 165,
1107–1134, https://doi.org/10.1007/s00410-013-0850-0, 2013.
Nasdala, L., Pidgeon, R. T., Wolf, D., and Irmer, G., Metamictization and
U-Pb isotopic discordance in single zircons: a combined Raman microprobe and
SHRIMP ion probe study, Miner. Petrol., 62, 1–27,
https://doi.org/10.1007/BF01173760, 1998.
Nash, D. J., Ciborowski, T., Ullyott, J. S., Pearson, M. P., and Whitaker, K. A.:
Origins of the sarsen megaliths at Stonehenge, Sci. Adv., 6, eabc0133,
https://doi.org/10.1126/sciadv.abc0133, 2020.
Ou, Q., Wang, Q., Wyman, D. A., Zhang, H. X., Yang, J. H., Zeng, J. P., Hao,
L. L., Chen, Y. W., Liang, H., and Qi, Y.: Eocene adakitic porphyries in the
central-northern Qiangtang Block, central Tibet: Partial melting of
thickened lower crust and implications for initial surface uplifting of the
plateau, J. Geophys. Res.-Sol. Ea., 122, 1025–1053,
https://doi.org/10.1002/2016JB013259, 2017.
Parsons, B. and McKenzie, D.: Mantle convection and the thermal structure of
the plates, J. Geophys. Res.-Sol. Ea., 83, 4485–4496,
https://doi.org/10.1029/JB083iB09p04485, 1978.
Patiño Douce, A. E. P.: What do experiments tell us about the relative
contributions of crust and mantle to the origin of granitic magmas?, Geol.
Soc. Lond. Spec. Publ., 168, 55–75,
https://doi.org/10.1144/GSL.SP.1999.168.01.05, 1999.
Qiu, L., Kong, R. Y., Yan, D. P., Wells, M. L., Wang, A. P., Sun, W. H., Yang,
W. X., Han, Y. G., Li, C. M., and Zhang, Y. X.: The Zhayao tectonic window of
the Jurassic Yuantai thrust system in Liaodong Peninsula, NE China:
Geometry, kinematics and tectonic implications, J. Asian Earth Sci., 164,
58–71, https://doi.org/10.1016/j.jseaes.2018.06.012, 2018.
Rapp, R. P., Shimizu, N., and Norman, M. D.: Growth of early continental crust
by partial melting of eclogite, Nature, 425, 605–609,
https://doi.org/10.1038/nature02031, 2003.
Ren, Z. H., Lin, W., Faure, M., Meng, L. T., Qiu, H. B., and Zeng, J. P.:
Triassic-Jurassic evolution of the eastern North China Craton: Insights
from the Lushun-Dalian area, South Liaodong Peninsula, NE China, Geol. Soc.
Am. Bull., 133, 393–408, https://doi.org/10.1130/B35533.1, 2020.
Rudnick, R. L. and Gao, S.: Composition of the continental crust, Treatise.
Geochem., 3, 1–64, https://doi.org/10.1016/b0-08-043751-6/03016-4, 2003.
Schiller, D. and Finger, F.: Application of Ti-in-zircon thermometry to
granite studies: problems and possible solutions, Contrib. Mineral. Petr.,
174, 51, https://doi.org/10.1007/s00410-019-1585-3, 2019.
Schmitz, M. D. and Kuiper, K. F.: High-Precision Geochronology, Elements,
9, 25–30, https://doi.org/10.2113/gselements.9.1.25, 2013.
Schwartz, J. J., Johnson, K., Miranda, E. A., and Wooden, J. L.: The
generation of high plutons following Late Jurassic arc–arc collision,
Blue Mountains province, NE Oregon, Lithos, 126, 22–41,
https://doi.org/10.1016/j.lithos.2011.05.005, 2011.
Scott, E. M., Allen, M. B., Macpherson, C. G., McCaffrey, K. J. W., Davidson,
J. P., Saville, C., and Ducea, M. N.: Andean surface uplift constrained by
radiogenic isotopes of arc lavas, Nat. Commun., 9, 969,
https://doi.org/10.1038/s41467-018-03173-4, 2018.
Shahbazi, H., Maghami, Y. T., Azizi, H., Asahara, Y., Siebel, Y., Maanijou,
M., and Rezai, A.: Zircon U-Pb ages and petrogenesis of late Miocene
adakitic rocks from the Sari Gunay gold deposit, NW Iran, Geol. Mag., 158, 1733–1755,
https://doi.org/10.1017/S0016756821000297, 2021.
Shannon, R. D.: Revised effective ionic radii and systematic studies of
interatomic distances in halides and chalcogenides, Acta Crystallogr. A,
32, 751–767, https://doi.org/10.1107/S0567739476001551, 1976.
Shaw, D. M.: Trace element fractionation during anatexis, Geochim. Cosmochim.
Ac., 34, 237–243, https://doi.org/10.1016/0016-7037(70)90009-8, 1970.
Siégel, C., Bryan, S. E., Allen, C. M., and Gust, D. A.: Use and abuse
of zircon-based thermometers: A critical review and a recommended approach
to identify antecrystic zircons, Earth. Sci. Rev., 176, 87–116,
https://doi.org/10.1016/j.earscirev.2017.08.011, 2018.
Skjerlie, K. P. and Johnston, A. D.: Vapor-absent melting at 10 kbar of a
biotite-and amphibole-bearing tonalitic gneiss: implications for the
generation of A-type granites, Geology, 20, 263–266,
https://doi.org/10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2, 1992.
Sláma, J., Košler, J., and Condon, D. J.: Plešovice zircon-A new
natural reference material for U-Pb and Hf isotopic microanalysis, Chem.
Geol., 249, 1–35, https://doi.org/10.1016/j.chemgeo.2007.11.005,
2008.
Söderlund, U., Patchett, P. J., Vervoort, J. D., and Isachsen, C. E.: The
176 Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of
Precambrian mafic intrusions, Earth. Planet. Sc. Lett., 219, 311–324,
https://doi.org/10.1016/S0012-821X(04)00012-3, 2004.
Sun, S. S. and McDonough, W. F.: Chemical and isotopic systematics of
oceanic basalts: implications for mantle composition and processes, Geol.
Soc. Lond. Spec. Publ., 42, 313–345,
https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989.
Tang, J., Xu, W. L., Wang, F., and Ge, W. C.: Subduction history of the
Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic
records in Northeast Asia, Sci. China. Earth. Sci., 61, 527–559,
https://doi.org/10.1007/s11430-017-9174-1, 2018.
Trail, D., Watson, E. B., and Tailby, N. D.: Ce and Eu anomalies in zircon
as proxies for the oxidation state of magmas, Geochim. Cosmochim. Ac., 97,
70–87, https://doi.org/10.1016/j.gca.2012.08.032, 2012.
Vervoort, J. D. and Blichert-Toft, J.: Evolution of the depleted mantle: Hf
isotope evidence from juvenile rocks through time, Geochim. Cosmochim. Ac.,
63, 533–556, https://doi.org/10.1016/S0016-7037(98)00274-9, 1999.
Wan, Y. S., Song, B., Liu, D. Y., Wilde, S. A., Wu, J. S., Shi, Y. R., Yin,
X. Y., and Zhou, H. Y.: SHRIMP U-Pb zircon geochronology of
Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence
for a major Late Palaeoproterozoic tectonothermal event, Precambrian. Res.,
149, 271, https://doi.org/10.1016/j.precamres.2006.06.006, 2006.
Wang, F., Liu, F., Schertl, H. P., Xu, W., Liu, P., and Tian, Z.: Detrital
zircon U-Pb geochronology and Hf isotopes of the Liaohe Group, Jiao-Liao-Ji
Belt: Implications for the Paleoproterozoic tectonic evolution, Precambrian.
Res., 340, 105633, https://doi.org/10.1016/j.precamres.2020.105633, 2020.
Wang, N., Wu, C. L., Lei, M., and Chen, H. J.: Petrogenesis and tectonic
implications of the Early Paleozoic granites in the western segment of the
North Qilian orogenic belt, China, Lithos, 312–313, 89–107,
https://doi.org/10.1016/j.lithos.2018.04.023, 2018.
Wang, Q., Xu, J. F., Jian, P., Bao Z. W., Zhao, Z. H., Li, C. F., Xiong, X.
L., and Ma, J. L.: Petrogenesis of adakitic porphyries in an extensional
tectonic setting, Dexing, South China: Implications for the genesis of
porphyry copper mineralization, J. Petrol., 47, 119–144,
https://doi.org/10.1093/petrology/egi070, 2006.
Wang, X., Griffin, W. L., O'Reilly, S. Y., and Li, W. X.: Three stages of
zircon growth in magmatic rocks from the Pingtan Complex, eastern China,
Acta Geol. Sin.-Engl., 81, 68–80,
https://doi.org/10.3321/j.issn:1000-9515.2007.01.008, 2007.
Wang, X., Griffin, W. L., Chen, J., Huang, P. Y., and Li, X.: U and Th
contents and ratios of zircon in felsic and mafic magmatic rocks:
Improved zircon-melt distribution coefficients, Acta Geol. Sin.-Engl., 85,
164–174, https://doi.org/10.1111/j.1755-6724.2011.00387.x, 2011.
Wang, X. L., Lv, X., Liu, Y. J., Zhao, Y. Y., Li, C., Wu, W. B., Wang, Y. P., and
Li, H. Y.: LA-ICP-MS zircon U-Pb ages, geochemical characteristics of Late
Triassic intrusives in Xiuyan area, eastern Liaoning and their geological
significances, Ore. Geol. Rev., 65, 401–416,
https://doi.org/10.16509/j.georeview.2019.02.010, 2019.
Wang, X. P., Oh, C. W., Peng, P., Zhai, M. G., Wang, X. H., and Lee, B. Y.:
Distribution pattern of age and geochemistry of 2.18–2.14 Ga I- and A-type
granites and their implication for the tectonics of the Liao-Ji belt in the
North China Craton, Lithos, 364–365, 105518,
https://doi.org/10.1016/j.lithos.2020.105518, 2020.
Watson, E. B. and Harrison, T. M.: Zircon saturation revisited: temperature
and composition effects in a variety of crustal magma types, Earth. Planet.
Sc. Lett., 64, 295–304, https://doi.org/10.1016/0012-821X(83)90211-X,
1983.
Watson, E. B. and Harrison, T. M.: Zircon thermometer reveals minimum
melting conditions on earliest Earth, Science, 308, 841–844,
https://doi.org/10.1126/science.1110873, 2005.
Whalen, J. B., Currie, K. L., and Chappell, B. W.: A-type granites:
geochemical characteristics, discrimination and petrogenesis, Contrib.
Mineral. Petr., 95, 407–419, https://doi.org/10.1007/BF00402202, 1987.
Wolf, M. B. and London, D.: Apatite dissolution into peraluminous
haplogranitic melts: An experimental study of solubilities and mechanisms,
Geochim. Cosmochim. Ac., 58, 4127–4145,
https://doi.org/10.1016/0016-7037(94)90269-0, 1994.
Wu, F. Y., Jahn, B. M., Wilde, S. A., Lo, C. H., Yui, T. F., Lin, Q., Ge, W.
C., and Sun, D. Y: Highly fractionated I-type granites in NE China (I):
geochronology and petrogenesis, Lithos, 66, 241–273,
https://doi.org/10.1016/s0024-4937(02)00222-0, 2003.
Wu, F. Y., Yang, J. H., Wilde, S. A., and Zhang, X. O.: Geochronology,
petrogenesis and tectonic implications of Jurassic granites in the Liaodong
Peninsula, NE China, Chem. Geol., 221, 127–156,
https://doi.org/10.1016/j.chemgeo.2005.04.010, 2005a.
Wu, F. Y., Yang, J. H., and Liu, X. M.: Geochronological framework of the
Mesozoic granitic magmatism in the Liaodong Peninsula, Northeast China, Geol. J. China. Univ., 11, 305–317, 2005b (in
Chinese with English abstract).
Wu, F. Y., Lin, J. Q., Wilde, S. A., Zhang, X. O., and Yang, J. H.: Nature and
significance of the Early Cretaceous giant igneous event in eastern China,
Earth. Planet. Sc. Lett., 233, 103–119,
https://doi.org/10.1016/j.epsl.2005.02.019, 2005c.
Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H., and Xu, P.: Hf isotopic
compositions of the standard zircons and baddeleyites used in U-Pb
geochronology, Chem. Geol., 234, 105–126,
https://doi.org/10.1016/j.chemgeo.2006.05.003, 2006.
Wu, F. Y., Han, R. H., Yang, J. H., Wilde, S. A., Zhai, M. G., and Park, S. C.:
Initial constraints on the timing of granitic magmatism in North Korea using
U-Pb zircon geochronology, Chem. Geol., 238, 232–248,
https://doi.org/10.1016/j.chemgeo.2006.11.012, 2007.
Wu, F. Y., Liu, X. C., Ji, W. Q., Wang, J. M., and Yang, L.: Highly
fractionated granites: Recognition and research, Sci. China. Earth. Sci.,
60, 1201–1219, https://doi.org/10.1007/s11430-016-5139-1, 2017.
Xu, J. F., Shinjo, R., Defant, M. J., Wang, Q., and Rapp, R. P.: Origin of
Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:
partial melting of delaminated lower continental crust?, Geology, 30,
1111–1114, https://doi.org/10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2, 2002.
Xue, S., Ling, M. X., Liu, Y. L., Zhang, H., and Sun, W. D.: The genesis of
early Carboniferous adakitic rocks at the southern margin of the Alxa Block,
North China, Lithos, 278–281, 181–194,
https://doi.org/10.1016/j.lithos.2017.01.012, 2017.
Xue, J. X., Liu, Z. H., Liu, J. X., Dong, X. J., Feng, F., and Lian, G. H.:
Geochemistry, Geochronology, Hf isotope and Tectonic Significance of the
Late Jurassic Huangdi Pluton in Xiuyan, Liaodong Penins, Earth Sci., 46, 2030–2043,
https://doi.org/10.3799/dqkx.2020.008, 2020 (in Chinese with
English abstract).
Yang, F. C., Song, Y. H., Hao, L. B., and Peng, C.: Late Jurassic SHRIMP U-Pb
age and Hf isotopic characteristics of granite from the Sanjiazi Area in
Liaodong and their geological significance, Acta. Geol. Sin.-Eng., 89, 1773–1782, 2015 (in Chinese with English
abstract).
Yang, F. C., Song, Y. H., Yang, J. L., Shen, X., and Gu, Y. C.: SHRIMP U-Pb age
and geochemical characteristics of granites in Wulong-Sidaogou Gold Deposit,
East Liaoning, Geotectonica et
Metallogenia, 42, 940–954, https://doi.org/10.16539/j.ddgzyckx.2018.05.010,
2018 (in Chinese with English abstract).
Yang, J. H., Wu, F. Y., Lo, C. H., Chung, S. L., Zhang, Y. B., and Wilde, S. A.:
Deformation age of Jurassic granites in the Dandong area, eastern China:
geochronological constraints,
Acta Petrol. Sin., 20, 1205–1214, 2004 (in Chinese with English abstract).
Yang, J. H., Wu, F. Y., Xie, L. W., and Liu, X. M.: Petrogenesis and
tectonic implications of Kuangdonggou synites in the Liaodong Peninsula,
east North China Craton: Constraints from in-suit zircon U-Pb ages and Hf
isotopes, Acta Petrol. Sin., 23,
263–276, https://doi.org/10.1016/j.sedgeo.2006.03.028, 2007 (in Chinese with English abstract).
Yang, M. C., Chen, B., and Yan, C.: Petrological, geochronological,
geochemical and Sr-Nd-Hf isotopic constraints on the petrogenesis of the
Shuangcha Paleoproterozoic megaporphyritic granite in the southern Jilin
Province: Tectonic implications, Acta
Petrol. Sin., 31, 1573–1588, 2015 (in Chinese with English abstract).
Yang, M. C., Chen, B., and Yan, C.: Paleoproterozoic Gneissic Granites in the
Liaoji Mobile Belt, North China Craton: Implications for Tectonic Setting, in: Main Tectonic Events and Metallogeny of
the North China Craton, edited by: Zhai, M., Zhao, Y., and Zhao, T., Geology, Springer, Singapore, 155–180, https://doi.org/10.1007/978-981-10-1064-4_7, 2016.
Yang, Y. W., Yu, C., Wang, G. W., Su, T., Yang, X. Y., and Zhang, T. Y.: Chronology, geochemistry and zircon Hf isotopes of the Paleoproterozoic alkali feldspar granite from the Heigou area in the eastern Liaoning Province:constraints on the tectonic evolution of the Liao-Ji orogenic belt, Acta. Geol. Sin., https://doi.org/10.19762/j.cnki.dizhixuebao.2020020, 2020 (in Chinese with English abstract).
Yu, S., Zhang, J., and Del Real, P. G.: Geochemistry and zircon U-Pb ages of
adakitic rocks from the Dulan area of the North Qaidam UHP terrane, north
Tibet: constraints on the timing and nature of regional tectonothermal
events associated with collisional orogeny, Gondwana Res., 21, 167–179,
https://doi.org/10.1016/j.gr.2011.07.024, 2012.
Yuan, H. L., Gao, S., Dai, M. N., Zong, C. L., Günther, D., Fontaine, G. H.,
Liu, X. M., and Diwu, C. R.: Simultaneous determinations of U-Pb age, Hf
isotopes and trace element compositions of zircon by excimer laser-ablation
quadrupole and multiple-collector ICP-MS, Chem. Geol., 247, 100–118,
https://doi.org/10.1016/j.chemgeo.2007.10.003, 2008.
Yuan, L. L., Zhang, X. H., Xue, F. H., Han, C. M., Chen, H. H., and Zhai, M.
G.: Two episodes of Paleoproterozoic mafic intrusions from Liaoning
province, North China Craton: Petrogenesis and tectonic implications,
Precambrian Res., 264, 119–139,
https://doi.org/10.1016/j.precamres.2015.04.017, 2015.
Zeng, R. Y., Lai, J. Q., Mao, X. C., Li, B., Ju, P. J., and Tao, S. L.:
Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic
granitoids in Jinchuan, NW China: Constraints on their petrogenesis, source
characteristics and tectonic implication, J. Asian Earth. Sci., 121,
20–33, https://doi.org/10.1016/j.jseaes.2016.02.009, 2016.
Zeng, R. Y., Lai, J. Q., Mao, X. C., Li, B., Zhang, J. D., Bayless, R., and
Yang, L. Z.: Paleoproterozoic Multiple Tectonothermal Events in the
Longshoushan Area, Western North China Craton and Their Geological
Implication: Evidence from Geochemistry, Zircon U-Pb Geochronology and Hf
Isotopes, Minerals Basel, 8, 361, https://doi.org/10.3390/MIN8090361, 2018.
Zhai, M. G., Meng, Q. R., Liu, J. M., Hou, Q. L., Hu, S. B., Li, Z., Zhang, H. F.,
Liu, W., Shao, J. A., and Zhu, R. X.: Geological features of Mesozoic tectonic
regime inversion in eastern North China and implication for geodynamics,
Earth Sci. Front., 11, 285–298,
https://doi.org/10.3321/j.issn:1005-2321.2004.03.027, 2004.
Zhan, Q. Y., Zhu, D. C., Wang, Q., Weinberg, R. F., Xie, J. C., Li, S. M.,
Zhang, L. L., and Zhao, Z. D.: Source and pressure effects in the genesis of
the Late Triassic high granites from the Songpan-Ganzi Fold Belt,
eastern Tibetan Plateau, Lithos, 368–369,
https://doi.org/10.1016/j.lithos.2020.105584, 2020.
Zhang, B., Guo, F., Zhang, X. B., Wu, Y. M., Wang, G. Q., and Zhao, L.: Early
Cretaceous subduction of Paleo-Pacific Ocean in the coastal region of SE
China: Petrological and geochemical constraints from the mafic intrusions,
Lithos, 334–335, 8–24, https://doi.org/10.1016/j.lithos.2019.03.010, 2019.
Zhang, Q., Qian, Q., Wang, E. Q., Wang, Y., Zhao, T. P., Hao, J., and Guo,
G. J.: An East China plateau in mid-late Yanshanian period: implication from
adakites, Chinese, Chinese Journal of
Geology, 36, 248–255, 2001 (in Chinese with English abstract).
Zhang, Q., Wang, Y., Liu, H., and Wang, Y.: On the space-time distribution
and geodynamic environments of adakites in China annex: controversies over
differing opinions for adakites in China,
Earth Sci. Front., https://doi.org/10.1016/S0955-2219(02)00073-0,
2003 (in Chinese with English abstract).
Zhang, S., Zhu, G., Xiao, S. Y., Su, N., Liu, C., Wu, X. D., Yin, H., Li,
Y. J., and Lu, Y. C.: Temporal variations in the dynamic evolution of an
overriding plate: Evidence from the Wulong area in the eastern North China
Craton, China, Geol. Soc. Am. Bull., 132, 2023–2042,
https://doi.org/10.1130/B35465.1, 2020.
Zhao, K. D., Jiang, S. Y., Ling, H. F., and Palmer, M. R.: Reliability of
LA-ICP-MS U-Pb dating of zircons with high U concentrations: A case study
from the U-bearing Douzhashan Granite in South China, Chem. Geol., 389,
110–121, https://doi.org/10.1016/j.chemgeo.2014.09.018, 2014.
Zheng, J. P. and Dai, H. K.: Subduction and retreating of the western Pacific
plate resulted in lithospheric mantle replacement and coupled basinmountain
respond in the North China Craton, Sci. China. Earth. Sci., 61, 406–424,
https://doi.org/10.1007/s11430-017-9166-8, 2018.
Zheng, Y. F., Xu, Z. F., Zhao, Z. F., and Dai, L. Q.: Mesozoic mafic magmatism
in North China: Implications for thinning and destruction of cratonic
lithosphere, Sci. China. Earth Sci., 61, 353–385,
https://doi.org/10.1007/s11430-017-9160-3, 2018.
Zhu, R. X. and Xu, Y. G.: The subduction of the west Pacific plate and the
destruction of the North China Craton, Sci. China. Earth Sci., 62,
1340–1350, https://doi.org/10.1007/s11430-018-9356-y, 2019.
Short summary
In the Liaodong Peninsula, the widely exposed Jurassic high-Sr / Y rocks are generally considered to be derived from the thickened mafic crust. However, research on the Zhoujiapuzi granite in this study shows that there is at least one pluton with a high Sr / Y signature inherited from the source. Zircon growth in Zhoujiapuzi granite can be divided into two stages. The light-CL core was formed in a deeper, hotter magma chamber. The dark-CL rim formed from later, more evolved magma.
In the Liaodong Peninsula, the widely exposed Jurassic high-Sr / Y rocks are generally...