Bustin, R. M., Bustin, A. M. M., Cui, A., Ross, D., and Pathi, V. M.:
Impact of shale properties on pore structure and storage characteristics.
Paper presented at the SPE Shale Gas Production Conference, 16–18 November
2008, Fort Worth, Texas, USA, SPE-119892-MS, https://doi.org/10.2118/119892-MS, 2008.
Calderón, E., Gauthier, M., Decremps, F., Hamel, G., Syfosse, G., and
Polian, A.: Complete determination of the elastic moduli of
α-quartz
under hydrostatic pressure up to 1 GPa: an ultrasonic study, J. Phys.
Condens. Matter, 19, 436228, https://doi.org/10.1088/0953-8984/19/43/436228, 2007.
Cui, X., Bustin, A. M. M., and Bustin, R. M.: Measurements of gas
permeability and diffusivity of tight reservoir rocks: different approaches
and their applications, Geofluids, 9, 208–223,
https://doi.org/10.1111/j.1468-8123.2009.00244.x, 2009.
Diaz, H. G., Fuentes, C. C., Calvin, C., Yang, Y., MacPhail, K., and Lewis,
R.: Evaluating the impact of mineralogy on reservoir quality and completion
quality of organic shale plays, in: AAPG Rocky Mountain Section Meeting,
Salt Lake City, Utah,
https://www.searchanddiscovery.com/ (last access: 14 March 2022),
2013.
Dowey, P. J. and Taylor, K. G.: Diagenetic mineral development within the
Upper Jurassic Haynesville-Bossier Shale, USA, Sedimentology 67, 47–77,
https://doi.org/10.1111/sed.12624, 2020.
Faulkner, D. R. and Rutter, E. H.: Comparisons of water and argon
permeability in natural clay-bearing fault gouge under high pressure at
20
∘C, J. Geophys. Res.-Sol. Ea., 105,
16415–16426, https://doi.org/10.1029/2000jb900134, 2000.
Fischer, G. J. and Paterson, M. S.: Measurement of permeability and
storage capacity in rocks during deformation at high temperature and
pressure, in: Fault Mechanics and Transport Properties of Rocks, edited by:
Evans, B. and Wong, T.-F., Academic Press, San Diego, California, 213–251, ISBN 978-0-12-243780-9, 1992.
Gosman, A. L., McCarty, R. D., and Hust, J. G.: Thermodynamic properties of
argon from the triple point to 300 K at pressures to 1000 atmospheres, in:
National Standard Reference Data Series, National Bureau of Standards, 27,
Washington, DC, US Department of Commerce, National Bureau of Standards, Washington DC,
https://nvlpubs.nist.gov/nistpubs/Legacy/NSRDS/nbsnsrds27.pdf (last access: 14 March 2022), 1969.
Green, D. H. and Wang, H. F.: Fluid pressure response to undrained
compression
in saturated sedimentary rock, Geophysics, 51, 948–956, 1986.
Guo, K., Zhang, B., Wachtmeister, H., Aleklettb, K., and Höök, M.:
Characteristic Production Decline Patterns for Shale Gas Wells in Barnett.
International Journal of Sustainable Future for Human Security, J. Sustain.,
5, 12–21, https://doi.org/10.24910/jsustain/5.1/1221, 2017.
Hackston, A. and Rutter, E.: The Mohr–Coulomb criterion for intact rock strength and friction – a re-evaluation and consideration of failure under polyaxial stresses, Solid Earth, 7, 493–508, https://doi.org/10.5194/se-7-493-2016, 2016.
Hasanov, A. K., Dugan, B., Batzle, M. L., and Prasad, M.: Hydraulic and
poroelastic rock properties from oscillating pore pressure experiments,
J. Geophys. Res.-Sol. Ea., 124, 4473–4491, https://doi.org/10.1029/2018JB017276, 2019.
Hasanov, A. K., Dugan, B., and Batzle, M. L.: Numerical simulation of
oscillating pore pressure experiments and inversion for permeability, Water
Resour. Res., 56, e2019WR025681, https://doi.org/10.1029/2019WR025681,
2020.
Howard, J. J.: Influence of authigenic clay minerals on permeability, in:
Origin, Diagenesis, and
Petrophysics of Clay Minerals in Sandstones, edited by: Houseknecht, D. W. and Pittman, E. D., SEPM Special Publication, 47,
257–264, https://doi.org/10.2110/pec.92.47.0257, 1992.
Kelling, G.: Upper Carboniferous sedimentation in South Wales, in: The Upper Palaeozoic and post-Palaeozoic rocks of Wales, edited by:
Owen, T. R., Cardiff, UK, University of Wales Press, 185–224, ISBN 9780708305553, 1974.
Kranz, R. L., Saltzman, J. S., and Blacic, J. D.: Hydraulic diffusivity
measurements on laboratory rock samples using an oscillating pore pressure
method, Int. J. Rock Mech. Min. Sci., 27,
345–352, https://doi.org/10.1016/0148-9062(90)92709-N, 1990.
Kwon, O., Kronenberg, A. K., Gangi, A. F., and Johnson, B.: Permeability of
Wilcox shale and its effective pressure law, J. Geophys. Res., 106,
19339–19353, https://doi.org/10.1029/2001JB000273, 2001.
Kwon, O., Kronenberg, A. K., Gangi, A. F., Johnson, B., and Herbert, B. E.:
Permeability of illite-bearing shale: 1. Anisotropy and effects of clay
content and loading, J. Geophys. Res., 109, B10205, https://doi.org/10.1029/2004JB003052,
2004.
Lazar, O. R., Bohacs, K. M., Macquaker, J. H. S., Schieber, J., and Demko, T.
M.: Capturing key attributes of finegrained sedimentary rocks in outcrops,
cores, and thin sections: nomenclature and description guidelines, J. Sed.
Res., 85, 230–246, 2015.
Lockner, D. A. and Stanchits, S. A.: Undrained Poroelastic Response of
Sandstones to Deviatoric Stress Change, J. Geophys. Res., 107, 2353,
https://doi.org/10.1029/2001JB001460, 2002.
Ma, L., Slater, T., Dowey, P. J., Yue, S., Rutter E. H., Taylor, K. G., and
Lee, P. D.: Hierarchical integration of porosity in shales, Sci.
Rep., 8, 11683, https://doi.org/10.1038/s41598-018-30153-x, 2018.
Ma, X. and Zoback, M. D.: Laboratory experiments simulating poroelastic
stress changes associated with depletion and injection in low porosity
sedimentary rocks, J. Geophys. Res.-Sol. Ea., 122, 2478–2503,
https://doi.org/10.1002/2016JB013668, 2017.
Mavko, G., Mukerji, T., and Dvorkin, J., The rock physics handbook: tools for
seismic analysis of porous media, Cambridge, Cambridge University Press,
Cambridge, UK, Vol. 112, 483,
https://doi.org/10.1192/bjp.112.483.211-a, 2009.
Mavko, G. M. and Nur, A.: The effect of nonelliptical cracks on the
compressibility of rocks, J. Geophys. Res., 83, 4459–4468, 1978.
McKernan, R., Mecklenburgh, J., Rutter, E. H., and Taylor, K. G.:
Microstructural controls on the pressure-dependent permeability of Whitby
mudstone, in:
Geomechanical and Petrophysical Properties of Mudrocks, edited by: Rutter, E. H., Mecklenburgh, J., and Taylor, K. G., Geological Society,
London, Special Publications, 454, 39–66, doi.org/10.1144/SP454.15, 2017.
Mendelson, K. S.: Bulk modulus of a polycrystal, J. Phys. D: Appl. Phys., 14
1307–1309, 1981.
Michels, S., Botzen, A., and Schuurman, W.: The viscosity of argon at
pressures up to 2000 atmospheres, Physica, 20, 1141–1148, https://doi.org/10.1016/S0031-8914(54)80257-6, 1954.
Nur, A. and Byerlee, J. D.: An exact effective stress law for elastic
deformation
of rocks with fluids, J. Geophys. Res., 76, 6414–6419, 1971.
Rutter E. H. and Hackston, A.: On the effective stress law for rock-on-rock
frictional sliding, and fault slip triggered by means of fluid injection,
Phil. Trans. R. Soc. A, 375, 20160001, https://doi.org/10.1098/rsta.2016.0001, 2017.
Rutter E. H. and Mecklenburgh J.: Hydraulic conductivity of
bedding-parallel cracks in shale as a function of shear and normal stress,
in: Geomechanical and petrophysical properties of mudrocks, edited by: Rutter, E.,
Mecklenburgh, J., and Taylor, K., Geological
Society of London Special Publication, Vol. 454, London, UK, Geological Society of London,
https://doi.org/10.1144/SP454.9, 2017.
Rutter, E. H. and Mecklenburgh, J.: Influence of Normal and Shear Stress on
the Hydraulic Transmissivity of Thin Cracks in a Tight Quartz Sandstone, a
Granite, and a Shale, J. Geophys. Res.-Sol. Ea., 123,
1262–1285, 2018.
Rutter, E. H. and Mecklenburgh, J.: Experimental data on tight rock
permeability, NERC EDS National Geoscience Data Centre [data set and code], https://doi.org/10.5285/7dca47c4-1542-4b14-9505-72666b78938b, 2022.
Seeburger, D. A. and Nur, A.: A pore space model for rock permeability and
bulk modulus, J. Geophys. Res., 89, 527–536, https://doi.org/10.1029/JB089iB01p00527, 1984.
Skempton, A. W.: The pore pressure coefficient in saturated soils,
Géotechnique, 10, 186–187, 1960.
Terzaghi, K. V.: Die Berechnung der Durchassigkeitsziffer des Tones aus dem
Verlauf der hydrodynamischen Spannungserscheinungen, Sitzungsber. Akad.
Wiss. Wien Math Naturwiss. Kl. Abt. 2A, 132, 125–138, 1923.
Walsh, J.: The effect of cracks on the compressibility of rock, J.
Geophys. Res., 70, 381–389, https://doi.org/10.1029/jz070i002p00381, 1965.
Wang, H.: What Factors Control Shale Gas Production and Production Decline
Trend in Fractured Systems: A Comprehensive Analysis and Investigation, SPE
J., 22, 562–581, https://doi.org/10.2118/179967-PA, 2017.
Wilson, M. D. and Pittman, E. D.: Authigenic clays in sandstones;
recognition and influence on reservoir properties and paleoenvironmental
analysis, J. Sediment. Res., 47, 3–31,
doi.org/10.1306/212F70E5-2B24-11D7-8648000102C1865D, 1977.
Zanazzi, P. F. and Pavese, A.: Behavior of micas at high pressures and
temperatures, in: Reviews in Mineralogy and Geochemistry, 46, edited by: Mottana, A.,
Sassi, F. P., Thompson, J. B., and Guggenheim, S., Mineralogical society of
America, Washington D.C., 99–106, https://doi.org/10.2138/rmg.2002.46.02, 2002.
Zee Ma, Y., Moore, W. R., Gomez, E., Clark, W. J., and Zhang, Y.: Tight Gas
Sandstone Reservoirs, Part 1: Overview and Lithofacies, Unconventional Oil and Gas Resources Handbook; Evaluation and Development,
chap. 14, Elsevier, Amsterdam, 405–427,
https://doi.org/10.1016/B978-0-12-802238-2.00014-6, 2016.
Zimmerman, R. W.: Compressibility of sandstones, Elsevier, Amsterdam, the
Netherlands, 173 pp., ISBN 9780080868875, 1991.