Articles | Volume 13, issue 6
https://doi.org/10.5194/se-13-935-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-935-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interdisciplinary fracture network characterization in the crystalline basement: a case study from the Southern Odenwald, SW Germany
Technical University of Darmstadt, Institute of Applied Geosciences, Department of Geothermal Science and Technology, Schnittspahnstraße 9, 64287 Darmstadt, Germany
Claire Bossennec
Technical University of Darmstadt, Institute of Applied Geosciences, Department of Geothermal Science and Technology, Schnittspahnstraße 9, 64287 Darmstadt, Germany
Lukas Seib
Technical University of Darmstadt, Institute of Applied Geosciences, Department of Geothermal Science and Technology, Schnittspahnstraße 9, 64287 Darmstadt, Germany
Kristian Bär
GeoThermal Engineering GmbH, An der Raumfabrik 33c, 76227 Karlsruhe, Germany
Eva Schill
Technical University of Darmstadt, Institute of Applied Geosciences, Department of Geothermal Science and Technology, Schnittspahnstraße 9, 64287 Darmstadt, Germany
Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Ingo Sass
Technical University of Darmstadt, Institute of Applied Geosciences, Department of Geothermal Science and Technology, Schnittspahnstraße 9, 64287 Darmstadt, Germany
GFZ German Research Centre for Geosciences, Section 4.8: Geoenergy, Telegrafenberg, 14473 Potsdam, Germany
Related authors
Lionel Bertrand, Claire Bossennec, Wan-Chiu Li, Cédric Borgese, Bruno Gavazzi, Matthis Frey, Yves Géraud, Marc Diraison, and Ingo Sass
EGUsphere, https://doi.org/10.5194/egusphere-2023-1316, https://doi.org/10.5194/egusphere-2023-1316, 2023
Preprint archived
Short summary
Short summary
The assessement of fracture networks is a key element for underground reservoir studies. The available methods for such assessement are unfortunately very limited in the case of complex 3 dimensions geometries. The paper shows a new method to overcome these limitations through automatic detection from images of outcrops.
Thomas Kohl, Ingo Sass, Olaf Kolditz, Christoph Schüth, Wolfram Rühaak, Jürgen Schamp, Judith Bremer, Bastian Rudolph, Katharina Schätzler, and Eva Schill
Saf. Nucl. Waste Disposal, 2, 135–136, https://doi.org/10.5194/sand-2-135-2023, https://doi.org/10.5194/sand-2-135-2023, 2023
Short summary
Short summary
Crystalline rocks are being considered as potential host rocks in the ongoing search for a suitable site for a nuclear waste repository in Germany, where there is no existing experience in terms of excavating a repository in crystalline rocks. The planned underground laboratory GeoLaB addressing crystalline geothermal reservoirs offers unique opportunities for synergies with nuclear waste disposal research and development, especially in the exploration and building phases.
Lionel Bertrand, Claire Bossennec, Wan-Chiu Li, Cédric Borgese, Bruno Gavazzi, Matthis Frey, Yves Géraud, Marc Diraison, and Ingo Sass
EGUsphere, https://doi.org/10.5194/egusphere-2023-1316, https://doi.org/10.5194/egusphere-2023-1316, 2023
Preprint archived
Short summary
Short summary
The assessement of fracture networks is a key element for underground reservoir studies. The available methods for such assessement are unfortunately very limited in the case of complex 3 dimensions geometries. The paper shows a new method to overcome these limitations through automatic detection from images of outcrops.
Rafael Schäffer, Kristian Bär, Sebastian Fischer, Johann-Gerhard Fritsche, and Ingo Sass
Earth Syst. Sci. Data, 13, 4847–4860, https://doi.org/10.5194/essd-13-4847-2021, https://doi.org/10.5194/essd-13-4847-2021, 2021
Short summary
Short summary
Knowledge of groundwater properties is relevant, e.g. for drinking-water supply, spas or geothermal energy. We compiled 1035 groundwater datasets from 560 springs or wells sampled since 1810, using mainly publications, supplemented by personal communication and our own measurements. The data can help address spatial–temporal variation in groundwater composition, uncertainties in groundwater property prediction, deep groundwater movement, or groundwater characteristics like temperature and age.
Sebastian Weinert, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 1441–1459, https://doi.org/10.5194/essd-13-1441-2021, https://doi.org/10.5194/essd-13-1441-2021, 2021
Short summary
Short summary
Physical rock properties are a key element for resource exploration, the interpretation of results from geophysical methods or the parameterization of physical or geological models. Despite the need for physical rock properties, data are still very scarce and often not available for the area of interest. The database presented aims to provide easy access to physical rock properties measured at 224 locations in Bavaria, Hessen, Rhineland-Palatinate and Thuringia (Germany).
Leandra M. Weydt, Ángel Andrés Ramírez-Guzmán, Antonio Pola, Baptiste Lepillier, Juliane Kummerow, Giuseppe Mandrone, Cesare Comina, Paromita Deb, Gianluca Norini, Eduardo Gonzalez-Partida, Denis Ramón Avellán, José Luis Macías, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 571–598, https://doi.org/10.5194/essd-13-571-2021, https://doi.org/10.5194/essd-13-571-2021, 2021
Short summary
Short summary
Petrophysical and mechanical rock properties are essential for reservoir characterization of the deep subsurface and are commonly used for the population of numerical models or the interpretation of geophysical data. The database presented here aims at providing easily accessible information on rock properties and chemical analyses complemented by extensive metadata (location, stratigraphy, petrography) covering volcanic, sedimentary, metamorphic and igneous rocks from Jurassic to Holocene age.
Kristian Bär, Thomas Reinsch, and Judith Bott
Earth Syst. Sci. Data, 12, 2485–2515, https://doi.org/10.5194/essd-12-2485-2020, https://doi.org/10.5194/essd-12-2485-2020, 2020
Short summary
Short summary
Petrophysical properties are key to populating numerical models of subsurface process simulations and the interpretation of many geophysical exploration methods. The P3 database presented here aims at providing easily accessible, peer-reviewed information on physical rock properties in one single compilation. The uniqueness of P3 emerges from its coverage and metadata structure. Each measured value is complemented by the corresponding location, petrography, stratigraphy and original reference.
Swarup Chauhan, Kathleen Sell, Wolfram Rühaak, Thorsten Wille, and Ingo Sass
Geosci. Model Dev., 13, 315–334, https://doi.org/10.5194/gmd-13-315-2020, https://doi.org/10.5194/gmd-13-315-2020, 2020
Short summary
Short summary
We present CobWeb 1.0, a graphical user interface for analysing tomographic images of geomaterials. CobWeb offers different machine learning techniques for accurate multiphase image segmentation and visualizing material specific parameters such as pore size distribution, relative porosity and volume fraction. We demonstrate a novel approach of dual filtration and dual segmentation to eliminate edge enhancement artefact in synchrotron-tomographic datasets and provide the computational code.
Leandra M. Weydt, Kristian Bär, Chiara Colombero, Cesare Comina, Paromita Deb, Baptiste Lepillier, Giuseppe Mandrone, Harald Milsch, Christopher A. Rochelle, Federico Vagnon, and Ingo Sass
Adv. Geosci., 45, 281–287, https://doi.org/10.5194/adgeo-45-281-2018, https://doi.org/10.5194/adgeo-45-281-2018, 2018
Short summary
Short summary
The here submitted paper represents the first results of a larger project named
GEMex. The objective of the project – a Mexican–European cooperation – is to explore the geothermal potential of deep unconventional systems like enhanced geothermal systems (EGS) and super-hot geothermal systems (SHGS). New exploitation approaches and technologies are being developed, allowing the use of geothermal resources under challenging technical demands.
Meike Hintze, Barbara Plasse, Kristian Bär, and Ingo Sass
Adv. Geosci., 45, 251–258, https://doi.org/10.5194/adgeo-45-251-2018, https://doi.org/10.5194/adgeo-45-251-2018, 2018
Short summary
Short summary
The presented study is conducted within the scope of the joint research project "Hessen 3D 2.0" (BMWI-FKZ: 0325944) and aims at assessing the hydrothermal potential of the Pechelbronn Group for direct heat use by means of an integrated 3-D structural-geothermal model that serves to locate potential exploration areas. The assessment is based on reservoir temperature, (net)thickness of the reservoir horizon as well as on petrophysical, thermal and hydraulic rock properties.
Leandra M. Weydt, Claus-Dieter J. Heldmann, Hans G. Machel, and Ingo Sass
Solid Earth, 9, 953–983, https://doi.org/10.5194/se-9-953-2018, https://doi.org/10.5194/se-9-953-2018, 2018
Short summary
Short summary
This study focuses on the assessment of the geothermal potential of two extensive upper Devonian aquifer systems within the Alberta Basin (Canada). Our work provides a first database on geothermal rock properties combined with detailed facies analysis (outcrop and core samples), enabling the identification of preferred zones in the reservoir and thus allowing for a more reliable reservoir prediction. This approach forms the basis for upcoming reservoir studies with a focus on 3-D modelling.
Swarup Chauhan, Wolfram Rühaak, Hauke Anbergen, Alen Kabdenov, Marcus Freise, Thorsten Wille, and Ingo Sass
Solid Earth, 7, 1125–1139, https://doi.org/10.5194/se-7-1125-2016, https://doi.org/10.5194/se-7-1125-2016, 2016
Short summary
Short summary
Machine learning techniques are a promising alternative for processing (phase segmentation) of 3-D X-ray computer tomographic rock images. Here the performance and accuracy of different machine learning techniques are tested. The aim is to classify pore space, rock grains and matrix of four distinct rock samples. The porosity obtained based on the segmented XCT images is cross-validated with laboratory measurements. Accuracies of the different methods are discussed and recommendations proposed.
S. Homuth, A. E. Götz, and I. Sass
Geoth. Energ. Sci., 3, 41–49, https://doi.org/10.5194/gtes-3-41-2015, https://doi.org/10.5194/gtes-3-41-2015, 2015
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Petrology
Matrix gas flow through “impermeable” rocks – shales and tight sandstone
Benchmark study using a multi-scale, multi-methodological approach for the petrophysical characterization of reservoir sandstones
First report of ultra-high pressure metamorphism in the Paleozoic Dunhuang orogenic belt (NW China): Constrains from P-T paths of garnet clinopyroxenite and SIMS U-Pb dating of titanite
Ernest Rutter, Julian Mecklenburgh, and Yusuf Bashir
Solid Earth, 13, 725–743, https://doi.org/10.5194/se-13-725-2022, https://doi.org/10.5194/se-13-725-2022, 2022
Short summary
Short summary
Underground energy and waste storage require repurposing of existing oil and gas wells for gas storage, compressed air, hydrogen, methane, and CO2 disposal, requiring an impermeable cap rock (e.g. shales) over the porous reservoir. We measured shale permeability over a range of burial pressures and gas pore pressures. Permeability decreases markedly as effective pressure on the rocks is increased. Knowing these relationships is essential to the safe design of engineered gas reservoirs.
Peleg Haruzi, Regina Katsman, Matthias Halisch, Nicolas Waldmann, and Baruch Spiro
Solid Earth, 12, 665–689, https://doi.org/10.5194/se-12-665-2021, https://doi.org/10.5194/se-12-665-2021, 2021
Short summary
Short summary
In this paper, we evaluate a multi-methodological approach for the comprehensive characterization of reservoir sandstones. The approach enables identification of links between rock permeability and textural and topological rock descriptors quantified at microscale. It is applied to study samples from three sandstone layers of Lower Cretaceous age in northern Israel, which differ in features observed at the outcrop, hand specimen and micro-CT scales, and leads to their accurate characterization.
Zhen M. G. Li, Hao Y. C. Wang, Qian W. L. Zhang, Meng-Yan Shi, Jun-Sheng Lu, Jia-Hui Liu, and Chun-Ming Wu
Solid Earth Discuss., https://doi.org/10.5194/se-2020-95, https://doi.org/10.5194/se-2020-95, 2020
Preprint withdrawn
Short summary
Short summary
This manuscript provides the first evidence of ultra-high metamorphism in the Paleozoic Dunhuang orogenic belt (NW China). Though no coesite or diamond was found in the samples or in this orogen, the geothermobarometric computation results and petrographic textures all suggest that the garnet clinopyroxenite experienced ultra-high pressure metamorphism, and SIMS U-Pb dating of titanite indicates that the post peak, subsequent tectonic exhumation of the UHP rocks occurred in the Devonian.
Cited articles
Afshari, M., Valley, B., and Evans, K.: Scaling of Fracture Patterns in Three
Deep Boreholes and Implications for Constraining Fractal Discrete Fracture
Network Models, Rock Mech. Rock Eng., 52, 1723–1743,
https://doi.org/10.1007/s00603-019-1739-7, 2019. a
Agemar, T., Alten, J.-A., Ganz, B., Kuder, J., Kühne, K., Schumacher, S.,
and Schulz, R.: The Geothermal Information System for Germany – GeotIS,
Z. Dtsch. Ges. Geowiss., 165,
129–144, https://doi.org/10.1127/1860-1804/2014/0060, 2014. a
Altenberger, U. and Besch, T.: The Böllstein Odenwald: evidence for pre- to
early Variscan plate convergence in the Central European variscides,
Int. J. Earth Sci., 82, 475–488,
https://doi.org/10.1007/BF00212411, 1993. a
Altherr, R., Henes-Klaiber, U., Hegner, E., Satir, M., and Langer, C.:
Plutonism in the Variscan Odenwald (Germany): from subduction to collision,
Int. J. Earth Sci., 88, 422–443,
https://doi.org/10.1007/s005310050276, 1999. a, b
Altwegg, P., Schill, E., Abdelfettah, Y., Radogna, P. V., and Mauri, G.: Toward
fracture porosity assessment by gravity forward modeling for geothermal
exploration (Sankt Gallen, Switzerland), Geothermics, 57, 26–38,
https://doi.org/10.1016/j.geothermics.2015.05.006, 2015. a
Amstutz, G. C., Meisl, S., and Nickel, E. (Eds.): Mineralien und Gesteine im
Odenwald, Heidelberg, VFMG, https://hdl.handle.net/10013/epic.42772 (last access: 23 May 2022), 1975. a
Bächler, D., Kohl, T., and Rybach, L.: Impact of graben-parallel faults on
hydrothermal convection – Rhine Graben case study, Phys. Chem. Earth, 28, 431–441, https://doi.org/10.1016/S1474-7065(03)00063-9,
2003. a, b
Baillieux, P., Schill, E., Edel, J. B., and Mauri, G.: Localization of
temperature anomalies in the Upper Rhine Graben: insights from geophysics and
neotectonic activity, Int. Geol. Rev., 55, 1744–1762,
https://doi.org/10.1080/00206814.2013.794914, 2013. a, b, c
Bär, K., Reinecker, J., Bott, J., Cacace, M., Frey, M., van der Vaart,
J., Scheck-Wenderoth, M., Ritter, O., Homuth, B., Fritsche, J.-G., Spath, F.,
and Sass, I.: Integrated Exploration Strategy “ConvEx” to detect Hydrothermal
Convection in the Subsurface, in: Proceedings of the World Geothermal
Congress 2020+1, WGC, https://www.geothermal-energy.org/cpdb/record_detail.php?id=32926 (last access: 23 May 2022), 2021. a
Baskaran, M. (Ed.): Radon: A Tracer for Geological, Geophysical and Geochemical
Studies, Springer International Publishing,
https://doi.org/10.1007/978-3-319-21329-3, 2016. a
Baujard, C., Genter, A., Dalmais, E., Maurer, V., Hehn, R., Rosillette, R.,
Vidal, J., and Schmittbuhl, J.: Hydrothermal characterization of wells GRT-1
and GRT-2 in Rittershoffen, France: Implications on the understanding of
natural flow systems in the rhine graben, Geothermics, 65, 255–268,
https://doi.org/10.1016/j.geothermics.2016.11.001, 2017. a
Bertrand, L., Géraud, Y., Le Garzic, E., Place, J., Diraison, M., Walter,
B., and Haffen, S.: A multiscale analysis of a fracture pattern in granite: A
case study of the Tamariu granite, Catalunya, Spain, J. Struct.
Geol., 78, 52–66, https://doi.org/10.1016/j.jsg.2015.05.013, 2015. a, b, c, d
Bertrand, L., Jusseaume, J., Géraud, Y., Diraison, M., Damy, P.-C.,
Navelot, V., and Haffen, S.: Structural heritage, reactivation and
distribution of fault and fracture network in a rifting context: Case study
of the western shoulder of the Upper Rhine Graben, J. Struct.
Geol., 108, 243–255, https://doi.org/10.1016/j.jsg.2017.09.006, 2018. a
Biber, K., Khan, S. D., Seers, T. D., Sarmiento, S., and Lakshmikantha, M. R.:
Quantitative characterization of a naturally fractured reservoir analog using
a hybrid lidar-gigapixel imaging approach, Geosphere, 14, 710–730,
https://doi.org/10.1130/GES01449.1, 2018. a, b
Bisdom, K., Nick, H. M., and Bertotti, G.: An integrated workflow for stress
and flow modelling using outcrop-derived discrete fracture networks,
Comput. Geosci., 103, 21–35, https://doi.org/10.1016/j.cageo.2017.02.019,
2017. a, b
Bossennec, C., Seib, L., Frey, M., van der Vaart, J., and Sass, I.:
Structural Architecture and Permeability Patterns of Crystalline Reservoir
Rocks in the Northern Upper Rhine Graben: Insights from Surface Analogues of
the Odenwald, Energies, 15, 1310, https://doi.org/10.3390/en15041310, 2022. a
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architecture and
permeability structure, Geology, 24, 1025,
https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2,
1996. a
Chabani, A., Trullenque, G., L., B. A., and Klee, J.: Multiscale
Characterization of Fracture Patterns: A Case Study of the Noble Hills Range
(Death Valley, CA, USA), Application to Geothermal Reservoirs, Geosciences,
11, 280, https://doi.org/10.3390/geosciences11070280, 2021. a, b
Cuenot, N., Faucher, J.-P., Fritsch, D., Genter, A., and Szablinski, D.: The
European EGS project at Soultz-sous-Forêts: From extensive exploration to
power production, in: Conversion and delivery of electrical energy in the
21st century, 1–8, IEEE, Pittsburgh, Pa.,
https://doi.org/10.1109/PES.2008.4596680, 2008. a
Deckert, H., Bauer, W., Abe, S., Horowitz, F., and Schneider, U.: Geophysical
greenfield exploration in the permo-carboniferous Saar–Nahe basin – The
Wiesbaden Geothermal Project, Germany, Geophys. Prospect., 66, 144–160,
https://doi.org/10.1111/1365-2478.12598, 2017. a
Dezayes, C., Chevremont, P., Tourlière, B., Homeier, G., and Genter, A.:
Geological study of the GPK4 HFR borehole and correlation with the GPK3
borehole (Soultz-sous-Forêts, France), 2005a. a
Dezayes, C., Gentier, S., and Genter, A.: Deep Geothermal Energy in Western
Europe: The Soultz-Project: Final Report: BRGM/RP-54227-FR, BRGM, http://infoterre.brgm.fr/rapports/RP-54227-FR.pdf (last access: 23 May 2022),
2005b. a
Dezayes, C., Genter, A., and Valley, B.: Structure of the low permeable
naturally fractured geothermal reservoir at Soultz, C.R.
Geosci., 342, 517–530, https://doi.org/10.1016/j.crte.2009.10.002, 2010. a
Dezayes, C., Lerouge, C., Innocent, C., and Lach, P.: Structural control on
fluid circulation in a graben system: Constraints from the Saint Pierre Bois
quarry (Vosges, France), J. Struct. Geol., 146, 104323,
https://doi.org/10.1016/j.jsg.2021.104323, 2021. a, b
Drews, T., Miernik, G., Anders, K., Höfle, B., Profe, J., Emmerich, A., and
Bechstädt, T.: Validation of fracture data recognition in rock masses by
automated plane detection in 3D point clouds, Int. J. Rock
Mech. Min., 109, 19–31,
https://doi.org/10.1016/j.ijrmms.2018.06.023, 2018. a
Duwiquet, H., Guillou-Frottier, L., Arbaret, L., Bellanger, M., Guillon, T.,
and Heap, M. J.: Crustal Fault Zones (CFZ) as Geothermal Power Systems: A
Preliminary 3D THM Model Constrained by a Multidisciplinary Approach,
Geofluids, 2021, 1–24, https://doi.org/10.1155/2021/8855632, 2021. a
Egert, R., Korzani, M. G., Held, S., and Kohl, T.: Implications on large-scale
flow of the fractured EGS reservoir Soultz inferred from hydraulic data and
tracer experiments, Geothermics, 84, 101749,
https://doi.org/10.1016/j.geothermics.2019.101749, 2020. a, b
Evans, K. F., Genter, A., and Sausse, J.: Permeability creation and damage due
to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole
observations, J. Geophys. Res.-Sol. Ea., 110, B04203,
https://doi.org/10.1029/2004JB003168, 2005. a
Faulkner, D. R., Jackson, C., Lunn, R. J., Schlische, R. W., Shipton, Z. K.,
Wibberley, C., and Withjack, M. O.: A review of recent developments
concerning the structure, mechanics and fluid flow properties of fault zones,
J. Struct. Geol., 32, 1557–1575,
https://doi.org/10.1016/j.jsg.2010.06.009, 2010. a
Fisher, J. E., Shakoor, A., and Watts, C. F.: Comparing discontinuity
orientation data collected by terrestrial LiDAR and transit compass methods,
Eng. Geol., 181, 78–92, https://doi.org/10.1016/j.enggeo.2014.08.014, 2014. a, b
Frey, M., Bossennec, C., Seib, L., Bär, K., and Sass, I.: Interdisciplinary
Dataset on the Fracture Network of the Tromm Granite, Southern Odenwald, SW
Germany, TU datalib [data set], https://doi.org/10.48328/TUDATALIB-632, 2021a. a
Frey, M., Weinert, S., Bär, K., van der Vaart, J., Dezayes, C., Calcagno,
P., and Sass, I.: Integrated 3D geological modelling of the northern Upper
Rhine Graben by joint inversion of gravimetry and magnetic data,
Tectonophysics, 813, 228927, https://doi.org/10.1016/j.tecto.2021.228927,
2021b. a, b
Freymark, J., Sippel, J., Scheck-Wenderoth, M., Bär, K., Stiller, M.,
Fritsche, J.-G., and Kracht, M.: The deep thermal field of the Upper Rhine
Graben, Tectonophysics, 694, 114–129, https://doi.org/10.1016/j.tecto.2016.11.013,
2017. a
Genter, A. and Traineau, H.: Analysis of macroscopic fractures in granite in
the HDR geothermal well EPS-1, Soultz-sous-Foreˆts, France, J.
Volcanol. Geoth. Res., 72, 121–141,
https://doi.org/10.1016/0377-0273(95)00070-4, 1996. a, b
Genter, A., Castaing, C., Dezayes, C., Tenzer, H., Traineau, H., and Villemin,
T.: Comparative analysis of direct (core) and indirect (borehole imaging
tools) collection of fracture data in the Hot Dry Rock Soultz reservoir
(France), J. Geophys. Res.-Sol. Ea., 102,
15419–15431, https://doi.org/10.1029/97JB00626, 1997. a
Genter, A., Evans, K., Cuenot, N., Fritsch, D., and Sanjuan, B.: Contribution
of the exploration of deep crystalline fractured reservoir of Soultz to the
knowledge of enhanced geothermal systems (EGS), C.R. Geosci.,
342, 502–516, https://doi.org/10.1016/j.crte.2010.01.006, 2010. a
Glaas, C., Vidal, J., and Genter, A.: Structural characterization of naturally
fractured geothermal reservoirs in the central Upper Rhine Graben, J.
Struct. Geol., 148, 104370, https://doi.org/10.1016/j.jsg.2021.104370, 2021. a, b
Guerriero, V., Vitale, S., Ciarcia, S., and Mazzoli, S.: Improved statistical
multi-scale analysis of fractured reservoir analogues, Tectonophysics, 504,
14–24, https://doi.org/10.1016/j.tecto.2011.01.003, 2011. a
Guglielmetti, L., Comina, C., Abdelfettah, Y., Schill, E., and Mandrone, G.:
Integration of 3D geological modeling and gravity surveys for geothermal
prospection in an Alpine region, Tectonophysics, 608, 1025–1036,
https://doi.org/10.1016/j.tecto.2013.07.012, 2013. a
Guillou-Frottier, L., Carrė, C., Bourgine, B., Bouchot, V., and Genter,
A.: Structure of hydrothermal convection in the Upper Rhine Graben as
inferred from corrected temperature data and basin-scale numerical models,
J. Volcanol. Geoth. Res., 256, 29–49,
https://doi.org/10.1016/j.jvolgeores.2013.02.008, 2013. a
Ioannides, K., Papachristodoulou, C., Stamoulis, K., Karamanis, D., Pavlides,
S., Chatzipetros, A., and Karakala, E.: Soil gas radon: a tool for exploring
active fault zones, Appl. Radiat. Isotopes, 59, 205–213,
https://doi.org/10.1016/S0969-8043(03)00164-7, 2003. a, b
Jing, L. and Stephansson, O. (Eds.): Fundamentals of discrete element methods for rock
engineering: theory and applications, Elsevier, https://doi.org/10.1016/j.ijrmms.2008.04.003, 2007. a
Jolie, E., Klinkmueller, M., and Moeck, I.: Diffuse surface emanations as
indicator of structural permeability in fault-controlled geothermal systems,
J. Volcanol. Geoth. Res., 290, 97–113,
https://doi.org/10.1016/j.jvolgeores.2014.11.003, 2015. a
Jolie, E., Klinkmueller, M., Moeck, I., and Bruhn, D.: Linking gas fluxes at
Earth's surface with fracture zones in an active geothermal field, Geology,
44, 187–190, https://doi.org/10.1130/G37412.1, 2016. a
King, C.-Y., King, B.-S., Evans, W. C., and Zhang, W.: Spatial radon anomalies
on active faults in California, Appl. Geochem., 11, 497–510,
https://doi.org/10.1016/0883-2927(96)00003-0, 1996. a
Kreuzer, H. and Harre, W.: K/Ar-Altersbestimmungen an Hornblenden und Biotiten
des Kristallinen Odenwalds, in: Mineralien und Gesteine im Odenwald, edited
by: Amstutz, G. C., Meisl, S., and Nickel, E., 70–78, Heidelberg, VFMG, https://hdl.handle.net/10013/epic.42772, 1975. a
Krohe, A.: Emplacement of synkinematic plutons in the Variscan Odenwald
(Germany) controlled by transtensional tectonics, Int. J.
Earth Sci., 80, 391–409, https://doi.org/10.1007/BF01829373, 1991. a
Krohe, A.: Structural evolution of intermediate-crustal rocks in a strike-slip
and extensional setting (Variscan Odenwald, SW Germany): differential upward
transport of metamorphic complexes and changing deformation mechanisms,
Tectonophysics, 205, 357–386, https://doi.org/10.1016/0040-1951(92)90443-A, 1992. a
Krohe, A. and Willner, A. P.: IV.C.2 The Odenwald Crystalline Complex, in:
Pre-Permian Geology of Central and Eastern Europe, edited by: Dallmeyer,
R. D., Franke, W., and Weber, K., 182–185, Springer Berlin Heidelberg,
Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-77518-5, 1995. a
Ledésert, B., Hebert, R., Genter, A., Bartier, D., Clauer, N., and Grall,
C.: Fractures, hydrothermal alterations and permeability in the Soultz
Enhanced Geothermal System, C.R. Geosci., 342, 607–615,
https://doi.org/10.1016/j.crte.2009.09.011, 2010. a
Li, Y. and Oldenburg, D. W.: 3-D inversion of gravity data, Geophysics, 63, 109–119, 1998. a
Maggetti, M.: Die Tiefengesteine des Bergsträßer Odenwaldes, in:
Mineralien und Gesteine im Odenwald, edited by: Amstutz, G. C., Meisl, S., and
Nickel, E., 87–109, Heidelberg, VFMG, https://hdl.handle.net/10013/epic.42772, 1975. a
Mahmoodpour, S., Singh, M., Turan, A., Bär, K., and Sass, I.: Hydro-Thermal
Modeling for Geothermal Energy Extraction from Soultz-sous-Forêts,
France, Geosciences, 11, 464, https://doi.org/10.3390/geosciences11110464, 2021. a
Mahmoodpour, S., Singh, M., Turan, A., Bär, K., and Sass, I.: Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir, Energy, 247, 123511, https://doi.org/10.1016/j.energy.2022.123511, 2022. a
Marrett, R., Ortega, O. J., and Kelsey, C. M.: Extent of power-law scaling for
natural fractures in rock, Geology, 27, 799,
https://doi.org/10.1130/0091-7613(1999)027<0799:EOPLSF>2.3.CO;2, 1999. a
McCaffrey, K., Lonergan, L., and Wilkinson, J. (Eds.): Fractures, fluid flow and
mineralization, Geological Society of London, https://doi.org/10.1144/GSL.SP.1999.155.01.22, 1999. a
McCubbine, J., Tontini, F. C., Stagpoole, V., Smith, E., and O'Brien, G.:
Gsolve, a Python computer program with a graphical user interface to
transform relative gravity survey measurements to absolute gravity values and
gravity anomalies, SoftwareX, 7, 129–137, https://doi.org/10.1016/j.softx.2018.04.003,
2018. a
Meixner, J., Grimmer, J. C., Becker, A., Schill, E., and Kohl, T.: Comparison
of different digital elevation models and satellite imagery for lineament
analysis: Implications for identification and spatial arrangement of fault
zones in crystalline basement rocks of the southern Black Forest (Germany),
J. Struct. Geol., 108, 256–268,
https://doi.org/10.1016/j.jsg.2017.11.006, 2018. a, b
Meller, C. and Ledésert, B.: Is There a Link Between Mineralogy,
Petrophysics, and the Hydraulic and Seismic Behaviors of the
Soultz-sous-Forêts Granite During Stimulation? A Review and
Reinterpretation of Petro-Hydromechanical Data Toward a Better Understanding
of Induced Seismicity, J. Geophys. Res.-Sol. Ea., 122,
9755–9774, https://doi.org/10.1002/2017JB014648, 2017. a, b
Nettleton, L. L.: Determination of Density for Reduction of Gravimeter
Observations*, Geophysics, 4, 176–183, https://doi.org/10.1190/1.0403176, 1939. a
Nickel, E.: Geologische Position und Petrogenese des kristallinen Odenwaldes,
in: Mineralien und Gesteine im Odenwald, edited by: Amstutz, G. C., Meisl, S.,
and Nickel, E., 1–25, Heidelberg, VFMG, https://hdl.handle.net/10013/epic.42772, 1975. a
Niven, E. B. and Deutsch, C. V.: A sensitivity analysis for equivalent
permeability tensors calculated from 2D discrete fracture networks, CCG Ann.
Rep., 11, 1–8, 2009. a
Oda, M.: Permeability tensor for discontinuous rock masses, Géotechnique,
35, 483–495, https://doi.org/10.1680/geot.1985.35.4.483, 1985. a
Okrusch, M., von Raumer, J., Matthes, S., and Schubert, W.: Mineralfazies und
Stellung der Metamorphite im kristallinen Odenwald, in: Mineralien und
Gesteine im Odenwald, edited by: Amstutz, G. C., Meisl, S., and Nickel, E.,
109–134, Heidelberg, VFMG, https://hdl.handle.net/10013/epic.42772, 1975. a
Okrusch, M., Schubert, W., and Nasir, S.: IV.D Igneous Activity (Pre- to Early
Variscan Magmatism), in: Pre-Permian Geology of Central and Eastern Europe,
edited by: Dallmeyer, R. D., Franke, W., and Weber, K., 190–200,
Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-77518-5, 1995. a
Pickering, G., Bull, J. M., and Sanderson, D. J.: Sampling power-law
distributions, Tectonophysics, 248, 1–20,
https://doi.org/10.1016/0040-1951(95)00030-Q, 1995. a, b
Place, J., Géraud, Y., Diraison, M., Herquel, G., Edel, J. B., Bano, M.,
Le Garzic, E., and Walter, B.: Structural control of weathering processes
within exhumed granitoids: Compartmentalisation of geophysical properties by
faults and fractures, J. Struct. Geol., 84, 102–119,
https://doi.org/10.1016/j.jsg.2015.11.011, 2016. a
Poller, U., Altenberger, U., and Schubert, W.: Geochemical investigations of
the Bergsträsser Odenwald amphibolites – implicationsfor back-arc
magmatism, Miner. Petrol., 72, 63–76, https://doi.org/10.1007/s007100170027,
2001. a
Pribnow, D. and Schellschmidt, R.: Thermal tracking of upper crustal fluid flow
in the Rhine graben, Geophys. Res. Lett., 27, 1957–1960,
https://doi.org/10.1029/2000GL008494, 2000. a
Rathnaweera, T. D., Wu, W., Ji, Y., and Gamage, R. P.: Understanding
injection-induced seismicity in enhanced geothermal systems: From the coupled
thermo-hydro-mechanical-chemical process to anthropogenic earthquake
prediction, Earth-Sci. Rev., 205, 103182,
https://doi.org/10.1016/j.earscirev.2020.103182, 2020. a
Reischmann, T., Anthes, G., Jaeckel, P., and Altenberger, U.: Age and origin of
the Böllsteiner Odenwald, Miner. Petrol., 72, 29–44,
https://doi.org/10.1007/s007100170025, 2001. a
Reiter, K., Heidbach, O., Müller, B., Reinecker, J., and Röckl, T.: Stress
Map Germany 2016, WSM [data set], https://doi.org/10.5880/WSM.Germany2016_en, 2016. a, b
Sanderson, D. J. and Nixon, C. W.: Topology, connectivity and percolation in
fracture networks, J. Struct. Geol., 115, 167–177,
https://doi.org/10.1016/j.jsg.2018.07.011, 2018. a, b
Sausse, J. and Genter, A.: Types of permeable fractures in granite, Geol.
Soc. Lond. Spec. Publ., 240, 1–14,
https://doi.org/10.1144/GSL.SP.2005.240.01.01, 2005. a, b
Sausse, J., Dezayes, C., Dorbath, L., Genter, A., and Place, J.: 3D model of
fracture zones at Soultz-sous-Forêts based on geological data, image
logs, induced microseismicity and vertical seismic profiles, C.R.
Geosci., 342, 531–545, https://doi.org/10.1016/j.crte.2010.01.011, 2010. a, b
Schill, E., Meixner, J., Meller, C., Grimm, M., Grimmer, J. C., Stober, I., and
Kohl, T.: Criteria and geological setting for the generic geothermal
underground research laboratory, GEOLAB, Geothermal Energy, 4, 7,
https://doi.org/10.1186/s40517-016-0049-5, 2016. a, b
Schill, E., Genter, A., Cuenot, N., and Kohl, T.: Hydraulic performance history
at the Soultz EGS reservoirs from stimulation and long-term circulation
tests, Geothermics, 70, 110–124, https://doi.org/10.1016/j.geothermics.2017.06.003,
2017. a, b
Schubert, W., Lippolt, H. J., and Schwarz, W.: Early to Middle Carboniferous
hornblende 40Ar/39Ar ages of amphibolites and gabbros from the
Bergsträsser Odenwald, Miner. Petrol., 72, 113–132,
https://doi.org/10.1007/s007100170029, 2001. a
Snow, D. T.: A parallel plate model of fractured permeable media, PhD thesis, University
of California, Berkeley, https://www.nrc.gov/docs/ML0319/ML031910452.pdf (last access: 25 May 2022), 1965. a
Stein, E.: The geology of the Odenwald Crystalline Complex, Miner.
Petrol., 72, 7–28, https://doi.org/10.1007/s007100170024, 2001. a
Stober, I. and Bucher, K.: Hydraulic properties of the crystalline basement,
Hydrogeol. J., 15, 213–224, https://doi.org/10.1007/s10040-006-0094-4, 2007. a
Todt, W. A., Altenberger, U., and von Raumer, J. F.: U-Pb data on zircons for
the thermal peak of metamorphism in the Variscan Odenwald, Germany,
Geol. Rundsch., 84, 466–472, https://doi.org/10.1007/BF00284514, 1995. a, b
Traineau, H., Genter, A., Cautru, J. P., Fabriol, H., and Chèvremont, P.:
Petrography of the granite massif from drill cutting analysis and well log
interpretation in the geothermal HDR borehole GPK1 (Soultz, Alsace, France),
Geothermal Science and Technology, 3, 1–29, 1991. a
Tranter, M., de Lucia, M., and Kühn, M.: Numerical investigation of barite
scaling kinetics in fractures, Geothermics, 91, 102027,
https://doi.org/10.1016/j.geothermics.2020.102027, 2021. a
van Zyl, J. J.: The Shuttle Radar Topography Mission (SRTM): a breakthrough
in remote sensing of topography, Acta Astronaut., 48, 559–565,
https://doi.org/10.1016/S0094-5765(01)00020-0, 2001. a
Vazaios, I., Vlachopoulos, N., and Diederichs, M. S.: Integration of
Lidar-Based Structural Input and Discrete Fracture Network Generation for
Underground Applications, Geotechnical and Geological Engineering, 35,
2227–2251, https://doi.org/10.1007/s10706-017-0240-x, 2017. a, b
Vidal, J. and Genter, A.: Overview of naturally permeable fractured reservoirs
in the central and southern Upper Rhine Graben: Insights from geothermal
wells, Geothermics, 74, 57–73, https://doi.org/10.1016/j.geothermics.2018.02.003,
2018. a
Vidal, J., Genter, A., and Chopin, F.: Permeable fracture zones in the hard
rocks of the geothermal reservoir at Rittershoffen, France, J.
Geophys. Res.-Sol. Ea., 122, 4864–4887,
https://doi.org/10.1002/2017JB014331, 2017. a
Vidal, J., Patrier, P., Genter, A., Beaufort, D., Dezayes, C., Glaas, C.,
Lerouge, C., and Sanjuan, B.: Clay minerals related to the circulation of
geothermal fluids in boreholes at Rittershoffen (Alsace, France), J.
Volcanol. Geoth. Res., 349, 192–204,
https://doi.org/10.1016/j.jvolgeores.2017.10.019, 2018. a
Vogt, C., Marquart, G., Kosack, C., Wolf, A., and Clauser, C.: Estimating the
permeability distribution and its uncertainty at the EGS demonstration
reservoir Soultz-sous-Forêts using the ensemble Kalman filter, Water
Resour. Res., 48, W08517, https://doi.org/10.1029/2011WR011673, 2012. a
Weinert, S., Bär, K., and Sass, I.: Petrophysical Properties of the
Mid-German Crystalline High: A Database for Bavarian, Hessian,
Rhineland-Palatinate and Thuringian Outcrops, TU datalib [data set], https://doi.org/10.25534/tudatalib-278,
2020. a, b, c
Welsch, B., Rühaak, W., Schulte, D. O., Bär, K., and Sass, I.:
Characteristics of medium deep borehole thermal energy storage, Int.
J. Energ. Res., 40, 1855–1868, https://doi.org/10.1002/er.3570, 2016.
a
Zeng, Q., Lu, W., Zhang, R., Zhao, J., Ren, P., and Wang, B.: LIDAR-based
fracture characterization and controlling factors analysis: An outcrop case
from Kuqa Depression, NW China, J. Petrol. Sci. Eng.,
161, 445–457, https://doi.org/10.1016/j.petrol.2017.12.002, 2018. a, b
Zhang, Y., Person, M., Rupp, J., Ellett, K., Celia, M. A., Gable, C. W., Bowen,
B., Evans, J., Bandilla, K., Mozley, P., Dewers, T., and Elliot, T.:
Hydrogeologic controls on induced seismicity in crystalline basement rocks
due to fluid injection into basal reservoirs, Ground Water, 51, 525–538,
https://doi.org/10.1111/gwat.12071, 2013. a
Short summary
The crystalline basement is considered a ubiquitous and almost inexhaustible source of geothermal energy in the Upper Rhine Graben. Interdisciplinary investigations of relevant reservoir properties were carried out on analogous rocks in the Odenwald. The highest hydraulic conductivities are expected near large-scale fault zones. In addition, the combination of structural geological and geophysical methods allows a refined mapping of potentially permeable zones.
The crystalline basement is considered a ubiquitous and almost inexhaustible source of...