Articles | Volume 14, issue 10
https://doi.org/10.5194/se-14-1067-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-1067-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Glacial-isostatic-adjustment strain rate–stress paradox in the Western Alps and impact on active faults and seismicity
Juliette Grosset
CORRESPONDING AUTHOR
Géosciences Montpellier, Université de Montpellier, CNRS, 34000 Montpellier, France
Stéphane Mazzotti
Géosciences Montpellier, Université de Montpellier, CNRS, 34000 Montpellier, France
Philippe Vernant
Géosciences Montpellier, Université de Montpellier, CNRS, 34000 Montpellier, France
Related authors
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth Discuss., https://doi.org/10.5194/se-2021-141, https://doi.org/10.5194/se-2021-141, 2021
Publication in SE not foreseen
Short summary
Short summary
Glacial Isostatic Adjustment is considered as a major process of seismicity in intraplate regions such as Scandinavia and eastern North America. We show that GIA associated with the alpine icecap induces a present-day response in vertical motion and horizontal deformation seen in GNSS strain rate field. We show that GIA induced stress is opposite to strain rate, with the paradoxical consequence that postglacial rebound in the Western Alps can explain the strain rate field but not the seismicity.
Melody Philippon, Jean Roger, Jean-Frédéric Lebrun, Isabelle Thinon, Océane Foix, Stéphane Mazzotti, Marc-André Gutscher, Leny Montheil, and Jean-Jacques Cornée
Nat. Hazards Earth Syst. Sci., 24, 3129–3154, https://doi.org/10.5194/nhess-24-3129-2024, https://doi.org/10.5194/nhess-24-3129-2024, 2024
Short summary
Short summary
Using novel geophysical datasets, we reassess the slip rate of the Morne Piton fault (Lesser Antilles) at 0.2 mm yr−1 by dividing by four previous estimations and thus increasing the earthquake time recurrence and lowering the associated hazard. We evaluate a plausible magnitude for a potential seismic event of Mw 6.5 ± 0.5. Our multi-segment tsunami model representative of the worst-case scenario gives an overview of tsunami generation if all the fault segments ruptured together.
Amélie Viger, Stéphane Dominguez, Stéphane Mazzotti, Michel Peyret, Maxime Henriquet, Giovanni Barreca, Carmelo Monaco, and Adrien Damon
Solid Earth, 15, 965–988, https://doi.org/10.5194/se-15-965-2024, https://doi.org/10.5194/se-15-965-2024, 2024
Short summary
Short summary
New satellite geodetic data (PS-InSAR) evidence a generalized subsidence and an eastward tilting of southeastern Sicily combined with a local relative uplift along its eastern coast. We perform flexural and elastic modeling and show that the slab pull force induced by the Ionian slab roll-back and extrado deformation reproduce the measured surface deformation. Finally, we propose an original seismic cycle model that is mainly driven by the southward migration of the Ionian slab roll-back.
Oswald Malcles, Philippe Vernant, David Fink, Gaël Cazes, Jean-François Ritz, Toshiyuki Fujioka, and Jean Chéry
Earth Surf. Dynam., 12, 679–690, https://doi.org/10.5194/esurf-12-679-2024, https://doi.org/10.5194/esurf-12-679-2024, 2024
Short summary
Short summary
In the Grands Causses area (Southern France), we study the relationship between the evolution of the river, its incision through time, and the location of the nearby caves. It is commonly accepted that horizontal caves are formed during a period of river stability (no incision) at the elevation of the river. Our original results show that it is wrong in our case study. Therefore, another model of cave formation is proposed that does not rely on direct river control over cave locations.
Oceane Foix, Stéphane Mazzotti, Hervé Jomard, Didier Bertil, and the Lesser Antilles Working Group
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-53, https://doi.org/10.5194/nhess-2024-53, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
By analyzing historical and instrumental seismic data, fault knowledge and geodetic measurements, we provide a new understanding of seismic hazard in the Lesser Antilles via seismotectonic zoning. We propose new models that can have a significant impact on seismic hazard assessment, such as the inclusion of mantle wedge seismicity, volcanic seismicity and a complete revision of the subduction interface zoning.
Oswald Malcles, Stéphane Mazzotti, Philippe Vernant, and Vincent Godard
EGUsphere, https://doi.org/10.5194/egusphere-2023-2154, https://doi.org/10.5194/egusphere-2023-2154, 2023
Short summary
Short summary
The Armorican region (NW France), is marked by several old coastal and marine markers that are today located several tens of meters above the sea level. This fact is commonly explained by sea-level variations and complex tectonic processes (e.g. mantle dynamic). In this study we test the role of the erosion and the associated flexural (lithospheric bending) response. We show that this simple model of flexural adjustment is to be taken into account to explain the regional evolution.
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth Discuss., https://doi.org/10.5194/se-2021-141, https://doi.org/10.5194/se-2021-141, 2021
Publication in SE not foreseen
Short summary
Short summary
Glacial Isostatic Adjustment is considered as a major process of seismicity in intraplate regions such as Scandinavia and eastern North America. We show that GIA associated with the alpine icecap induces a present-day response in vertical motion and horizontal deformation seen in GNSS strain rate field. We show that GIA induced stress is opposite to strain rate, with the paradoxical consequence that postglacial rebound in the Western Alps can explain the strain rate field but not the seismicity.
Séverine Liora Furst, Samuel Doucet, Philippe Vernant, Cédric Champollion, and Jean-Louis Carme
Solid Earth, 12, 15–34, https://doi.org/10.5194/se-12-15-2021, https://doi.org/10.5194/se-12-15-2021, 2021
Short summary
Short summary
We develop a two-step methodology combining multiple surface deformation measurements above a salt extraction site (Vauvert, France) in order to overcome the difference in resolution and accuracy. Using this 3-D velocity field, we develop a model to determine the kinematics of the salt layer. The model shows a collapse of the salt layer beneath the exploitation. It also identifies a salt flow from the deepest and most external part of the salt layer towards the center of the exploitation.
Oswald Malcles, Philippe Vernant, Jean Chéry, Pierre Camps, Gaël Cazes, Jean-François Ritz, and David Fink
Solid Earth, 11, 241–258, https://doi.org/10.5194/se-11-241-2020, https://doi.org/10.5194/se-11-241-2020, 2020
Short summary
Short summary
We aim to better understand the challenging areas that are the intraplate regions using one example: the southern French Massif Central and its numerous hundreds of meters deep valleys. We apply a multidisciplinary approach there using geomorphology, geochronology, and numerical modeling.
Our dating results show that the canyon incisions are part of the Plio-Quaternary evolution with incision rate of ~ 80 m Ma−1. We propose then that this incision is possible due to an active regional uplift.
Christine Masson, Stephane Mazzotti, Philippe Vernant, and Erik Doerflinger
Solid Earth, 10, 1905–1920, https://doi.org/10.5194/se-10-1905-2019, https://doi.org/10.5194/se-10-1905-2019, 2019
Short summary
Short summary
In using dense geodetic networks and large GPS datasets, we are able to extract regionally coherent velocities and deformation rates in France and neighboring western European countries. This analysis is combined with statistical tests on synthetic data to quantify the deformation detection thresholds and significance levels.
Christine Masson, Stephane Mazzotti, and Philippe Vernant
Solid Earth, 10, 329–342, https://doi.org/10.5194/se-10-329-2019, https://doi.org/10.5194/se-10-329-2019, 2019
Short summary
Short summary
We use statistical analyses of synthetic position time series to estimate the potential precision of GPS velocities. Regression tree analyses show that the main factors controlling the velocity precision are the duration of the series, the presence of offsets, and the noise. Our analysis allows us to propose guidelines which can be applied to actual GPS data that constrain the velocity accuracies.
Cédric Champollion, Sabrina Deville, Jean Chéry, Erik Doerflinger, Nicolas Le Moigne, Roger Bayer, Philippe Vernant, and Naomi Mazzilli
Hydrol. Earth Syst. Sci., 22, 3825–3839, https://doi.org/10.5194/hess-22-3825-2018, https://doi.org/10.5194/hess-22-3825-2018, 2018
Short summary
Short summary
Gravity monitoring at the surface and in situ (in caves) has been conducted in a karst hydro-system in the south of France (Larzac plateau). Subsurface water storage is evidenced with a spatial variability probably associated with lithology differences and confirmed by MRS measurements. Gravity allows transient water storage to be estimated on the seasonal scale.
Hai Ninh Nguyen, Philippe Vernant, Stephane Mazzotti, Giorgi Khazaradze, and Eva Asensio
Solid Earth, 7, 1349–1363, https://doi.org/10.5194/se-7-1349-2016, https://doi.org/10.5194/se-7-1349-2016, 2016
Short summary
Short summary
We present a new 3-D GPS velocity solution for 182 sites for the region encompassing the Western Alps, Pyrenees. The only significant horizontal deformation (0.2 mm/yr over a distance of 50 km) is a NNE–SSW extension in the western Pyrenees. In contrast, significant uplift rates up to 2 mm/yr occur in the Western Alps but not in the Pyrenees. A correlation between site elevations and fast uplift rates in the Western Alps suggests that part of this uplift is induced by postglacial rebound.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodynamics
Fast uplift in the southern Patagonian Andes due to long- and short-term deglaciation and the asthenospheric window underneath
Veleda A. P. Muller, Pietro Sternai, and Christian Sue
Solid Earth, 15, 387–404, https://doi.org/10.5194/se-15-387-2024, https://doi.org/10.5194/se-15-387-2024, 2024
Short summary
Short summary
Uplift rates up to 40 mm yr−1 are measured by GNSS in the southern Patagonian Icefield, a remainder of the Patagonian Ice Sheet that covered the Andes in the Last Glacial Maximum (LGM) at 26 ka. Using numerical modelling, we estimate an increase of 150 to 200 °C of the asthenospheric temperature due to the slab window under southern Patagonia, and we show that post-glacial rebound, after the long-term LGM and the short-term Little Ice Age (400 a), contributed to the modern uplift rate budget.
Cited articles
Bagge, M., Klemann, V., Steinberger, B., Latinović, M., and Thomas, M.: Glacial-Isostatic Adjustment Models Using Geodynamically Constrained 3D Earth Structures, Geochem. Geophy. Geosy., 22, e2021GC009853, https://doi.org/10.1029/2021GC009853, 2021.
Baize, S., Cushing, M., Lemeille, F., Gelis, C., Texier, D., Nicoud, G., and Schwenninger, J.-L.: Contribution to the seismic hazard assessment of a slow active fault, the Vuache fault in the southern Molasse basin (France), B. Soc. Geol. Fr., 182, 347–365, https://doi.org/10.2113/gssgfbull.182.4.347, 2011.
Battaglia, M., Murray, M. H., Serpelloni, E., and Bürgmann, R.: The Adriatic region: An independent microplate within the Africa-Eurasia collision zone: THE ADRIATIC REGION, Geophys. Res. Lett., 31, L09605, https://doi.org/10.1029/2004GL019723, 2004.
Bilau, A., Rolland, Y., Schwartz, S., Godeau, N., Guihou, A., Deschamps, P., Brigaud, B., Noret, A., Dumont, T., and Gautheron, C.: Extensional reactivation of the Penninic frontal thrust 3 Myr ago as evidenced by U–Pb dating on calcite in fault zone cataclasite, Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, 2021.
Billant, J., Hippolyte, J.-C., and Bellier, O.: Tectonic and geomorphic analysis of the Belledonne border fault and its extensions, Western Alps, Tectonophysics, 659, 31–52, https://doi.org/10.1016/j.tecto.2015.07.025, 2015.
Bott, M. H. P.: The Mechanics of Oblique Slip Faulting, Geol. Mag., 96, 109–117, 1959.
Brandes, C., Steffen, H., Steffen, R., and Wu, P.: Intraplate seismicity in northern Central Europe is induced by the last glaciation, Geology, 43, 611–614, https://doi.org/10.1130/G36710.1, 2015.
Brockmann, E., Ineichen, D., Marti, U., Schaer, S., and Schlatter, A.: Determination of tectonic movements in the Swiss Alps using GNSS and levelling, in: Geodesy for Planet Earth, vol. 136, edited by: Kenyon, S., Pachino, M., and Marti, U., Berlin, Heidelberg, 689–695, 2012.
Bungum, H. and Eldholm, O.: The conundrums of the postglacial tectonic response of the Fennoscandian and Canadian Shields, Earth-Sci. Rev., 232, 104146, https://doi.org/10.1016/j.earscirev.2022.104146, 2022.
Bungum, H., Olesen, O., Pascal, C., Gibbons, S., Lindholm, C., and VestØl, O.: To what extent is the present seismicity of Norway driven by post-glacial rebound?, J. Geol. Soc. London, 167, 373–384, https://doi.org/10.1144/0016-76492009-009, 2010.
Burov, E. B. and Diament, M.: The effective elastic thickness (Te) of continental lithosphere: what does it really mean?, J. Geophys. Res., 100, 3905–3927, 1995.
Calais, E., Han, J. Y., DeMets, C., and Nocquet, J.-M.: Deformation of the North American plate interior from a decade of continuous GPS measurements, J. Geophys. Res., 111, B06402, https://doi.org/10.1029/2005JB004253, 2006.
Champagnac, J.-D., Molnar, P., Anderson, R. S., Sue, C., and Delacou, B.: Quaternary erosion-induced isostatic rebound in the western Alps, Geology, 35, 195–198, https://doi.org/10.1130/G23053A.1, 2007.
Chéry, J., Genti, M., and Vernant, P.: Ice cap melting and low-viscosity crustal root explain the narrow geodetic uplift of the Western Alps, Geophys. Res. Lett., 43, 3193–3200, https://doi.org/10.1002/2016GL067821, 2016.
Craig, T. J., Calais, E., Fleitout, L., Bollinger, L., and Scotti, O.: Evidence for the release of long-term tectonic strain stored in continental interiors through intraplate earthquakes, Geophys. Res. Lett., 43, 6826–6836, https://doi.org/10.1002/2016GL069359, 2016.
Cushing, E. M., Bellier, O., Nechtschein, S., Sébrier, M., Lomax, A., Volant, P., Dervin, P., Guignard, P., and Bove, L.: A multidisciplinary study of a slow-slipping fault for seismic hazard assessment: the example of the Middle Durance Fault (SE France), Geophys. J. Int., 172, 1163–1178, https://doi.org/10.1111/j.1365-246X.2007.03683.x, 2007.
Cushing, E. M., Bellier, O., Nechtschein, S., Sébrier, M., Lomax, A., Volant, Ph., Dervin, P., Guignard, P., and Bove, L.: A multidisciplinary study of a slow-slipping fault for seismic hazard assessment: the example of the Middle Durance Fault (SE France), Geophys. J. Int., 172, 1163–1178, https://doi.org/10.1111/j.1365-246X.2007.03683.x, 2008.
D'Agostino, N., Avallone, A., Cheloni, D., D'Anastasio, E., Mantenuto, S., and Selvaggi, G.: Active tectonics of the Adriatic region from GPS and earthquake slip vectors, J. Geophys. Res., 113, B09401, https://doi.org/10.1029/2008JB005860, 2008.
Delacou, B., Sue, C., Champagnac, J.-D., and Burkhard, M.: Present-day geodynamics in the bend of the western and central Alps as constrained by earthquake analysis, Geophys. J. Int., 158, 753–774, https://doi.org/10.1111/j.1365-246X.2004.02320.x, 2004.
Freed, A. M., Herring, T., and Bürgmann, R.: Steady-state laboratory flow laws alone fail to explain postseismic observations, Earth Planet. Sc. Lett., 300, 1–10, https://doi.org/10.1016/j.epsl.2010.10.005, 2010.
Giunchi, C. and Spada, G.: Postglacial rebound in a non-Newtonian spherical Earth, Geophys. Res. Lett., 27, 2065–2068, https://doi.org/10.1029/2000GL011460, 2000.
Grellet, B., Combes, P., Granier, T., and Philip, H.: Sismotectonique de la France métropolitaine dans son cadre géologique et géophysique, map number: no. 164 Société Géologique France, 1993.
Grosset, J. and Mazzotti, S.: Software gFlex_load_SE for Glacial Isostatic Adjustment impact on Western Alps, Zenodo [code], https://doi.org/10.5281/zenodo.8434592, 2023.
Hetzel, R. and Hampel, A.: Slip rate variations on normal faults during glacial–interglacial changes in surface loads, Nature, 435, 81–84, 2005.
Hyndman, R. D., Currie, C. A., Mazzotti, S., and Frederiksen, A.: Temperature control of continental lithosphere elastic thickness, Te vs Vs, Earth Planet. Sc. Lett., 277, 539–548, https://doi.org/10.1016/j.epsl.2008.11.023, 2009.
Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K., Maisch, M., Kubik, P. W., and Schlüchter, C.: Chronology of the last glacial cycle in the European Alps, J. Quaternary Sci., 23, 559–573, https://doi.org/10.1002/jqs.1202, 2008.
Jaeger, J. C. and Cook, N. G. W.: Fundamentals of Rock Mechanics, Chapman and Hall., Cambridge University Press, London, 593 pp., ISBN 9781444308914, 1979.
Johnston, A. C.: Suppression of earthquakes by large continental ice sheets, Nature, 330, 467–469, 1987.
Jomard, H., Cushing, E. M., Palumbo, L., Baize, S., David, C., and Chartier, T.: Transposing an active fault database into a seismic hazard fault model for nuclear facilities – Part 1: Building a database of potentially active faults (BDFA) for metropolitan France, Nat. Hazards Earth Syst. Sci., 17, 1573–1584, https://doi.org/10.5194/nhess-17-1573-2017, 2017.
Keiding, M., Kreemer, C., Lindholm, C. D., Gradmann, S., Olesen, O., and Kierulf, H. P.: A comparison of strain rates and seismicity for Fennoscandia: depth dependency of deformation from glacial isostatic adjustment, Geophys. J. Int., 202, 1021–1028, https://doi.org/10.1093/gji/ggv207, 2015.
King, G. C. P., Stein, R. S., and Lin, J.: Static Stress Changes and the Triggering of Earthquakes, B. Seismol. Soc. Am., 84, 935–953, 1994.
Klemann, V. and Wolf, D.: Implications of a ductile crustal layer for the deformation caused by the Fennoscandian ice sheet, Geophys. J. Int., 139, 216–226, https://doi.org/10.1046/j.1365-246X.1999.00936.x, 1999.
Kreemer, C., Blewitt, G., and Davis, P. M.: Geodetic evidence for a buoyant mantle plume beneath the Eifel volcanic area, NW Europe, Geophys. J. Int., 222, 1316–1332, https://doi.org/10.1093/gji/ggaa227, 2020.
Larroque, C., Baize, S., Albaric, J., Jomard, H., Trévisan, J., Godano, M., Cushing, M., Deschamps, A., Sue, C., Delouis, B., Potin, B., Courboulex, F., Régnier, M., Rivet, D., Brunel, D., Chèze, J., Martin, X., Maron, C., and Peix, F.: Seismotectonics of southeast France: from the Jura mountains to Corsica, C. R. Geosci., 353, 105–151, https://doi.org/10.5802/crgeos.69, 2021.
Lau, H. C. P., Austermann, J., Holtzman, B. K., Havlin, C., Lloyd, A. J., Book, C., and Hopper, E.: Frequency Dependent Mantle Viscoelasticity via the Complex Viscosity: Cases From Antarctica, J. Geophys. Res.-Sol. Ea., 126, e2021JB022622, https://doi.org/10.1029/2021JB022622, 2021.
Lund, B.: Palaeoseismology of Glaciated Terrain, in: Encyclopedia of Earthquake Engineering, edited by: Beer, M., Kougioumtzoglou, I. A., Patelli, E., and Au, I. S.-K., Springer Berlin Heidelberg, Berlin, Heidelberg, 1–16, https://doi.org/10.1007/978-3-642-36197-5_25-1, 2015.
Manchuel, K., Traversa, P., Baumont, D., Cara, M., Nayman, E., and Durouchoux, C.: The French seismic CATalogue (FCAT-17), Bull. Earthquake Eng., 16, 2227–2251, https://doi.org/10.1007/s10518-017-0236-1, 2018.
Masson, C., Mazzotti, S., Vernant, P., and Doerflinger, E.: Extracting small deformation beyond individual station precision from dense Global Navigation Satellite System (GNSS) networks in France and western Europe, Solid Earth, 10, 1905–1920, https://doi.org/10.5194/se-10-1905-2019, 2019.
Mathey, M., Walpersdorf, A., Sue, C., Baize, S., and Deprez, A.: Seismogenic potential of the High Durance Fault constrained by 20 yr of GNSS measurements in the Western European Alps, Geophys. J. Int., 222, 2136–2146, https://doi.org/10.1093/gji/ggaa292, 2020.
Mathey, M., Sue, C., Pagani, C., Baize, S., Walpersdorf, A., Bodin, T., Husson, L., Hannouz, E., and Potin, B.: Present-day geodynamics of the Western Alps: new insights from earthquake mechanisms, Solid Earth, 12, 1661–1681, https://doi.org/10.5194/se-12-1661-2021, 2021.
Mazzotti, S., Dragert, H., Hyndman, R. D., and Miller, M. M.: GPS deformation in a region of high crustal seismicity: N. Cascadia forearc, Earth Planet. Sc. Lett., 198, 41–48, 2002.
Mazzotti, S., James, T. S., Henton, J. A., and Adams, J.: GPS crustal strain, postglacial rebound, and seismic hazard in eastern North America: The Saint Lawrence valley example, J. Geophys. Res., 110, B11301, https://doi.org/10.1029/2004JB003590, 2005.
Mazzotti, S., Aubagnac, C., Bollinger, L., Coca Oscanoa, K., Delouis, B., Do Paco, D., Doubre, C., Godano, M., Jomard, H., Larroque, C., Laurendeau, A., Masson, F., Sylvander, M., and Trilla, A.: FMHex20: A database of earthquake focal mechanisms in metropolitan France and conterminous Western Europe, BSGF – Earth Sciences Bulletin, 192, 10, https://doi.org/10.1051/bsgf/2020049, 2021.
Mey, J., Scherler, D., Wickert, A. D., Egholm, D. L., Tesauro, M., Schildgen, T. F., and Strecker, M. R.: Glacial isostatic uplift of the European Alps, Nat. Commun., 7, 13382, https://doi.org/10.1038/ncomms13382, 2016.
Muir-Wood, R.: Deglaciation Seismotectonics: a principal influence on intraplate seismogenesis at high latitudes, Quaternary Sci. Rev., 19, 1399–1411, 2000.
Nguyen, H. N., Vernant, P., Mazzotti, S., Khazaradze, G., and Asensio, E.: 3-D GPS velocity field and its implications on the present-day post-orogenic deformation of the Western Alps and Pyrenees, Solid Earth, 7, 1349–1363, https://doi.org/10.5194/se-7-1349-2016, 2016.
Nocquet, J.-M., Calais, E., and Parsons, B.: Geodetic constraints on glacial isostatic adjustment in Europe, Geophys. Res. Lett., 32, L06308, https://doi.org/10.1029/2004GL022174, 2005.
Nocquet, J.-M., Sue, C., Walpersdorf, A., Tran, T., Lenôtre, N., Vernant, P., Cushing, M., Jouanne, F., Masson, F., Baize, S., Chéry, J., and van der Beek, P. A.: Present-day uplift of the western Alps, Scientific Reports, 6, 28404, https://doi.org/10.1038/srep28404, 2016.
Peltier, W. R. and Andrews, J. T.: Glacial Isostatic Adjustment I- the Forward Problem, Geophys. J. Roy. Astr. Soc., 46, 605–646, 1976.
Peltier, W. R., Wu, P. P.-C., Argus, D. F., Li, T., and Velay-Vitow, J.: Glacial isostatic adjustment: physical models and observational constraints, Rep. Prog. Phys., 85, 096801, https://doi.org/10.1088/1361-6633/ac805b, 2022.
Qiu, Q., Moore, J. D. P., Barbot, S., Feng, L., and Hill, E. M.: Transient rheology of the Sumatran mantle wedge revealed by a decade of great earthquakes, Nat. Commun., 9, 995, https://doi.org/10.1038/s41467-018-03298-6, 2018.
Quinlan, G.: Postglacial rebound and the focal mechanisms of eastern Canadian earthquakes, Can. J. Earth Sci., 21, 1018–1023, https://doi.org/10.1139/e84-106, 1984.
Rabin, M., Sue, C., Walpersdorf, A., Sakic, P., Albaric, J., and Fores, B.: Present-Day Deformations of the Jura Arc Inferred by GPS Surveying and Earthquake Focal Mechanisms, Tectonics, 37, 3782–3804, https://doi.org/10.1029/2018TC005047, 2018a.
Sánchez, L., Völksen, C., Sokolov, A., Arenz, H., and Seitz, F.: Present-day surface deformation of the Alpine region inferred from geodetic techniques, Earth Syst. Sci. Data, 10, 1503–1526, https://doi.org/10.5194/essd-10-1503-2018, 2018.
Spada, G., Barletta, V. R., Klemann, V., Riva, R. E. M., Martinec, Z., Gasperini, P., Lund, B., Wolf, D., Vermeersen, L. L. A., and King, M. A.: A benchmark study for glacial isostatic adjustment codes, Geophys. J. Int., 185, 106–132, https://doi.org/10.1111/j.1365-246X.2011.04952.x, 2011.
Steffen, H., Kaufmann, G., and Wu, P.: Three-dimensional finite-element modeling of the glacial isostatic adjustment in Fennoscandia, Earth Planet. Sc. Lett., 250, 358–375, https://doi.org/10.1016/j.epsl.2006.08.003, 2006.
Steffen, R., Steffen, H., Wu, P., and Eaton, D. W.: Stress and fault parameters affecting fault slip magnitude and activation time during a glacial cycle, Tectonics, 33, 1461–1476, https://doi.org/10.1002/2013TC003450, 2014.
Steffen, R., Steffen, H., Wu, P., and Eaton, D. W.: Reply to comment by Hampel et al. on “Stress and fault parameters affecting fault slip magnitude and activation time during a glacial cycle”, Tectonics, 34, 2359–2366, https://doi.org/10.1002/2015TC003992, 2015.
Steffen, R., Wu, P., and Lund, B.: Geomechanics of Glacially Triggered Faulting, in: Glacially-Triggered Faulting, edited by: Steffen, H., Olesen, O., and Sutinen, R., Cambridge University Press, 20–40, https://doi.org/10.1017/9781108779906.004, 2021.
Stephansson, O.: Ridge push and glacial rebound as rock stress generators in Pennoscandia, Bull. Geol. Inst. U. Uppsala, 14, 39–48, 1988.
Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett, S. D., Faccenna, C., Di Giulio, A., Spada, G., Jolivet, L., Valla, P., Petit, C., Nocquet, J.-M., Walpersdorf, A., and Castelltort, S.: Present-day uplift of the European Alps: Evaluating mechanisms and models of their relative contributions, Earth-Sci. Rev., 190, 589–604, https://doi.org/10.1016/j.earscirev.2019.01.005, 2019.
Stewart, I. S., Sauber, J., and Rose, J.: Glacio-seismotectonics: ice sheets, crustal deformation and seismicity, Quaternary Sci. Rev., 19, 1367–1389, https://doi.org/10.1016/S0277-3791(00)00094-9, 2000.
Stocchi, P., Spada, G., and Cianetti, S.: Isostatic rebound following the Alpine deglaciation: impact on the sea level variations and vertical movements in the Mediterranean region, Geophys. J. Int., 162, 137–147, https://doi.org/10.1111/j.1365-246X.2005.02653.x, 2005.
Stucchi, M., Rovida, A., Gomez Capera, A. A., Alexandre, P., Camelbeeck, T., Demircioglu, M. B., Gasperini, P., Kouskouna, V., Musson, R. M. W., Radulian, M., Sesetyan, K., Vilanova, S., Baumont, D., Bungum, H., Fäh, D., Lenhardt, W., Makropoulos, K., Martinez Solares, J. M., Scotti, O., Živčić, M., Albini, P., Batllo, J., Papaioannou, C., Tatevossian, R., Locati, M., Meletti, C., Viganò, D., and Giardini, D.: The SHARE European Earthquake Catalogue (SHEEC) 1000–1899, J. Seismol., 17, 523–544, https://doi.org/10.1007/s10950-012-9335-2, 2013.
Sue, C. and Tricart, P.: Late Alpine brittle extension above the Frontal Pennine Thrust near Briançon, Western Alps, E-Periodica, Eclogae Geol. Helv., 92, 171–181, 1999.
Sue, C. and Tricart, P.: Neogene to ongoing normal faulting in the inner western Alps: A major evolution of the late alpine tectonics, Tectonics, 22, 1050, https://doi.org/10.1029/2002TC001426, 2003.
Sue, C., Thouvenot, F., Fréchet, J., and Tricart, P.: Widespread extension in the core of the western Alps revealed by earthquake analysis, J. Geophys. Res.-Sol. Ea., 104, 25611–25622, https://doi.org/10.1029/1999JB900249, 1999.
Sue, C., Delacou, B., Champagnac, J. D., and Burkhard, M.: Quantification of the seismic strain in the western Alps, in: AGU – EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6–11 April 2003, abstract ID 10241, https://ui.adsabs.harvard.edu/abs/2003EAEJA....10241S/abstract (last access: October 2023), 2003.
Tarayoun, A., Mazzotti, S., Craymer, M. R., and Henton, J. A.: Structural Inheritance Control on Intraplate Present-Day Deformation: GPS Strain Rate Variations in the Saint Lawrence Valley, Eastern Canada, J. Geophys. Res., 123, 7004–7020, https://doi.org/10.1029/2017JB015417, 2018.
Tesauro, M., Kaban, M. K., and Cloetingh, S. A. P. L.: How rigid is Europe's lithosphere?, Geophys. Res. Lett., 36, L16303, https://doi.org/10.1029/2009GL039229, 2009.
Thouvenot, F., Fréchet, J., Tapponnier, P., Thomas, J.-C., Le Brun, B., Ménard, G., Lacassin, R., Jenatton, L., Grasso, J.-R., Coutant, O., Paul, A., and Hatzfeld, D.: The ML 5.3 Epagny (French Alps) earthquake of 1996 July 15: A long-awaited event on the Vuache Fault, Geophys. J. Int., 135, 876–892, 1998.
Thouvenot, F., Fréchet, J., Jenatton, L., and Gamond, J.-F.: The Belledonne Border Fault: identification of an active seismic strike-slip fault in the western Alps, Geophys. J. Int., 155, 174–192, https://doi.org/10.1046/j.1365-246X.2003.02033.x, 2003.
Turcotte, D. L. and Schubert, G.: Geodynamics, Cambridge University Press, ISBN 978-1-107-00653-9, 978-0-521-18623-0, 2002.
van der Wal, W., Barnhoorn, A., Stocchi, P., Gradmann, S., Wu, P., Drury, M., and Vermeersen, B.: Glacial isostatic adjustment model with composite 3-D Earth rheology for Fennoscandia, Geophys. J. Int., 194, 61–77, https://doi.org/10.1093/gji/ggt099, 2013.
Vernant, P., Hivert, F., Chéry, J., Steer, P., Cattin, R., and Rigo, A.: Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges, Geology, 41, 467–470, https://doi.org/10.1130/G33942.1, 2013.
Walpersdorf, A., Pinget, L., Vernant, P., Sue, C., Deprez, A., and the RENAG team: Does Long-Term GPS in the Western Alps Finally Confirm Earthquake Mechanisms?, Tectonics, 91, 937, https://doi.org/10.1029/2018TC005054, 2018.
Wang, K.: Stress–strain `paradox', plate coupling, and forearc seismicity at the Cascadia and Nankai subduction zones, Tectonophysics, 319, 321–338, https://doi.org/10.1016/S0040-1951(99)00301-7, 2000.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic Mapping Tools: Improved Version Released, Eos, Transactions American Geophysical Union, 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013.
Wickert, A. D.: Open-source modular solutions for flexural isostasy: gFlex v1.0, Geosci. Model Dev., 9, 997–1017, https://doi.org/10.5194/gmd-9-997-2016, 2016.
Wu, P.: Viscoelastic versus viscous deformation and the advection of pre-stress, Geophys. J. Int., 108, 136–142, https://doi.org/10.1111/j.1365-246X.1992.tb00844.x, 1992.
Wu, P.: Effects of lateral variations in lithospheric thickness and mantle viscosity on glacially induced surface motion in Laurentia, Earth Planet. Sc. Lett., 235, 549–563, https://doi.org/10.1016/j.epsl.2005.04.038, 2005.
Wu, P. and Mazzotti, S.: Effects of a lithospheric weak zone on postglacial seismotectonics in eastern Canada and the northeastern United States, Geol. S. Am. S., 425, 113–128, https://doi.org/10.1130/2007.2425(09), 2007.
Wu, P., Johnston, P., and Lambeck, K.: Postglacial rebound and fault instability in Fennoscandia, Geophys. J. Int., 139, 657–670, 1999.
Short summary
In glaciated regions, induced lithosphere deformation is proposed as a key process contributing to fault activity and seismicity. We study the impact of this effect on fault activity in the Western Alps. We show that the response to the last glaciation explains a major part of the geodetic strain rates but does not drive or promote the observed seismicity. Thus, seismic hazard studies in the Western Alps require detailed modeling of the glacial isostatic adjustment (GIA) transient impact.
In glaciated regions, induced lithosphere deformation is proposed as a key process contributing...