Articles | Volume 14, issue 6
https://doi.org/10.5194/se-14-603-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-603-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detailed investigation of multi-scale fracture networks in glacially abraded crystalline bedrock at Åland Islands, Finland
Nikolas Ovaskainen
CORRESPONDING AUTHOR
Geological Survey of Finland, P.O. Box 96, Espoo, 02151, Finland
Department of Geography and Geology, University of Turku, Turku, 20014, Finland
Pietari Skyttä
Department of Geography and Geology, University of Turku, Turku, 20014, Finland
Nicklas Nordbäck
Geological Survey of Finland, P.O. Box 96, Espoo, 02151, Finland
Department of Geography and Geology, University of Turku, Turku, 20014, Finland
Jon Engström
Geological Survey of Finland, P.O. Box 96, Espoo, 02151, Finland
Related authors
Jon Engström, Mira Markovaara-Koivisto, Nikolas Ovaskainen, Nicklas Nordbäck, Markku Paananen, Ismo Aaltonen, Annu Martinkauppi, Heidi Laxström, and Henrik Wik
EGUsphere, https://doi.org/10.5194/egusphere-2023-448, https://doi.org/10.5194/egusphere-2023-448, 2023
Preprint archived
Short summary
Short summary
The main purpose of this nation-wide lineament study of whole Finland is to identify potential brittle bedrock structures. The source data used for the interpretation are a light detection and ranging (LiDAR) -based hillshaded ground elevation model, a seabed elevation model (bathymetry) and several aerogeophysical rasters. The data can be used for a preliminary mapping of bedrock structures, such as shear and fault zones, that directly influence bedrock fracturing at a regional scale.
Jon Engström, Kathryn Cutts, Stijn Glorie, Esa Heilimo, Ester M. Jolis, and Radoslaw M. Michallik
EGUsphere, https://doi.org/10.5194/egusphere-2024-2034, https://doi.org/10.5194/egusphere-2024-2034, 2024
Short summary
Short summary
This paper describes migmatites and associated rocks in SW Finland that have been studied using the new in situ garnet and apatite Lu-Hf geochronology method. The metamorphic constraints and age presented in this paper enhance our understanding of the geological evolution in SW Finland. The results reveal detailed temporal constraints for the tectonic evolution that can be linked to major events in adjacent tectonic blocks in both Finland and Sweden during the Svecofennian orogeny.
Kerry Meyer, Steven Platnick, G. Thomas Arnold, Nandana Amarasinghe, Daniel Miller, Jennifer Small-Griswold, Mikael Witte, Brian Cairns, Siddhant Gupta, Greg McFarquhar, and Joseph O'Brien
EGUsphere, https://doi.org/10.5194/egusphere-2024-2021, https://doi.org/10.5194/egusphere-2024-2021, 2024
Short summary
Short summary
Satellite remote sensing retrievals of cloud droplet size are used to understand clouds and their interactions with aerosols and radiation but require many simplifying assumptions. Evaluation of these retrievals typically is done by comparing against direct measurements of droplets from airborne cloud probes. This paper details an evaluation of proxy airborne remote sensing droplet size retrievals against several cloud probes and explores the impact of key assumptions on retrieval agreement.
Robert Pincus, Paul A. Hubanks, Steven Platnick, Kerry Meyer, Robert E. Holz, Denis Botambekov, and Casey J. Wall
Earth Syst. Sci. Data, 15, 2483–2497, https://doi.org/10.5194/essd-15-2483-2023, https://doi.org/10.5194/essd-15-2483-2023, 2023
Short summary
Short summary
This paper describes a new global dataset of cloud properties observed by a specific satellite program created to facilitate comparison with a matching observational proxy used in climate models. Statistics are accumulated over daily and monthly timescales on an equal-angle grid. Statistics include cloud detection, cloud-top pressure, and cloud optical properties. Joint histograms of several variable pairs are also available.
Jon Engström, Mira Markovaara-Koivisto, Nikolas Ovaskainen, Nicklas Nordbäck, Markku Paananen, Ismo Aaltonen, Annu Martinkauppi, Heidi Laxström, and Henrik Wik
EGUsphere, https://doi.org/10.5194/egusphere-2023-448, https://doi.org/10.5194/egusphere-2023-448, 2023
Preprint archived
Short summary
Short summary
The main purpose of this nation-wide lineament study of whole Finland is to identify potential brittle bedrock structures. The source data used for the interpretation are a light detection and ranging (LiDAR) -based hillshaded ground elevation model, a seabed elevation model (bathymetry) and several aerogeophysical rasters. The data can be used for a preliminary mapping of bedrock structures, such as shear and fault zones, that directly influence bedrock fracturing at a regional scale.
Galina Wind, Arlindo M. da Silva, Kerry G. Meyer, Steven Platnick, and Peter M. Norris
Geosci. Model Dev., 15, 1–14, https://doi.org/10.5194/gmd-15-1-2022, https://doi.org/10.5194/gmd-15-1-2022, 2022
Short summary
Short summary
This is the third paper in series about the Multi-sensor Cloud and Aerosol Retrieval Simulator (MCARS). In this paper we use MCARS to create a set of constraints that might be used to assimilate a new above-cloud aerosol retrieval product developed for the MODIS instrument into a general circulation model. We executed the above-cloud aerosol retrieval over a series of synthetic MODIS granules and found the product to be of excellent quality.
Fanny Peers, Peter Francis, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Michael I. Cotterell, Ian Crawford, Nicholas W. Davies, Cathryn Fox, Stuart Fox, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, Kate Szpek, and Jim M. Haywood
Atmos. Chem. Phys., 21, 3235–3254, https://doi.org/10.5194/acp-21-3235-2021, https://doi.org/10.5194/acp-21-3235-2021, 2021
Short summary
Short summary
Satellite observations at high temporal resolution are a valuable asset to monitor the transport of biomass burning plumes and the cloud diurnal cycle in the South Atlantic, but they need to be validated. Cloud and above-cloud aerosol properties retrieved from SEVIRI are compared against MODIS and measurements from the CLARIFY-2017 campaign. While some systematic differences are observed between SEVIRI and MODIS, the overall agreement in the cloud and aerosol properties is very satisfactory.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020, https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Short summary
We use deep transfer learning techniques to classify satellite cloud images into different morphology types. It achieves the state-of-the-art results and can automatically process a large amount of satellite data. The algorithm will help low-cloud researchers to better understand their mesoscale organizations.
Benjamin Marchant, Steven Platnick, Kerry Meyer, and Galina Wind
Atmos. Meas. Tech., 13, 3263–3275, https://doi.org/10.5194/amt-13-3263-2020, https://doi.org/10.5194/amt-13-3263-2020, 2020
Short summary
Short summary
Multilayer cloud scenes (such as an ice cloud overlapping a liquid cloud) are common in the Earth's atmosphere and are quite difficult to detect from space. The detection of multilayer clouds is important to better understand how they interact with the light and their impact on the climate. So, for the instrument MODIS an algorithm has been developed to detect those clouds, and this paper presents an evaluation of this algorithm by comparing it with
other instruments.
Chenxi Wang, Steven Platnick, Kerry Meyer, Zhibo Zhang, and Yaping Zhou
Atmos. Meas. Tech., 13, 2257–2277, https://doi.org/10.5194/amt-13-2257-2020, https://doi.org/10.5194/amt-13-2257-2020, 2020
Short summary
Short summary
A machine-learning (ML)-based approach that can be used for cloud mask and phase detection is developed. An all-day model that uses infrared (IR) observations and a daytime model that uses shortwave and IR observations from a passive instrument are trained separately for different surface types. The training datasets are selected by using reference pixel types from collocated space lidar. The ML approach is validated carefully and the overall performance is better than traditional methods.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Steven Platnick, Kerry Meyer, Rich Ferrare, Sharon Burton, Chris Hostetler, Steven Howell, Steffen Freitag, Amie Dobracki, and Sarah Doherty
Atmos. Meas. Tech., 12, 6505–6528, https://doi.org/10.5194/amt-12-6505-2019, https://doi.org/10.5194/amt-12-6505-2019, 2019
Short summary
Short summary
For two cases from the NASA ORACLES experiments, we retrieve aerosol and cloud properties and calculate a direct aerosol radiative effect (DARE). We investigate the relationship between DARE and the cloud albedo by specifying the albedo for which DARE transitions from a cooling to warming radiative effect. Our new aerosol retrieval algorithm is successful despite complexities associated with scenes that contain aerosols above clouds and decreases the uncertainty on retrieved aerosol parameters.
Fanny Peers, Peter Francis, Cathryn Fox, Steven J. Abel, Kate Szpek, Michael I. Cotterell, Nicholas W. Davies, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, and Jim M. Haywood
Atmos. Chem. Phys., 19, 9595–9611, https://doi.org/10.5194/acp-19-9595-2019, https://doi.org/10.5194/acp-19-9595-2019, 2019
Short summary
Short summary
The measurements from the geostationary satellite MSG/SEVIRI are used to retrieve the cloud and above-cloud aerosol properties over the South Atlantic. The technique relies on the spectral contrast and the magnitude of the signal in the visible to shortwave infrared region as well as the atmospheric correction based on forecasted water vapour profiles. The sensitivity analysis and the stability of the retrieval over time show great potential of the high-temporal-resolution observations.
Yuekui Yang, Kerry Meyer, Galina Wind, Yaping Zhou, Alexander Marshak, Steven Platnick, Qilong Min, Anthony B. Davis, Joanna Joiner, Alexander Vasilkov, David Duda, and Wenying Su
Atmos. Meas. Tech., 12, 2019–2031, https://doi.org/10.5194/amt-12-2019-2019, https://doi.org/10.5194/amt-12-2019-2019, 2019
Short summary
Short summary
The physical basis of the EPIC cloud product algorithms and an initial evaluation of their performance are presented. EPIC cloud products include cloud mask, effective height, and optical depth. Comparison with co-located retrievals from geosynchronous earth orbit (GEO) and low earth orbit (LEO) satellites shows that the algorithms are performing well and are consistent with theoretical expectations. These products are publicly available at the NASA Langley Atmospheric Sciences Data Center.
Daniel J. Miller, Zhibo Zhang, Steven Platnick, Andrew S. Ackerman, Frank Werner, Celine Cornet, and Kirk Knobelspiesse
Atmos. Meas. Tech., 11, 3689–3715, https://doi.org/10.5194/amt-11-3689-2018, https://doi.org/10.5194/amt-11-3689-2018, 2018
Short summary
Short summary
Prior satellite comparisons of bispectral and polarimetric cloud droplet size retrievals exhibited systematic biases. However, similar airborne instrument retrievals have been found to be quite similar to one another. This study explains this discrepancy in terms of differing sensitivity to vertical profile, as well as spatial and angular resolution. This is accomplished by using a satellite retrieval simulator – an LES cloud model coupled to radiative transfer and cloud retrieval algorithms.
Thomas Fauchez, Steven Platnick, Kerry Meyer, Céline Cornet, Frédéric Szczap, and Tamás Várnai
Atmos. Chem. Phys., 17, 8489–8508, https://doi.org/10.5194/acp-17-8489-2017, https://doi.org/10.5194/acp-17-8489-2017, 2017
Short summary
Short summary
This study presents impact of cirrus cloud horizontal heterogeneity on simulated thermal infrared brightness temperatures at the top of the atmosphere for spatial resolutions ranging from 50 m to 10 km. The cirrus is generated by the 3DCLOUD code and the radiative transfer by the 3DMCPOL code. Brightness temperatures are mostly impacted by the horizontal transport effect and plane-parallel bias at high and coarse spatial resolutions, respectively, with a minimum around 100 m–250 m.
John Rausch, Kerry Meyer, Ralf Bennartz, and Steven Platnick
Atmos. Meas. Tech., 10, 2105–2116, https://doi.org/10.5194/amt-10-2105-2017, https://doi.org/10.5194/amt-10-2105-2017, 2017
Short summary
Short summary
This paper documents the observed differences in the aggregated (Level-3) cloud droplet effective radius and droplet number concentration estimates inferred from the Aqua–MODIS cloud product collections 5.1 and 6 for warm oceanic cloud scenes over the year 2008. We note significant differences in effective radius and droplet concentration between the two products and discuss the algorithmic and calibration changes which may contribute to observed results.
Frank Werner, Galina Wind, Zhibo Zhang, Steven Platnick, Larry Di Girolamo, Guangyu Zhao, Nandana Amarasinghe, and Kerry Meyer
Atmos. Meas. Tech., 9, 5869–5894, https://doi.org/10.5194/amt-9-5869-2016, https://doi.org/10.5194/amt-9-5869-2016, 2016
Short summary
Short summary
A research–level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. This yields reliable estimates of important cloud variables at a horizontal resolution of 30 m. Comparisons of the ASTER retrieval results with the operational cloud products from the Moderate Resolution Imaging Spectroradiometer (MODIS) show a high agreement for 48 example cloud fields.
Cited articles
Alstott, J., Bullmore, E., and Plenz, D.: Powerlaw: a Python package for
analysis of heavy-tailed distributions, PLoS ONE, 9, e85777,
https://doi.org/10.1371/journal.pone.0085777, 2014. a, b, c
Andrews, B. J., Roberts, J. J., Shipton, Z. K., Bigi, S., Tartarello, M. C., and Johnson, G.: How do we see fractures? Quantifying subjective bias in fracture data collection, Solid Earth, 10, 487–516, https://doi.org/10.5194/se-10-487-2019, 2019. a, b
Bond, C., Gibbs, A., Shipton, Z., and Jones, S.: What do you think this is?
“Conceptual uncertainty” in geoscience interpretation, GSA Today, 17,
4, https://doi.org/10.1130/GSAT01711A.1, 2007. a
Bossennec, C., Frey, M., Seib, L., Bär, K., and Sass, I.: Multiscale
Characterisation of Fracture Patterns of a Crystalline Reservoir
Analogue, Geosciences, 11, 371, https://doi.org/10.3390/geosciences11090371, 2021. a
Bour, O., Davy, P., Darcel, C., and Odling, N.: A statistical scaling model for
fracture network geometry, with validation on a multiscale mapping of a joint
network (Hornelen Basin, Norway), J. Geophys. Res., 107,
2113, https://doi.org/10.1029/2001JB000176, 2002. a, b
Ceccato, A., Tartaglia, G., Antonellini, M., and Viola, G.: Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks, Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, 2022. a, b
Chabani, A., Trullenque, G., Ledésert, B. A., and Klee, J.: Multiscale
Characterization of Fracture Patterns: A Case Study of the
Noble Hills Range (Death Valley, CA, USA), Application to
Geothermal Reservoirs, Geosciences, 11, 280,
https://doi.org/10.3390/geosciences11070280, 2021. a, b, c, d
Cottrell, M.: Occurrence of Large Fractures in the Host Rock for a
Spent Nuclear Fuel Repository: Earthquake Study, Working Report
2021-09, Posiva, Olkiluoto, https://www.posiva.fi/en/index/media/reports.html, last access: 10 June 2022. a
Davy, P.: On the frequency-length distribution of the San Andreas Fault
System, J. Geophys. Res.-Sol. Ea., 98, 12141–12151,
https://doi.org/10.1029/93JB00372, 1993. a
Davy, P., Bour, O., De Dreuzy, J.-R., and Darcel, C.: Flow in multiscale
fractal fracture networks, Geol. Soc. Lond. Spec. Publ.,
261, 31–45, https://doi.org/10.1144/GSL.SP.2006.261.01.03, 2006. a, b
Davy, P., Le Goc, R., Darcel, C., Bour, O., de Dreuzy, J. R., and Munier, R.: A
likely universal model of fracture scaling and its consequence for crustal
hydromechanics, J. Geophys. Res., 115, B10411,
https://doi.org/10.1029/2009JB007043, 2010. a, b, c, d
Dichiarante, A. M., McCaffrey, K. J. W., Holdsworth, R. E., Bjørnarå, T. I., and Dempsey, E. D.: Fracture attribute scaling and connectivity in the Devonian Orcadian Basin with implications for geologically equivalent sub-surface fractured reservoirs, Solid Earth, 11, 2221–2244, https://doi.org/10.5194/se-11-2221-2020, 2020. a, b, c
Dühnforth, M., Anderson, R. S., Ward, D., and Stock, G. M.: Bedrock fracture
control of glacial erosion processes and rates, Geology, 38, 423–426,
https://doi.org/10.1130/G30576.1, 2010. a, b
Engström, J., Markovaara-Koivisto, M., Ovaskainen, N., Nordbäck, N., Paananen, M., Aaltonen, I., Martinkauppi, A., Laxström, H., and Wik, H.: Aerogeophysics and light detecting and ranging (LiDAR)-based lineament interpretation of Finland at the scale of 1:500 000, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-448, 2023. a
Frey, M., Bossennec, C., Seib, L., Bär, K., Schill, E., and Sass, I.: Interdisciplinary fracture network characterization in the crystalline basement: a case study from the Southern Odenwald, SW Germany, Solid Earth, 13, 935–955, https://doi.org/10.5194/se-13-935-2022, 2022. a
Geological Survey of Finland: Striations,
https://hakku.gtk.fi/en (last access: 8 May 2023), 2014. a
Gillies, S., van der Wel, C., Van den Bossche, J., Taves, M. W., Arnott, J., Ward, B. C., and others: Shapely (Version
1.8.5.post1), GitHub [code],
https://github.com/shapely/shapely/tree/1.8.5.post1, last access: 4 November 2022 2022. a
Glasser, N. F., Roman, M., Holt, T. O., Žebre, M., Patton, H., and Hubbard,
A. L.: Modification of bedrock surfaces by glacial abrasion and quarrying:
Evidence from North Wales, Geomorphology, 365, 107283,
https://doi.org/10.1016/j.geomorph.2020.107283, 2020. a
Goodchild, M. F.: Metrics of scale in remote sensing and GIS, Int.
J. Applied Earth Obs., 3, 114–120,
https://doi.org/10.1016/S0303-2434(01)85002-9, 2001. a, b
Goodchild, M. F.: Scale in GIS: An overview, Geomorphology, 130, 5–9,
https://doi.org/10.1016/j.geomorph.2010.10.004, 2011. a, b, c
Haapala, I. and Rämö, O. T.: Tectonic setting and origin of the Proterozoic
rapakivi granites of southeastern Fennoscandia, Earth Env.
Sci. T. R. Soc., 83, 165–171,
https://doi.org/10.1017/S0263593300007859, 1992. a
Hardebol, N. J., Maier, C., Nick, H., Geiger, S., Bertotti, G., and Boro, H.:
Multiscale fracture network characterization and impact on flow: A case
study on the Latemar carbonate platform, J. Geophys. Res.-Sol. Ea., 120, 8197–8222, https://doi.org/10.1002/2015JB011879, 2015. a, b
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río,
J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array
programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a, b
Hartley, L., Appleyard, P., Baxter, S., Hoek, J., Joyce, S., Mosley, K.,
Williams, T., Fox, A., Cottrell, M., La Pointe, P., Gehör, S., Darcel, C.,
Le Goc, R., Aaltonen, I., Vanhanarkaus, O., Löfman, J., and Poteri, A.:
Discrete Fracture Network Modelling (Version 3) in Support of
Olkiluoto Site Description 2018, Working Report 2017-32, Posiva,
Olkiluoto, https://www.posiva.fi/en/index/media/reports.html (last access: 10 June 2022), 2018. a, b
Hautaniemi, H., Kurimo, M., Multala, J., Leväniemi, H., and Vironmäki, J.: The “three in one” aerogeophysical concept of GTK in 2004,
Aerogeophysics in Finland 1972–2004 Methods, System Characteristics and Applications, edited by: Airo, M.-L.,
Special Paper 39, Geological Survey of Finland, Espoo, Finland, 21–74, ISBN 951-690-915-9, ISSN 0782-8535, https://tupa.gtk.fi/julkaisu/specialpaper/sp_039.pdf (last access: 10 May 2022),
2005. a
Heffer, K. and Bevan, T.: Scaling Relationships in Natural Fractures:
Data, Theory, and Application, in: All Days,
SPE, The Hague, Netherlands, SPE–20 981–MS, https://doi.org/10.2118/20981-MS, 1990. a, b, c, d
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci.
Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Jordahl, K., Bossche, J. V. d., Fleischmann, M., McBride, J., Wasserman, J.,
Richards, M., Badaracco, A. G., Snow, A. D., Gerard, J., Tratner, J., Perry,
M., Ward, B., Farmer, C., Hjelle, G. A., Cochran, M., Taves, M., Gillies, S.,
Caria, G., Culbertson, L., Bartos, M., Eubank, N., Bell, R., sangarshanan,
Flavin, J., Rey, S., maxalbert, Bilogur, A., Ren, C., Arribas-Bel, D., and
Mesejo-León, D.: geopandas/geopandas: v0.12.1, Zenodo [code], https://doi.org/10.5281/zenodo.7262879,
2022. a
Karell, F., Ehlers, C., and Airo, M.-L.: Emplacement and magnetic fabrics of
rapakivi granite intrusions within Wiborg and Åland rapakivi granite
batholiths in Finland, Tectonophysics, 614, 31–43,
https://doi.org/10.1016/j.tecto.2013.12.006, 2014. a
Korja, A. and Heikkinen, P. J.: Proterozoic extensional tectonics of the
central Fennoscandian Shield: Results from the Baltic and Bothnian
Echoes from the Lithosphere experiment, Tectonics, 14, 504–517,
https://doi.org/10.1029/94TC02905, 1995. a
Kosunen, P.: The rapakivi granite plutons of Bodom and Obbnäs, southern
Finland: petrography and geochemistry, B. Geol. Soc.
Finland, 71, 275–304, https://doi.org/10.17741/bgsf/71.2.005, 1999. a, b
Kruhl, J. H.: Fractal-geometry techniques in the quantification of complex rock
structures: A special view on scaling regimes, inhomogeneity and
anisotropy, J. Struct. Geol., 46, 2–21,
https://doi.org/10.1016/j.jsg.2012.10.002, 2013. a
Lahiri, S.: Estimating effective permeability using connectivity and branch
length distribution of fracture network, J. Struct. Geol., 146,
104314, https://doi.org/10.1016/j.jsg.2021.104314, 2021. a
Laitakari, I., Rämö, T., Suominen, V., Niin, M., Stepanov, K., and Amantov,
A.: Subjotnian: Rapakivi granites and related rocks in the surroundings of the gulf of Finland, Explanation to the Map of Precambrian basement of the Gulf of Finland and surrounding area 1:1 mill., edited by: Koistinen, T. J., Geological Survey of Finland, 59–98, ISBN 951-690-627-3,
ISSN 0782-8535, https://tupa.gtk.fi/julkaisu/specialpaper/sp_021.pdf (last access: 27 September 2022),
1996. a
Libby, S., Turnbull, R., Cottrell, M., Bym, T., Josephson, N., Munier, R.,
Selroos, J., and Mas Ivars, D.: Grown Discrete Fracture Networks: a new
method for generating fractures according to their deformation history,
ARMA, New York, vol. 19, p. 8, https://www.researchgate.net/profile/Lee-Hartley/publication/334597154 (last access: 9 December 2021), 2019. a, b
Luosto, U., Tiira, T., Korhonen, H., Azbel, I., Burmin, V., Buyanov, A.,
Kosminskaya, I., Ionkis, V., and Sharov, N.: Crust and upper mantle structure
along the DSS Baltic profile in SE Finland, Geophys. J.
Int., 101, 89–110, https://doi.org/10.1111/j.1365-246X.1990.tb00760.x, 1990. a
Maillot, J., Davy, P., Le Goc, R., Darcel, C., and de Dreuzy, J.: Connectivity,
permeability, and channeling in randomly distributed and kinematically
defined discrete fracture network models: PERMEABILITY OF DISCRETE
FRACTURE NETWORK, Water Resour. Res., 52, 8526–8545,
https://doi.org/10.1002/2016WR018973, 2016. a
Manzocchi, T.: The connectivity of two-dimensional networks of spatially
correlated fractures, Water Resour. Res., 38, 1162,
https://doi.org/10.1029/2000WR000180, 2002. a, b, c, d
Marrett, R.: Aggregate properties of fracture populations, J.
Struct. Geol., 18, 169–178, https://doi.org/10.1016/S0191-8141(96)80042-3, 1996. a
Marrett, R., Ortega, O. J., and Kelsey, C. M.: Extent of power-law scaling for
natural fractures in rock, Geology, 27, 799,
https://doi.org/10.1130/0091-7613(1999)027<0799:EOPLSF>2.3.CO;2, 1999. a, b, c
Mauldon, M., Dunne, W., and Rohrbaugh, M.: Circular scanlines and circular
windows: new tools for characterizing the geometry of fracture traces,
J. Struct. Geol., 23, 247–258,
https://doi.org/10.1016/S0191-8141(00)00094-8, 2001. a, b
Mercuri, M., Tavani, S., Aldega, L., Trippetta, F., Bigi, S., and Carminati,
E.: Are open-source aerial images useful for fracture network
characterisation? Insights from a multi-scale approach in the Zagros
Mts, J. Struct. Geol., 171, 104866,
https://doi.org/10.1016/j.jsg.2023.104866, 2023. a
Middleton, M., Schnur, T., Sorjonen-Ward, P., and Hyvönen, E.: Geological lineament interpretation using the object-based image analysis approach: results of semi-automated analyses versus visual interpretation, Novel technologies for greenfield exploration, edited by: Sarala, P., Special
Paper 57, Geological Survey of Finland, Finland, 135–154,
https://tupa.gtk.fi/julkaisu/specialpaper/sp_057.pdf (last access: 8 March 2022), 2015. a, b
Mäkel, G. H.: The modelling of fractured reservoirs: constraints and potential
for fracture network geometry and hydraulics analysis, Geol. Soc.
Lond. Spec. Publ., 292, 375–403, https://doi.org/10.1144/SP292.21, 2007. a, b, c
National Land Survey of Finland: Laser scanning data 0,5 p,
https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta?lang=en (last access: 11 November 2018),
2010. a
Nironen, M.: The Svecofennian Orogen: a tectonic model, Precambrian
Res., 86, 21–44, https://doi.org/10.1016/S0301-9268(97)00039-9, 1997. a
Nixon, C. W., Sanderson, D. J., and Bull, J. M.: Analysis of a strike-slip
fault network using high resolution multibeam bathymetry, offshore NW
Devon U.K., Tectonophysics, 541–543, 69–80,
https://doi.org/10.1016/j.tecto.2012.03.021, 2012. a, b
Nur, A.: The origin of tensile fracture lineaments, J. Struct.
Geol., 4, 31–40, https://doi.org/10.1016/0191-8141(82)90004-9, 1982. a
Nyberg, B., Nixon, C. W., and Sanderson, D. J.: NetworkGT: A GIS tool for
geometric and topological analysis of two-dimensional fracture networks,
Geosphere, 14, 1618–1634, https://doi.org/10.1130/GES01595.1, 2018. a, b
Odling, N. E.: Scaling and connectivity of joint systems in sandstones from
western Norway, J. Struct. Geol., 19, 1257–1271,
https://doi.org/10.1016/S0191-8141(97)00041-2, 1997. a, b
Odling, N. E., Gillespie, P., Bourgine, B., Castaing, C., Chiles, J. P.,
Christensen, N. P., Fillion, E., Genter, A., Olsen, C., Thrane, L., Trice,
R., Aarseth, E., Walsh, J. J., and Watterson, J.: Variations in fracture
system geometry and their implications for fluid flow in fractures
hydrocarbon reservoirs, Petrol. Geosci., 5, 373–384,
https://doi.org/10.1144/petgeo.5.4.373, 1999. a
Ojala, A. and Sarala, P.: Editorial: LiDAR – rapid developments in remote
sensing of geological features, B. Geol. Soc.
Finland, 89, 61–63, https://doi.org/10.17741/bgsf/89.2.ed, 2017. a
Ovaskainen, N.: nialov/multi-scale-fracture-networks-aland-islands-2022,
Zenodo [code], https://doi.org/10.5281/zenodo.7919843, 2023. a, b
Ovaskainen, N. and Nordbäck, N.: G, Zenodo [data set], https://doi.org/10.5281/zenodo.4719627, 2021. a
Palamakumbura, R., Krabbendam, M., Whitbread, K., and Arnhardt, C.: Data acquisition by digitizing 2-D fracture networks and topographic lineaments in geographic information systems: further development and applications, Solid Earth, 11, 1731–1746, https://doi.org/10.5194/se-11-1731-2020, 2020. a, b
Palmu, J.-P., Ojala, A. E., Ruskeeniemi, T., Sutinen, R., and Mattila, J.:
LiDAR DEM detection and classification of postglacial faults and
seismically-induced landforms in Finland: a paleoseismic database, GFF,
137, 344–352, https://doi.org/10.1080/11035897.2015.1068370, 2015. a
Pickering, G., Bull, J., and Sanderson, D.: Sampling power-law distributions,
Tectonophysics, 248, 1–20, https://doi.org/10.1016/0040-1951(95)00030-Q, 1995. a, b, c
Piipponen, K., Martinkauppi, A., Korhonen, K., Vallin, S., Arola, T., Bischoff,
A., and Leppäharju, N.: The deeper the better? A thermogeological analysis
of medium-deep borehole heat exchangers in low-enthalpy crystalline rocks,
Geothermal Energy, 10, 12, https://doi.org/10.1186/s40517-022-00221-7, 2022. a
Prabhakaran, R., Bruna, P.-O., Bertotti, G., and Smeulders, D.: An automated fracture trace detection technique using the complex shearlet transform, Solid Earth, 10, 2137–2166, https://doi.org/10.5194/se-10-2137-2019, 2019. a
Priest, S. D.: Discontinuity Analysis for Rock Engineering, Springer
Netherlands, Dordrecht, https://doi.org/10.1007/978-94-011-1498-1, 1993. a, b
Rohrbaugh, M. B., Dunne, W., and Mauldon, M.: Estimating fracture trace
intensity, density, and mean length using circular scan lines and windows,
AAPG Bulletin, 86, 2089–2104, https://doi.org/10.1306/61EEDE0E-173E-11D7-8645000102C1865D, 2002. a, b
Rämö, O. and Haapala, I.: Chapter 12 Rapakivi Granites, in: Developments
in Precambrian Geology, Elsevier, vol. 14, 533–562,
https://doi.org/10.1016/S0166-2635(05)80013-1, 2005. a, b, c
Sanderson, D. J. and Nixon, C. W.: Topology, connectivity and percolation in
fracture networks, J. Struct. Geol., 115, 167–177,
https://doi.org/10.1016/j.jsg.2018.07.011, 2018. a, b
Sanderson, D. J. and Peacock, D. C.: Making rose diagrams fit-for-purpose,
Earth-Sci. Rev., 201, 103055, https://doi.org/10.1016/j.earscirev.2019.103055,
2020. a, b
Skyttä, P., Kinnunen, J., Palmu, J.-P., and Korkka-Niemi, K.: Bedrock
structures controlling the spatial occurrence and geometry of 1.8Ga younger
glacifluvial deposits – Example from First Salpausselkä, southern
Finland, Global Planet. Change, 135, 66–82,
https://doi.org/10.1016/j.gloplacha.2015.10.007, 2015. a
Skyttä, P., Ovaskainen, N., Nordbäck, N., Engström, J., and Mattila, J.:
Fault-induced mechanical anisotropy and its effects on fracture patterns in
crystalline rocks, J. Struct. Geol., 146, 104304,
https://doi.org/10.1016/j.jsg.2021.104304, 2021. a
Skyttä, P., Nordbäck, N., Ojala, A., Putkinen, N., Aaltonen, I., Engström,
J., Mattila, J., and Ovaskainen, N.: The interplay of bedrock fractures and
glacial erosion in defining the present‐day land surface topography in
mesoscopically isotropic crystalline rocks, Earth Surface Proc.
Land., 1–13, https://doi.org/10.1002/esp.5596, 2023. a, b, c, d, e
Sornette, A., Davy, P., and Sornette, D.: Growth of fractal fault patterns,
Phys. Rev. Lett., 65, 2266–2269, https://doi.org/10.1103/PhysRevLett.65.2266,
1990. a
Strijker, G., Bertotti, G., and Luthi, S. M.: Multi-scale fracture network
analysis from an outcrop analogue: A case study from the
Cambro-Ordovician clastic succession in Petra, Jordan, Mar.
Petrol. Geol., 38, 104–116, https://doi.org/10.1016/j.marpetgeo.2012.07.003, 2012. a
Torvela, T. and Annersten, H.: PT-conditions of deformation within the
Palaeoproterozoic South Finland shear zone: Some geothermobarometric
results, B. Geol. Soc. Finland, 77, 151–164,
https://doi.org/10.17741/bgsf/77.2.004, 2005. a
Torvela, T., Mänttäri, I., and Hermansson, T.: Timing of deformation phases
within the South Finland shear zone, SW Finland, Precambrian
Res., 160, 277–298, https://doi.org/10.1016/j.precamres.2007.08.002, 2008. a, b, c
Tyrén, S.: Lineament interpretation. Short review and methodology, Technical
Report SSM-2010-33, Swedish Radiation Safety Authority, Stockholm, Sweden,
https://www.osti.gov/etdeweb/biblio/1013181 (last access: 24 November 2021), 2011. a
Verduzco, B., Fairhead, J. D., Green, C. M., and MacKenzie, C.: New insights
into magnetic derivatives for structural mapping, Leading Edge, 23,
116–119, https://doi.org/10.1190/1.1651454, 2004. a
Vigneresse, J.: The specific case of the Mid-Proterozoic rapakivi granites
and associated suite within the context of the Columbia supercontinent,
Precambrian Res., 137, 1–34, https://doi.org/10.1016/j.precamres.2005.01.001,
2005. a
Väisänen, M. and Skyttä, P.: Late Svecofennian shear zones in southwestern
Finland, GFF, 129, 55–64, https://doi.org/10.1080/11035890701291055, 2007. a
Woodard, J. B., Zoet, L. K., Iverson, N. R., and Helanow, C.: Linking bedrock
discontinuities to glacial quarrying, Ann. Glaciol., 60, 66–72,
https://doi.org/10.1017/aog.2019.36, 2019. a
Zeeb, C., Gomez-Rivas, E., Bons, P. D., and Blum, P.: Evaluation of sampling
methods for fracture network characterization using outcrops, AAPG Bulletin,
97, 1545–1566, https://doi.org/10.1306/02131312042, 2013. a, b
Short summary
We studied bedrock fracturing at Åland Islands from bedrock outcrops,
digital elevation models and geophysics using multiple scales of observation.
Using the results we can compare properties of the fractures of different sizes
to find similarities and differences; e.g. we found that glacial erosion has a
probable effect on the study of larger bedrock structures. Furthermore, we
collected data from 100 to 500 m long fractures, which have previously
proved to be difficult to sample.
We studied bedrock fracturing at Åland Islands from bedrock outcrops,
digital elevation models...