Articles | Volume 15, issue 6
https://doi.org/10.5194/se-15-639-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-639-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rare Earth element distribution on the Fuerteventura Basal Complex (Canary Islands, Spain): a geochemical and mineralogical approach
Departament de Mineralogia, Museu de Ciències Naturals de Barcelona, Passeig Picasso s/n, 08003 Barcelona, Spain
Inmaculada Menéndez
Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
Luis Quevedo
Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
Departamento de Física, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, apartado correos 456, 38200 La Laguna, Tenerife, Spain
Jorge Yepes
Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
Ramón Casillas
Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, apartado correos 456, 38200 La Laguna, Tenerife, Spain
Agustina Ahijado
Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, apartado correos 456, 38200 La Laguna, Tenerife, Spain
Jorge Méndez-Ramos
Departamento de Física, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, apartado correos 456, 38200 La Laguna, Tenerife, Spain
José Mangas
Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochemistry
Evolution of fluid redox in a fault zone of the Pic de Port Vieux thrust in the Pyrenees Axial Zone (Spain)
Mapping geochemical anomalies by accounting for the uncertainty of mineralization-related elemental associations
Mineralogical and elemental geochemical characteristics of Taodonggou Group mudstone in the Taibei Sag, Turpan–Hami Basin: implication for its formation mechanism
Application of lithogeochemical and pyrite trace element data for the determination of vectors to ore in the Raja Au–Co prospect, northern Finland
Influence of basement rocks on fluid evolution during multiphase deformation: the example of the Estamariu thrust in the Pyrenean Axial Zone
Spatiotemporal history of fault–fluid interaction in the Hurricane fault, western USA
Fluid–rock interactions in the shallow Mariana forearc: carbon cycling and redox conditions
Squirt flow due to interfacial water films in hydrate bearing sediments
Delphine Charpentier, Gaétan Milesi, Pierre Labaume, Ahmed Abd Elmola, Martine Buatier, Pierre Lanari, and Manuel Muñoz
Solid Earth, 15, 1065–1086, https://doi.org/10.5194/se-15-1065-2024, https://doi.org/10.5194/se-15-1065-2024, 2024
Short summary
Short summary
Understanding the fluid circulation in fault zones is essential to characterize the thermochemical evolution of hydrothermal systems in mountain ranges. The study focused on a paleo-system of the Pyrenees. Phyllosilicates permit us to constrain the evolution of temperature and redox of fluids at the scale of the fault system. A scenario is proposed and involves the circulation of a single highly reducing hydrothermal fluid (~300 °C) that evolves due to redox reactions.
Jian Wang, Renguang Zuo, and Qinghai Liu
Solid Earth, 15, 731–746, https://doi.org/10.5194/se-15-731-2024, https://doi.org/10.5194/se-15-731-2024, 2024
Short summary
Short summary
This study improves geochemical mapping by addressing the uncertainty in defining element associations. It clusters the study area by element similarity, recognizes elemental associations for each cluster, and then detects anomalies indicating underlying geological processes. This method is applied to a region in China, confirming its effectiveness and consistency with the geology. This study can enhance geochemical mapping for mineral exploration and improve geological-process understanding.
Huan Miao, Jianying Guo, Yanbin Wang, Zhenxue Jiang, Chengju Zhang, and Chuanming Li
Solid Earth, 14, 1031–1052, https://doi.org/10.5194/se-14-1031-2023, https://doi.org/10.5194/se-14-1031-2023, 2023
Short summary
Short summary
The Taodonggou Group mudstone was deposited in a warm, humid, and hot paleoclimate with strong weathering. The parent rocks of the Taodonggou Group mudstone are felsic volcanic rocks and andesites, with weak sedimentary sorting and recycling and with well-preserved source information. The Taodonggou Group mudstone was deposited in dyoxic fresh water–brackish water in intermediate-depth or deep lakes with stable inputs of terrigenous debris but at slower deposition rates.
Sara Raič, Ferenc Molnár, Nick Cook, Hugh O'Brien, and Yann Lahaye
Solid Earth, 13, 271–299, https://doi.org/10.5194/se-13-271-2022, https://doi.org/10.5194/se-13-271-2022, 2022
Short summary
Short summary
Orogenic gold deposits in Paleoproterozoic belts in northern Finland have been explored not only for gold but because of the occurrences of economically important concentrations of base metals, especially cobalt. In this study we are testing the vectoring capacities of pyrite trace element geochemistry, combined with lithogeochemical and sulfur isotopic data in the Raja gold–cobalt prospect (northern Finland), by using multivariate statistical data analysis.
Daniel Muñoz-López, Gemma Alías, David Cruset, Irene Cantarero, Cédric M. John, and Anna Travé
Solid Earth, 11, 2257–2281, https://doi.org/10.5194/se-11-2257-2020, https://doi.org/10.5194/se-11-2257-2020, 2020
Short summary
Short summary
This study assesses the influence of basement rocks on the fluid chemistry during deformation in the Pyrenees and provides insights into the fluid regime in the NE part of the Iberian Peninsula.
Jace M. Koger and Dennis L. Newell
Solid Earth, 11, 1969–1985, https://doi.org/10.5194/se-11-1969-2020, https://doi.org/10.5194/se-11-1969-2020, 2020
Short summary
Short summary
The Hurricane fault is a major and active normal fault located in the southwestern USA. This study utilizes the geochemistry and dating of calcite veins associated with the fault to characterize ancient groundwater flow. Results show that waters moving along the fault over the last 540 000 years were a mixture of infiltrating fresh water and deep, warm salty groundwater. The formation of calcite veins may be related to ancient earthquakes, and the fault influences regional groundwater flow.
Elmar Albers, Wolfgang Bach, Frieder Klein, Catriona D. Menzies, Friedrich Lucassen, and Damon A. H. Teagle
Solid Earth, 10, 907–930, https://doi.org/10.5194/se-10-907-2019, https://doi.org/10.5194/se-10-907-2019, 2019
Short summary
Short summary
To understand the fate of carbon in subducted oceanic sediments and crust, we studied carbonate phases in rocks from the Mariana subduction zone. These show that carbon is liberated from the downgoing plate at depths less than 20 km. Some of the carbon is subsequently trapped in minerals and likely subducts to greater depths, whereas fluids carry the other part back into the ocean. Our findings imply that shallow subduction zone processes may play an important role in the deep carbon cycle.
Kathleen Sell, Beatriz Quintal, Michael Kersten, and Erik H. Saenger
Solid Earth, 9, 699–711, https://doi.org/10.5194/se-9-699-2018, https://doi.org/10.5194/se-9-699-2018, 2018
Short summary
Short summary
Sediments containing hydrates dispersed in the pore space show a characteristic seismic anomaly: a high attenuation along with increasing seismic velocities. Recent major findings from synchrotron experiments revealed the systematic presence of thin water films between quartz and gas hydrate. Our numerical studies support earlier speculation that squirt flow causes high attenuation at seismic frequencies but are based on a conceptual model different to those previously considered.
Cited articles
Acosta-Mora, P., Domen, K., Hisatomi, T., Lyu, H., Méndez-Ramos, J., Ruiz-Morales, J. C., and Khaidukov, N. M.: “A bridge over troubled gaps”: up-conversion driven photocatalysis for hydrogen generation and pollutant degradation by near-infrared excitation, Chem. Commun., 54, 1905–1908 https://doi.org/10.1039/C7CC09774C, 2018.
Aiglsperger, T., Proenza, J. A., Lewis, J. F., Labrador, M., Svojtka, M., Rojas-Purón, A., Longo, F., and Ďurišová, J.: Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic, Ore Geol. Rev., 73, 127–147, https://doi.org/10.1016/j.oregeorev.2015.10.010, 2016.
Ahijado, A.: Las intrusiones plutónicas e hipoabisales del sector meridional del Complejo Basal de Fuerteventura, Doctoral Thesis, Universidad Complutense de Madrid, 392 pp., 1999.
Ahijado, A., Casillas, R., Nagy, G., and Fernández, C.: Sr-rich minerals in a carbonatite skarn, Fuerteventura, Canary Islands (Spain), Mineral. Petrol., 84, 107–127, https://doi.org/10.1007/s00710-005-0074-8, 2005.
Alonso, E., Sherman, A. M., Wallington, T. J., Everson, M. P., Field, F. R., Roth, R., and Kirchain, R. E.: Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies, Environ. Sci. Technol., 46, 3406–3414, https://doi.org/10.1021/es203518d, 2012.
Alonso-Zarza, A. M. and Silva, P. G.: Quaternary laminar calcretes with bee nests evidences of small-scale climatic fluctuations, Eastern Canary Islands, Spain, Palaeogeogr. Palaeocl., 178, 119–135, https://doi.org/10.1016/S0031-0182(01)00405-9, 2002.
Alonso-Zarza, A. M., Rodríguez-Berriguete, Á., Casado, A. I., Martín-Pérez, A., Martín-García, R., Menéndez, I., and Mangas, J.: Unravelling calcrete environmental controls in volcanic islands, Gran Canaria Island, Spain, Palaeogeogr. Palaeocl., 554, 109797, https://doi.org/10.1016/j.palaeo.2020.109797, 2020.
Ancochea, E., Brändle, J. L., Cubas, C. R., Hernán, F., and Huertas, M. J.: Volcanic complexes in the eastern ridge of the Canary Islands: the Miocene activity of the Island of Fuerteventura, J. Volcanol. Geoth. Res., 70, 183–204, https://doi.org/10.1016/0377-0273(95)00051-8, 1996.
Ancochea, E., Barrera, J. L., and Bellido, F.: Canarias y el vulcanismo neógeno peninsular. Geología de España, 635–682, in: Fuentes mantélicas y evolución del volcanismo canario, edited by: Aparicio, A., Hernán, F., Cubas, C. R., and Araña, V., 2003, Estud. Geol.-Madrid, 59, 5–13, https://doi.org/10.3989/egeol.03591-477, 2004.
Andersen, A. K., Clark, J. G., Larson, P. B., and Donovan, J. J.: REE fractionation, mineral speciation, and supergene enrichment of the Bear Lodge carbonatites, Wyoming, USA, Ore Geol. Rev., 89, 780–807, https://doi.org/10.1016/j.oregeorev.2017.06.025, 2017.
Anenburg, M. and Mavrogenes, J. A.: Carbonatitic versus hydrothermal origin for fluorapatite REE-Th deposits: experimental study of REE transport and crustal “antiskarn” metasomatism, Am. J. Sci., 318, 335–366, https://doi.org/10.2475/03.2018.03, 2018.
Anenburg, M., Broom-Fendley, S., and Chen, W.: Formation of Rare Earth Deposits in Carbonatites, Elements, 17, 327–332, https://doi.org/10.2138/gselements.17.5.327, 2021.
Balcells, R., Barrera, J. L., Gómez, J. A., Cueto, L. A., Ancochea, E., Huertas, M. J., Ibarrola, E., and Snelling, N.: Edades radiométricas en la Serie Miocena de Fuerteventura (Islas Canarias), Bol. Geol. Min., 35, 450–470, 1994.
Balaram, V.: Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact, Geosci. Front., 10, 1285–1303, https://doi.org/10.1016/j.gsf.2018.12.005, 2019.
Balogh, K., Ahijado, A., Casillas, R., and Fernández, C.: Contributions to the chronology of the Basal Complex of Fuerteventura, Canary Islands, J. Volcanol. Geoth. Res., 90, 81–101, https://doi.org/10.1016/S0377-0273(99)00008-6, 1999.
Bao, Z. and Zhao, Z.: Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China, Ore Geol. Rev., 33, 519–535, https://doi.org/10.1016/j.oregeorev.2007.03.005, 2008.
Barrera, J. L., Fernândez-Santín, S., Fúster, J. M., and Ibarrola, E.: Ijolitas-Sienitas-Carbonatitas de los Macizos del Norte de Fuerteventura, Bol. Geol. Min., 92, 309–321, 1981.
Barteková, E. and Kemp, R.: National strategies for securing a stable supply of rare earths in different world regions, Resour. Policy, 49, 153–164, https://doi.org/10.1016/j.resourpol.2016.05.003, 2016.
Beland, C. M. J. and William-Jones, A. E.: The mineralogical distribution of the REE in carbonatites: A quantitative evaluation, Chem. Geol., 585, 120558, https://doi.org/10.1016/j.chemgeo.2021.120558, 2021.
Berger, A., Janots, E., Gnos, E., Frei, R., and Bernier, F.: Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar, Appl. Geochem., 41, 218–228, https://doi.org/10.1016/j.apgeochem.2013.12.013, 2014.
Borst, A. M., Smith, M. P., Finch, A. A., Estrade, G., Villanova-de-Benavent, C., Nason, P., Marquis, E., Horsburgh, N. J., Goodenough, K. M., Xu, C., Kynický, J., and Geraki, K.: Adsorption of rare earth elements in regolith-hosted clay deposits, Nat. Commun., 11, 4386, https://doi.org/10.1038/s41467-020-17801-5, 2020.
Braga, J. M. and Biondi, J. C.: Geology, geochemistry, and mineralogy of saprolite and regolith ores with Nb, P, Ba, REEs (+ Fe) in mineral deposits from the Araxá alkali-carbonatitic complex, Minas Gerais state, Brazil, J. S. Am. Earth Sci., 125, 104311, https://doi.org/10.1016/j.jsames.2023.104311, 2023.
Braun, J. J., Pagel, M., Herbilln, A., and Rosin, C.: Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: A mass balance study, Geochem. Cosmochim. Ac., 57, 4419–4434. https://doi.org/10.1016/0016-7037(93)90492-F, 1993.
Carnevale, G., Caracausi, A., Correale, A., Italiano, L., and Rotolo, S. G.: An Overview of the Geochemical Characteristics of Oceanic Carbonatites: New Insights from Fuerteventura Carbonatites (Canary Islands), Minerals, 11, 203, https://doi.org/10.3390/min11020203, 2021.
Casillas, R., Nagy, G., Demény, A., Ahijado, A., and Fernández, C.: Cuspidine–niocalite–baghdadite solid solutions in the metacarbonatites of the Basal Complex of Fuerteventura (Canary Islands), Lithos, 105, 25–41, https://doi.org/10.1016/j.lithos.2008.02.003, 2008.
Casillas, R., Démeny, A., Nagy, G., Ahijado, A., and Fernández, C.: Metacarbonatites in the Basal Complex of Fuerteventura (Canary Islands). The role of fluid/rock interactions during contact metamorphism and anatexis, Lithos, 125, 503–520, https://doi.org/10.1016/j.lithos.2011.03.007, 2011.
Castor, S. B.: The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California, The Canadian Mineralogist, 46, 779–806, https://doi.org/10.3749/canmin.46.4.779, 2008.
Chakhmouradian, A. R. and Wall, F.: Rare Earth Elements: Minerals, Mines, Magnets (and More), Elements, 8, 333–340, https://doi.org/10.2113/gselements.8.5.333, 2012.
Chao, E. C. T., Back, J. M., Minkin, J. A., Tatsumoto, M., Wang, J., Conrad, J. E, McKee, E. H., Hou, Z. L., Meng, Q. R., and Huang, S. G.: The sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China: a corner stone example for giant polymetallic ore deposits of hydrothermal origin, USGS Bulletin, 2143, 1–65, https://doi.org/10.3133/b2143, 1997.
Chandler, R., Bhat, G., Mavrogenes, J., Knell, B., David, R., and Leggo, T.: The primary geology of the Paleoproterozoic Mt Weld carbonatite complex, Western Australia, J. Petrol., 65, egae007, https://doi.org/10.1093/petrology/egae007, 2024.
Chebotarev, D. A., Doroshkevich, A., Klemd, R., and Karmanov, N.: Evolution of Nb-mineralization in the Chuktukon carbonatite massif, Chadobets upland (Krasnoyarsk Territory, Russia), Period. Mineral., 86, 99–118, https://doi.org/10.2451/2017PM733, 2017.
Chen, W., Honghui, H., Bai, T., and Jiang, S.: Geochemistry of Monazite within Carbonatite Related REE Deposits, Resources, 6, 51, https://doi.org/10.3390/resources6040051, 2017.
Chiquet, A., Michard, A., Nahon, D., and Hamelin, B.: Atmospheric input vs in situ weathering in the genesis of calcretes: an Sr isotope study at Gálvez (Central Spain), Geochim. Cosmochim. Ac., 63, 311–323, https://doi.org/10.1016/S0016-7037(98)00271-3, 1999.
Christy, A. G. and Atencio, D.: Clarification of status of species in the pyrochlore supergroup, Mineral. Mag., 77, 13–20, https://doi.org/10.1180/minmag.2013.077.1.02, 2013.
Christy, A. G., Pekov, I. V., and Krivovichev, S. G.: The Distinctive Mineralogy of Carbonatites, Elements, 17, 333–338, https://doi.org/10.2138/gselements.17.5.333, 2021.
Coello, J., Cantagrel, J. M., Hernán, F., Fúster, J. M., Ibarrola, E., Ancochea, E., Casquet, C., Jamond, C., Díaz-de-Terán, J. R., and Cendrero, A.: Evolution of the Eastern volcanic ridge of Canary Islands based on new K-Ar data, J. Volcanol. Geoth. Res., 53, 251–274, https://doi.org/10.1016/0377-0273(92)90085-R, 1992.
Connelly, N. G., Hartshorn, R. M., Damhus, T., and Hutton, A. T.: Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005, RSC Publishing, Cambridge, ISBN-0-85404-438-8, 2005.
Courtillot, V., Davaille, A., Besse, J., and Stock, J.: Three distinct types of hotspots in the Earth's mantle, Earth Planet. Sc. Lett., 205, 295–308, https://doi.org/10.1016/S0012-821X(02)01048-8, 2003.
De Ignacio, C., Muñoz, M., and Sagredo, J.: Carbonatites and associated nephelinites from São Vicente, Cape Verde Islands, Mineral. Mag., 76, 311–355, https://doi.org/10.1180/minmag.2012.076.2.05, 2012.
Demény, A., Ahijado, A., Casillas, R., and Vennemann, T. W.: Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): A C, O, H isotope study, Lithos, 44, 101–115, https://doi.org/10.1016/S0024-4937(98)00050-4, 1998.
Dostal, J.: Rare Earth Element Deposits of Alkaline Igneous Rocks, Resources, 6, 34–46, https://doi.org/10.3390/resources6030034, 2017.
Doucelance, R., Hammouda, T., Moreira, M., and Martins, J. C.: Geochemical constraints on depth of origin of oceanic carbonatites: The Cape Verde case, Geochim. Cosmochim. Ac., 74, 7261–7282, https://doi.org/10.1016/j.gca.2010.09.024, 2010.
Doucelance, R., Bellot, N., Boyet, M., Hammouda, T., and Bosq, C.: What coupled cerium and neodymium isotopes tell us about the deep source of oceanic carbonatites, Earth Planet. Sc. Lett., 407, 175–186, https://doi.org/10.1016/j.epsl.2014.09.042, 2014.
European Commission: European Green Deal, https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (last access: 10 April 2024), 2019.
European Commission: Study on the Critical Raw Materials for the EU 2023 – Final Report, https://op.europa.eu/en/publication-detail/-/publication/57318397-fdd4-11ed-a05c-01aa75ed71a1 (last access: 26 May 2023), 2023a.
European Commission: Regulation of the European Parliament and of the Council establishing a framework for ensuring a secure and sustainable supply of critical raw materials and amending Regulations (EU) 168/2013, (EU) 2018/858, 2018/1724 and (EU) 2019/1020, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52023PC0160 (last access: 16 March 2023), 2023b.
FAO/UNESCO: Soil Map of the World Project 1:5 000 000, Chart VI1, https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ (last access: 1 January 2024), 1974.
Feraud, G., Giannerini, G., Campredon, R., and Stillman, C. J.: Geochronology of some canarian dike swarms: contribution to the volcano-tectonic evolution of the archipielago, J. Volcanol. Geoth. Res., 25, 29–52, https://doi.org/10.1016/0377-0273(85)90003-4, 1985.
Fernández, C., Casillas, R., Ahijado, A., Perelló, V., and Hernández-Pacheco, A.: Shear zones as a result of intraplate tectonics in oceanic crust: the example of the Basal Complex of Fuerteventura (Canary Islands), J. Struct. Geol., 19, 41–57, https://doi.org/10.1016/S0191-8141(96)00074-0, 1997.
Frisch, T., Schmincke, H. U., and Sumita, M.: Geological evolution of the Canary Islands: a young volcanic archipelago adjacent to the old African continent, B. Volcanol., 74, 1255–1256, https://doi.org/10.1007/s00445-012-0605-1, 2012.
Fúster, J. M., Cendrero, A., Gastesi, P., Ibarrola, E., and López-Ruiz, J.: Geología y volcanología de las Islas Canarias – Fuerteventura, Instituto “Lucas Mallada”, Consejo Superior de Investigaciones Científicas, Madrid, 239 pp., 1968.
Goodenough, K. M., Schilling, J., Jonsson, E., Kalvig, P., Charles, N., Tuduri, J., Deady, E. A., Sadeghi, M., Schiellerup, H., Müller, A., Bertrand, G., Arvanitidis, N., Eliopoulos, D. G., Shaw, R. A., Thrane, K., and Keulen, N.: Europe's rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting, Ore Geol. Rev., 72, 838–856, https://doi.org/10.1016/j.oregeorev.2015.09.019, 2016.
Goudie, A. S. and Middleton, N. J.: Saharan dust storms: nature and consequences, Earth Sci. Rev., 56, 179–204, https://doi.org/10.1016/S0012-8252(01)00067-8, 2001.
Gutiérrez, M., Casillas, R., Fernández, C., Balogh, K., Ahijado, A., Castillo, C., Colmenero, J. R., and García-Navarro, E.: The submarine volcanic succession of the basal complex of Fuerteventura, Canary Islands: A model of submarine growth and emergence of tectonic volcanic islands, B. Geol. Soc. Am., 118, 785–804, https://doi.org/10.1130/B25821.1, 2006.
Gutiérrez-Elorza, M., Lucha, P., Gracia, F. J., Desir, G., Marín, C., and Petit-Maire, N.: Palaeoclimatic considerations of talus flatirons and aeolian deposits in Northern Fuerteventura volcanic island (Canary Islands, Spain), Geomorphology, 197, 1–9, https://doi.org/10.1016/j.geomorph.2011.09.020, 2013.
Haxel, G. B.: Ultrapotassic mafic dikes and rare earth element- and barium-rich carbonatite at Mountain Pass, Mojave Desert, southern California: summary and field trip localities, U.S. Geol. Surv. Open-File Rep., 1219, http://pubs.usgs.gov/of/2005/1219/ (last access: 20 March 2006), 2005.
Hobson, A., Bussy, F., and Hernández, J.: Shallow-level migmatization of gabbrosin a metamorphic contact aureole, Fuerteventura Basal Complex, Canary Islands, J. Petrol., 39, 1025–1037, https://doi.org/10.1093/petroj/39.5.1025, 1998.
Hoernle, K., Tilton, G., Le Bas, M. J., Duggen, S., and Garbe-Schönberg, D.: Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate, Contrib. Mineral. Petr., 142, 520–542, https://doi.org/10.1007/s004100100308, 2002.
Holloway, M. I. and Bussy, F.: Trace element distribution among rock-forming minerals from metamorphosed to partially molten basic igneous rocks in a contact aureole (Fuerteventura, Canaries), Lithos, 102, 616–639, https://doi.org/10.1016/j.lithos.2007.07.026, 2008.
Huerta, P., Rodríguez-Berriguete, A., Martín-García, R., Martín-Pérez, A., La-Iglesia-Fernández, A., and Alonso-Zarza, A.: The role of climate and eolian dust input in calcrete formation in volcanic islands (Lanzarote and Fuerteventura, Spain), Palaeogeogr. Palaeocl., 417, 66–79, https://doi.org/10.1016/j.palaeo.2014.10.008, 2015.
Humphreys-Williams, E. R. and Zahirovic, S.: Carbonatites and Global Tectonics, Elements, 17, 339–344, https://doi.org/10.2138/gselements.17.5.339, 2021.
Jahn, R., Blume, H. P., Asio, V. B., Spaargaren, O., and Schad, P.: Guidelines for soil description, FAO, Rome, 97 pp., https://www.fao.org/3/a0541e/a0541e.pdf (last access: 1 January 2006), 2006.
Kamenetsky, V. S., Doroshkevich, A. G., Elliot, H. A. L., and Zaitsev, A. N.: Carbonatites: Contrasting, Complex, and Controversial, Elements, 17, 307–314, https://doi.org/10.2138/gselements.17.5.307, 2021.
Kravchenko, S. M. and Pokrovsky, B. G.: The Tomtor alkaline ultrabasic massif and related REE-Nb deposits, northern Siberia, Econ. Geol., 90, 676–689, https://doi.org/10.2113/gsecongeo.90.3.676, 1995.
Kravchenko, S. M., Czamanske, G., and Fedorenko, V. A.: Geochemistry of carbonatites of the Tomtor massif, Geochem. Int., 41, 545–558, 2003.
Lai, X., Yang, X., Santosh, M., Liu, Y., and Ling, M.: New data of the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia: Implications for ore gènesis, Precambrian Res., 263, 108–122, https://doi.org/10.1016/j.precamres.2015.03.013, 2015.
Le Bas, M. J.: The pyroxenite-ijolite-carbonatite intrusive igneous complexes of Fuerteventura, Canary Islands, J. Geol. Soc. London, 138, 496, https://doi.org/10.1144/gsjgs.138.4.0493, 1981.
Le Bas, M. J, Rex, D. C., and Stillman, C. J.: The early magmatic chronology of Fuerteventura, Geol. Mag., 123, 287–298, https://doi.org/10.1017/S0016756800034762, 1986.
Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P. A., Schmid, R., Sorensen, H., and Woolley, A. R.: Igneous Rocks: A Classification and Glossary of Terms, 2nd edn., Cambridge, UK, Cambridge Univ. Press, ISBN 9780521619486, 2005.
Liu, Y. L., Ling, M. X., Williams, I. S., Yang, X. Y., Wang, C. Y., and Sun, W.: The formation of the giant Bayan Obo REE-Nb-Fe deposit, North China, Mesoproterozoic carbonatite overprinted Paleozoic dolomitization, Ore Geol. Rev., 92, 73–83, https://doi.org/10.1016/j.oregeorev.2017.11.011, 2018.
Long, K. R., Van Gosen, B. S., Foley, N. K., and Cordier, D.: The principal rare earth elements deposits of the United States: A summary of domestic deposits and a global perspective, United States Geological Service, https://pubs.usgs.gov/sir/2010/5220/ (last access: 10 January 2013), 2010.
Longpré, M. A. and Felpeto, A.: Historical volcanism in the Canary Islands; part 1: A review of precursory and eruptive activity, eruption parameter estimates, and implications for hazard assessment, J. Volcanol. Geoth. Res., 419, 107363, https://doi.org/10.1016/j.jvolgeores.2021.107363, 2021.
Machado-Yanes, M. C.: Reconstrucción paleoecológica y etnoarqueológica por medio del análisis antracológico. La Cueva de Villaverde, Fuerteventura, in: Biogeografía Pleistocena-Holocena de la Península Ibérica, 261274, edited by: Ramil-Rego, P., Fernández-Rodríguez, C., and Rodríguez-Guitián, M., 261 pp., ISBN 84-453-1716-4, 1996.
Mangas, J., Pérez-Torrado, F. J., Reguillón, R. M., and Cabrera, M. C.: Prospección radiométrica en rocas alcalinas y carbonatitas de la serie plutónica I de Fuerteventura (Islas Canarias). Resultados preliminares e implicaciones metalogénicas, Actas del III Congreso Geológico de España y VIII Congreso Latinoamericano de Geología, Salamanca, 3, 389–393, ISBN 84-600-8114-1, 1992.
Mangas, J., Pérez-Torrado, F. J., Reguillón, R. M., and Martin-Izard, A.: Mineralizaciones de tierras raras ligadas a los complejos intrusivos alcalino-carbonatíticos de Fuerteventura (Islas Canarias), Bol. Soc. Esp. Min., 17, 212–213, 1994.
Mangas, J., Pérez-Torrado, F. J., Reguillón, R. M., and Martin- Izard, A.: Rare earth minerals in carbonatites of Basal Complex of Fuerteventura (Canary Islands, Spain), in: Mineral Deposit: Research and Exploration, where do they meet?, edited by: Papunen, H., Balkema, Rotterdam, 475–478, ISBN 978-9054108894, 1997.
Mariano, A. N. and Mariano Jr., A.: Rare earth mining and exploration in North America, Elements, 8, 369–376, https://doi.org/10.2113/gselements.8.5.369, 2012.
Massari, S. and Ruberti, M.: Rare earth elements as critical raw materials: Focus on international markets and future strategies, Resour. Policy, 38, 36–43, https://doi.org/10.1016/j.resourpol.2012.07.001, 2013.
McDonough, W. and Sun, W.: The composition of the Earth, Chem. Geol., 67, 1050–1056, https://doi.org/10.1016/0009-2541(94)00140-4, 1995.
Méndez-Ramos, J., Acosta-Mora, P., Ruiz-Morales, J. C., Hernández, T., Morge, M. E., and Esparza, P.: Turning into the blue: materials for enhancing TiO2 photocatalysis by up-conversion photonics, RSC Adv., 3, 23028–23034, https://doi.org/10.1039/C3RA44342F, 2013.
Menéndez, I., Díaz-Hernández, J. L., Mangas, J., Alonso, I., and Sánchez-Soto, P. J.: Airborne dust accumulation and soil development in the North-East sector of Gran Canaria (Canary Islands, Spain), J. Arid Environ., 71, 57–81, https://doi.org/10.1016/j.jaridenv.2007.03.011, 2007.
Menéndez, I., Campeny, M., Quevedo-González, L., Mangas, J., Llovet, X., Tauler, E., Barrón, V., Torrent, J., and Méndez-Ramos, J.: Distribution of REE-bearing minerals in felsic magmatic rocks and paleosols from Gran Canaria, Spain: Intraplate oceanic islands as a new example of potential, non-conventional sources of rare-earth elements, J. Geochem. Explor., 204, 270–288, https://doi.org/10.1016/j.gexplo.2019.06.007, 2019.
Moore, M., Chakhmouradian, A., Mariano, A. N., and Sidhu, R.: Evolution of Rare-earth Mineralization in the Bear Lodge Carbonatite, Ore Geol. Rev., 64, 499–521, https://doi.org/10.1016/j.oregeorev.2014.03.015, 2015.
Mourão, C., Mata, J., Doucelance, R., Madeira, J., da Silveira, A. B., Silva, L. C., and Moreira, M.: Quaternary extrusive calciocarbonatite volcanism on Brava Island (Cape Verde): A nephelinite-carbonatite immiscibility product, J. Afr. Earth Sci., 56, 59–74, https://doi.org/10.1016/j.jafrearsci.2009.06.003, 2010.
Muñoz, M.: Ring complexes of Pájara in Fuerteventura Island, Bulletin Volcanologique, 33, 840–861, https://doi.org/10.1007/BF02596753, 1969.
Muñoz, M., Sagredo, J., de Ignacio, C., Fernández-Suárez, J., and Jeffries, T. E.: New data (U-Pb, K-Ar) on the geochronology of the alkaline-carbonatitic association of Fuerteventura, Canary Islands, Spain, Lithos, 85, 140–153, https://doi.org/10.1016/j.lithos.2005.03.024, 2005.
Olson, J. C., Shawe, D. R., Pray, L. C., and Sharp, W. N.: Rare-Earth Mineral Deposits of the Mountain Pass District, San Bernardino County, California, Science, 119, 325–326, https://doi.org/10.1126/science.119.3088.325, 1954.
Park, J. and Rye, D. M.: Broader Impacts of the Metasomatic Underplating Hypothesis, Geochem. Geophy. Geosy., 20, 4180–4829, https://doi.org/10.1029/2019GC008493, 2019.
Pérez-Torrado, F. J., Carracedo, J. C., Guillou, H., Rodríguez-González, A., and Fernández-Turiel, J. L.: Age, duration, and spatial distribution of ocean shields and rejuvenated volcanism: Fuerteventura and Lanzarote, Eastern Canaries, J. Geol. Soc. London, 180, jgs2022-112, https://doi.org/10.1144/jgs2022-112, 2023.
Pirajno, F. and Yu, H. C.: The carbonatite story once more and associated REE mineral systems, Gondwana Res., 107, 281–295, https://doi.org/10.1016/j.gr.2022.03.006, 2022.
Reinhardt, N., Proenza, J., Villanova-de-Benavent, C., Aiglsperger, T., Bover-Arnal, T., Torró, L., Salas, R., and Dziggel, A.: Geochemistry and Mineralogy of Rare Earth Elements (REE) in Bauxitic Ores of the Catalan Coastal Range, NE Spain, Minerals, 8, 562, https://doi.org/10.3390/min8120562, 2018.
Rudnick, R. L. and Gao, S.: Composition of the Continental Crust, in: Treatise on Geochemistry, edited by: Holland, H. H. and Turekian, K. K., 4, 1–51, https://doi.org/10.1016/B978-0-08-095975-7.00301-6, 2014.
Scheuvens, D., Schütz, L., Kandler, K., Ebert, M., and Weinbruch, S.: Bulk composition of northern African dust and its source sediments – a compilation, Earth Sci. Rev., 116, 170–194, https://doi.org/10.1016/j.earscirev.2012.08.005, 2013.
Schmincke, H. and Sumita, M.: Geological evolution of the Canary Islands: a young volcanic archipelago adjacent to the old African Continent, edited by: Németh, K., Koblenz, 200 pp., ISBN 978-3-86972-005-0, 2010.
Smith, M. P., Campbell, L. S., and Kynicky, J.: A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: multistage processes and outstanding qüestions, Ore Geol. Rev., 64, 459–476, https://doi.org/10.1016/j.oregeorev.2014.03.007, 2015.
Smith, M. P., Moore, K., Kavecsánszki, D., Finch, A. A., Kynicky, J., and Wall, F.: From mantle to critical zone: A review of large and giant-sized deposits of the rare earth elements, Geosci. Front., 7, 315–334, https://doi.org/10.1016/j.gsf.2015.12.006, 2016.
Steiner, C., Hobson, A., Favre, P., and Stampli, G. M.: Early Jurassic sea-floor spreading in the central Atlantic – the Jurassic sequence of Fuerteventura (Canary Islands), Geol. Soc. Am. Bull., 110, 1304–1317, https://doi.org/10.1130/0016-7606(1998)110<1304:MSOFCI>2.3.CO;2, 1998.
Torró, L., Villanova, C., Castillo, M., Campeny, M., Gonçalves, A. O., and Melgarejo, J. C.: Niobium and rare earth minerals from the Virulundo carbonatite, Namibe, Angola, Mineral. Mag., 76, 393–409, https://doi.org/10.1180/minmag.2012.076.2.08, 2012.
Torró, L., Proenza, J. A., Aiglsperger, T., Bover-Arnal, T., Villanova-de-Benavent, C., Rodríguez-García, D., Ramírez, A., Rodríguez, J., Mosquea, L. A., and Salas, R.: Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic, Ore Geol. Rev., 89, 114–131, https://doi.org/10.1016/j.oregeorev.2017.06.017, 2017.
Troll, V. and Carracedo, J. C.: The Geology of Fuerteventura, in: The Geology of Canary Islands, edited by: Troll, V., Carracedo, J. C., and Weismaier, S., Elsevier, 531–582, https://doi.org/10.1016/B978-0-12-809663-5.00008-6, 2016.
van den Bogaard, P.: The origin of the Canary Island Seamount Province – New ages of old seamounts, Sci. Rep., 3, 2107, https://doi.org/10.1038/srep02107, 2013.
Wang, Q., Deng, J., Liu, X., Zhang, Q., Sun, S., Jiang, C., and Zhou, F.: Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China, J. Asian Earth Sci., 39, 701–712, https://doi.org/10.1016/j.jseaes.2010.05.005, 2010.
Wang, X., Jiao, Y., Du, Y., Ling, W., Wu, L., Cui, T., Zhou, Q., Jin, Z., Lei, Z., and Wen, S.: REE mobility and Ce anomaly in bauxite deposit of WZD area, Northern Guizhou, China, J. Geochem Explor., 133, 103–117, https://doi.org/10.1016/j.gexplo.2013.08.009, 2013.
Warr, L. N.: IMA–CNMNC approved mineral symbols, Mineral. Mag., 85, 291–320, https://doi.org/10.1180/mgm.2021.43, 2021.
Weidendorfer, D., Schmidt, M. W., and Mattsson, H. B.: Fractional crystallization of Si-undersaturated alkaline magmas leading to unmixing of carbonatites on Brava Island (Cape Verde) and a general model of carbonatite genesis in alkaline magma suites, Contrib. Miner. Petr., 171, 1–29, https://doi.org/10.1007/s00410-016-1249-5, 2016.
Wondraczek, L., Tyystjärvi, E., Méndez-Ramos, J., Müller, F. A., and Zhang, Q.: Shifting the Sun: Solar Spectral Conversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis, Adv. Sci., 2, 1500218, https://doi.org/10.1002/advs.201500218, 2015.
Wu, C.: Bayan Obo Controversy: Carbonatites versus Iron Oxide-Cu-Au-(REE-U), Resour. Geol., 58, 348–354, https://doi.org/10.1111/j.1751-3928.2008.00069.x, 2008.
Yang, K., Fan, H., Pirajno, F., and Li, X.: The bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite, Geology, 47, 1198–1202, https://doi.org/10.1130/G46674.1, 2019.
Yaxley, G. M., Anenburg, M., Tappe, S., Decree, S., and Guzmics, T.: Carbonatites: Classification, Sources, Evolution, and Emplacement, Annual Reviews on Earth and Planetary Sciences, 50, 261–293, https://doi.org/10.1146/annurev-earth-032320-104243, 2022.
Zazo, C., Goy, J. L., Hillaire-Marcel, C., Gillot, P. Y., Soler, V., González, J. A., Dabrio, C. J., and Ghaleb, B.: Raised marine sequences of Lanzarote and Fuerteventura revisited – a reappraisal of relative sea-level changes and vertical movements in the eastern Canary Islands during the Quaternary, Quaternary Sci. Rev., 21, 2019–2046, https://doi.org/10.1016/S0277-3791(02)00009-4, 2002.
Zhukova, I. A., Stepanov, A. S., Jiang, S. Y., Murphy, D., Mavrogenes, J., Allen, C., Chen, W., and Bottrill, R.: Complex REE systematics of carbonatites and weathering products from uniquely rich Mount Weld REE deposit, Western Australia, Ore Geol. Rev., 139, 104539, https://doi.org/10.1016/j.oregeorev.2021.104539,2021.
Short summary
The Basal Complex unit on Fuerteventura island comprises magmatic rocks showing significant rare Earth element (REE) concentrations with values up to 10 300 ppm REY (REEs plus yttrium). We carried out mineralogical and geochemical analyses, but additional research is needed to fully understand their distribution due to structural complexities and environmental factors.
The Basal Complex unit on Fuerteventura island comprises magmatic rocks showing significant rare...