Articles | Volume 15, issue 7
https://doi.org/10.5194/se-15-827-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-827-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Highlights on mantle deformation beneath the Western Alps with seismic anisotropy using CIFALPS2 data
Silvia Pondrelli
CORRESPONDING AUTHOR
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Simone Salimbeni
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Judith M. Confal
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Marco G. Malusà
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
Anne Paul
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, UGE, ISTerre, Grenoble, France
Stephane Guillot
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, UGE, ISTerre, Grenoble, France
Stefano Solarino
Istituto Nazionale di Geofisica e Vulcanologia, ONT, Genoa, Italy
Elena Eva
Istituto Nazionale di Geofisica e Vulcanologia, ONT, Genoa, Italy
Coralie Aubert
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, UGE, ISTerre, Grenoble, France
Liang Zhao
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Related authors
Francesco Visini, Carlo Meletti, Andrea Rovida, Vera D'Amico, Bruno Pace, and Silvia Pondrelli
Nat. Hazards Earth Syst. Sci., 22, 2807–2827, https://doi.org/10.5194/nhess-22-2807-2022, https://doi.org/10.5194/nhess-22-2807-2022, 2022
Short summary
Short summary
As new data are collected, seismic hazard models can be updated and improved. In the framework of a project aimed to update the Italian seismic hazard model, we proposed a model based on the definition and parametrization of area sources. Using geological data, seismicity and other geophysical constraints, we delineated three-dimensional boundaries and activity rates of a seismotectonic zoning and explored the epistemic uncertainty by means of a logic-tree approach.
Silvia Pondrelli, Francesco Visini, Andrea Rovida, Vera D'Amico, Bruno Pace, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 20, 3577–3592, https://doi.org/10.5194/nhess-20-3577-2020, https://doi.org/10.5194/nhess-20-3577-2020, 2020
Short summary
Short summary
We used 100 years of seismicity in Italy to predict the hypothetical tectonic style of future earthquakes, with the purpose of using this information in a new seismic hazard model. To squeeze all possible information out of the available data, we created a chain of criteria to be applied in the input and output selection processes. The result is a list of cases from very clear ones, e.g., extensional tectonics in the central Apennines, to completely random tectonics for future seismic events.
Laura Petrescu, Silvia Pondrelli, Simone Salimbeni, Manuele Faccenda, and the AlpArray Working Group
Solid Earth, 11, 1275–1290, https://doi.org/10.5194/se-11-1275-2020, https://doi.org/10.5194/se-11-1275-2020, 2020
Short summary
Short summary
To place constraints on the mantle deformation beneath the Central Alps and the greater Alpine region, we analysed the appropriate seismic signal recorded by more than 100 stations, belonging to AlpArray and to other permanent networks. We took a picture of the imprinting that Alpine orogen history and related subductions left at depth, with a mainly orogen-parallel mantle deformation from Western Alps to Eastern Alps, but also N to S from the Po Plain to the Rhine Graben.
Aladino Govoni, Luciana Bonatto, Marco Capello, Adriano Cavaliere, Claudio Chiarabba, Ezio D'Alema, Stefania Danesi, Sara Lovati, Lucia Margheriti, Marco Massa, Salvatore Mazza, Francesco Mazzarini, Stephen Monna, Milena Moretti, Anna Nardi, Davide Piccinini, Claudia Piromallo, Silvia Pondrelli, Simone Salimbeni, Enrico Serpelloni, Stefano Solarino, Massimiliano Vallocchia, Marco Santulin, and the AlpArray Working Group
Adv. Geosci., 43, 39–52, https://doi.org/10.5194/adgeo-43-39-2017, https://doi.org/10.5194/adgeo-43-39-2017, 2017
Short summary
Short summary
We describe here the contribution of Istituto Nazionale di Geofisica e Vulcanolgia (INGV) to the AlpArray Seismic Network (AASN) in the framework of the AlpArray project (http://www.alparray.ethz.ch), a large European collaborative research initiative.
The aim of AlpArray is carrying out cutting edge research to advance our understanding of the deep structure, geodynamics, tectonics and seismic hazard of the greater Alpine area (Alps-Apennines-Carpathians-Dinarides orogenic system).
Haoyue Zuo, Yonggang Liu, Gaojun Li, Zhifang Xu, Liang Zhao, Zhengtang Guo, and Yongyun Hu
Geosci. Model Dev., 17, 3949–3974, https://doi.org/10.5194/gmd-17-3949-2024, https://doi.org/10.5194/gmd-17-3949-2024, 2024
Short summary
Short summary
Compared to the silicate weathering fluxes measured at large river basins, the current models tend to systematically overestimate the fluxes over the tropical region, which leads to an overestimation of the global total weathering flux. The most possible cause of such bias is found to be the overestimation of tropical surface erosion, which indicates that the tropical vegetation likely slows down physical erosion significantly. We propose a way of taking this effect into account in models.
Konstantinos Michailos, György Hetényi, Matteo Scarponi, Josip Stipčević, Irene Bianchi, Luciana Bonatto, Wojciech Czuba, Massimo Di Bona, Aladino Govoni, Katrin Hannemann, Tomasz Janik, Dániel Kalmár, Rainer Kind, Frederik Link, Francesco Pio Lucente, Stephen Monna, Caterina Montuori, Stefan Mroczek, Anne Paul, Claudia Piromallo, Jaroslava Plomerová, Julia Rewers, Simone Salimbeni, Frederik Tilmann, Piotr Środa, Jérôme Vergne, and the AlpArray-PACASE Working Group
Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023, https://doi.org/10.5194/essd-15-2117-2023, 2023
Short summary
Short summary
We examine the spatial variability of the crustal thickness beneath the broader European Alpine region by using teleseismic earthquake information (receiver functions) on a large amount of seismic waveform data. We compile a new Moho depth map of the broader European Alps and make our results freely available. We anticipate that our results can potentially provide helpful hints for interdisciplinary imaging and numerical modeling studies.
Francesco Visini, Carlo Meletti, Andrea Rovida, Vera D'Amico, Bruno Pace, and Silvia Pondrelli
Nat. Hazards Earth Syst. Sci., 22, 2807–2827, https://doi.org/10.5194/nhess-22-2807-2022, https://doi.org/10.5194/nhess-22-2807-2022, 2022
Short summary
Short summary
As new data are collected, seismic hazard models can be updated and improved. In the framework of a project aimed to update the Italian seismic hazard model, we proposed a model based on the definition and parametrization of area sources. Using geological data, seismicity and other geophysical constraints, we delineated three-dimensional boundaries and activity rates of a seismotectonic zoning and explored the epistemic uncertainty by means of a logic-tree approach.
Stefania Danesi, Simone Salimbeni, Alessandra Borghi, Stefano Urbini, and Massimo Frezzotti
EGUsphere, https://doi.org/10.5194/egusphere-2022-29, https://doi.org/10.5194/egusphere-2022-29, 2022
Preprint archived
Short summary
Short summary
Clusters of low-energy seismic events, concentrated in space and time, characterized by highly correlated waveforms (cross-correlation coefficient ≥ 0.95), occur at the floating area of a major ice stream in Antarctica (David Glacier, North Victoria Land). The transient injection of fluids from the David catchment into the regional subglacial hydrographic network, observed by GRACE measurements, is indicated as the main trigger for clustered and repeated seismic occurrences.
Martin Thorwart, Anke Dannowski, Ingo Grevemeyer, Dietrich Lange, Heidrun Kopp, Florian Petersen, Wayne C. Crawford, Anne Paul, and the AlpArray Working Group
Solid Earth, 12, 2553–2571, https://doi.org/10.5194/se-12-2553-2021, https://doi.org/10.5194/se-12-2553-2021, 2021
Short summary
Short summary
We analyse broadband ocean bottom seismometer data of the AlpArray OBS network in the Ligurian Basin. Two earthquake clusters with thrust faulting focal mechanisms indicate compression of the rift basin. The locations of seismicity suggest reactivation of pre-existing rift structures and strengthening of crust and uppermost mantle during rifting-related extension. Slightly different striking directions of faults may mimic the anti-clockwise rotation of the Corsica–Sardinia block.
Silvia Pondrelli, Francesco Visini, Andrea Rovida, Vera D'Amico, Bruno Pace, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 20, 3577–3592, https://doi.org/10.5194/nhess-20-3577-2020, https://doi.org/10.5194/nhess-20-3577-2020, 2020
Short summary
Short summary
We used 100 years of seismicity in Italy to predict the hypothetical tectonic style of future earthquakes, with the purpose of using this information in a new seismic hazard model. To squeeze all possible information out of the available data, we created a chain of criteria to be applied in the input and output selection processes. The result is a list of cases from very clear ones, e.g., extensional tectonics in the central Apennines, to completely random tectonics for future seismic events.
Laura Petrescu, Silvia Pondrelli, Simone Salimbeni, Manuele Faccenda, and the AlpArray Working Group
Solid Earth, 11, 1275–1290, https://doi.org/10.5194/se-11-1275-2020, https://doi.org/10.5194/se-11-1275-2020, 2020
Short summary
Short summary
To place constraints on the mantle deformation beneath the Central Alps and the greater Alpine region, we analysed the appropriate seismic signal recorded by more than 100 stations, belonging to AlpArray and to other permanent networks. We took a picture of the imprinting that Alpine orogen history and related subductions left at depth, with a mainly orogen-parallel mantle deformation from Western Alps to Eastern Alps, but also N to S from the Po Plain to the Rhine Graben.
Guillaume Nord, Brice Boudevillain, Alexis Berne, Flora Branger, Isabelle Braud, Guillaume Dramais, Simon Gérard, Jérôme Le Coz, Cédric Legoût, Gilles Molinié, Joel Van Baelen, Jean-Pierre Vandervaere, Julien Andrieu, Coralie Aubert, Martin Calianno, Guy Delrieu, Jacopo Grazioli, Sahar Hachani, Ivan Horner, Jessica Huza, Raphaël Le Boursicaud, Timothy H. Raupach, Adriaan J. Teuling, Magdalena Uber, Béatrice Vincendon, and Annette Wijbrans
Earth Syst. Sci. Data, 9, 221–249, https://doi.org/10.5194/essd-9-221-2017, https://doi.org/10.5194/essd-9-221-2017, 2017
Short summary
Short summary
A high space–time resolution dataset linking hydrometeorological forcing and hydro-sedimentary response in a mesoscale catchment (Auzon, 116 km2) of the Ardèche region (France) is presented. This region is subject to precipitating systems of Mediterranean origin, which can result in significant rainfall amount. The data presented cover a period of 4 years (2011–2014) and aim at improving the understanding of processes triggering flash floods.
Aladino Govoni, Luciana Bonatto, Marco Capello, Adriano Cavaliere, Claudio Chiarabba, Ezio D'Alema, Stefania Danesi, Sara Lovati, Lucia Margheriti, Marco Massa, Salvatore Mazza, Francesco Mazzarini, Stephen Monna, Milena Moretti, Anna Nardi, Davide Piccinini, Claudia Piromallo, Silvia Pondrelli, Simone Salimbeni, Enrico Serpelloni, Stefano Solarino, Massimiliano Vallocchia, Marco Santulin, and the AlpArray Working Group
Adv. Geosci., 43, 39–52, https://doi.org/10.5194/adgeo-43-39-2017, https://doi.org/10.5194/adgeo-43-39-2017, 2017
Short summary
Short summary
We describe here the contribution of Istituto Nazionale di Geofisica e Vulcanolgia (INGV) to the AlpArray Seismic Network (AASN) in the framework of the AlpArray project (http://www.alparray.ethz.ch), a large European collaborative research initiative.
The aim of AlpArray is carrying out cutting edge research to advance our understanding of the deep structure, geodynamics, tectonics and seismic hazard of the greater Alpine area (Alps-Apennines-Carpathians-Dinarides orogenic system).
Irene Molinari, John Clinton, Edi Kissling, György Hetényi, Domenico Giardini, Josip Stipčević, Iva Dasović, Marijan Herak, Vesna Šipka, Zoltán Wéber, Zoltán Gráczer, Stefano Solarino, the Swiss-AlpArray Field Team, and the AlpArray Working Group
Adv. Geosci., 43, 15–29, https://doi.org/10.5194/adgeo-43-15-2016, https://doi.org/10.5194/adgeo-43-15-2016, 2016
Short summary
Short summary
AlpArray is a collaborative seismological project in Europe that includes ~ 50 research institutes and seismological observatories. At its heart is the collection of top-quality seismological data from a dense network of stations in the Alpine region: the AlpArray Seismic Network (AASN). We report the Swiss contribution: site selections, installation, data quality and management. We deployed 27 temporary BB stations across 5 countries as result of a fruitful collaboration between 5 institutes.
Related subject area
Subject area: Core and mantle structure and dynamics | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
Imaging structure and geometry of slabs in the greater Alpine area – a P-wave travel-time tomography using AlpArray Seismic Network data
Teleseismic P waves at the AlpArray seismic network: wave fronts, absolute travel times and travel-time residuals
Observation and explanation of spurious seismic signals emerging in teleseismic noise correlations
Permian plume beneath Tarim from receiver functions
Marcel Paffrath, Wolfgang Friederich, Stefan M. Schmid, Mark R. Handy, and the AlpArray and AlpArray-Swath D Working Group
Solid Earth, 12, 2671–2702, https://doi.org/10.5194/se-12-2671-2021, https://doi.org/10.5194/se-12-2671-2021, 2021
Short summary
Short summary
The Alpine mountain belt was formed by the collision of the Eurasian and African plates in the geological past, during which parts of the colliding plates sank into the earth's mantle. Using seismological data from distant earthquakes recorded by the AlpArray Seismic Network, we have derived an image of the current location of these subducted parts in the earth's mantle. Their quantity and spatial distribution is key information needed to understand how the Alpine orogen was formed.
Marcel Paffrath, Wolfgang Friederich, and the AlpArray and AlpArray-SWATH D Working Groups
Solid Earth, 12, 1635–1660, https://doi.org/10.5194/se-12-1635-2021, https://doi.org/10.5194/se-12-1635-2021, 2021
Short summary
Short summary
Using the AlpArray seismic network, we have determined highly accurate travel times of P waves from over 370 major global earthquakes between 2015 and 2019, which shall be used for a tomography of the mantle beneath the greater Alpine region.
Comparing with theoretical travel times of a standard reference earth model, we receive very stable patterns of travel-time differences across the network which provide evidence of varying subduction behaviour along the strike of the Alpine orogen.
Lei Li, Pierre Boué, and Michel Campillo
Solid Earth, 11, 173–184, https://doi.org/10.5194/se-11-173-2020, https://doi.org/10.5194/se-11-173-2020, 2020
Lev Vinnik, Yangfan Deng, Grigoriy Kosarev, Sergey Oreshin, and Larissa Makeyeva
Solid Earth, 9, 1179–1185, https://doi.org/10.5194/se-9-1179-2018, https://doi.org/10.5194/se-9-1179-2018, 2018
Short summary
Short summary
We used seismology data to estimate the thickness of the MTZ and found it thinned beneath Tarim, which is exactly beneath the Permian basalts. This relation can be reconciled with coherent translation of a tectosphere that extends to a depth of 410 km or more. Combined with observations in the Siberian large igneous province and Greenland, these features may confirm the existence of a deep tectosphere. Alternatively, the shift of Tarim is less than predicted by an order of magnitude.
Cited articles
Baccheschi, P., Confal, J. M., and Pondrelli, S.: Imaging Anisotropic Structure Beneath the Central Mediterranean through Splitting Intensity Tomography, in: DI43C-0053, AGU23, San Francisco, https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1317164 (last access: 11 July 2024), 2023.
Barruol, G., Deschamps, A., and Coutant, O.: Mapping upper mantle anisotropy beneath SE France by SKS splitting indicates a Neogene asthenospheric flow induced by the Apenninic slab rollback and deflected by the deep Alpine roots, Tectonophysics, 394, 125–138, 2004.
Barruol, G., Bonnin, M., Pedersen, H., Bokelmann, G., and Tiberi, C.: Belt-parallel mantle flow beneath a halted continental collision: the Western Alps, Earth Planet. Sc. Lett., 302, 429–438, 2011.
Chevrot, S.: Multichannel analysis of shear wave splitting, J. Geophys. Res.-Solid, 105, 21579–21590, 2000.
Confal, J. M., Baccheschi, P., Pondrelli, S., Karakostas, F., VanderBeek, B. P., Huang, Z., and Faccenda, M.: Reproducing Complex Anisotropy Patterns at Subduction Zones from Splitting Intensity Analysis and Anisotropy Tomography, Geophys. J. Int., 235, 1725–1735, https://doi.org/10.1093/gji/ggad329, 2023.
Crampin, S. and Peacock S.: A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation, Wave Mot., 45, 675–722, https://doi.org/10.1016/j.wavemoti.2008.01.003, 2008.
Díaz, J., Gil, A., and Gallart, J.: Uppermost mantle seismic velocity and anisotropy in the Euro-Mediterranean region from Pn and Sn tomography, Geophys. J. Int., 192, 310–325, 2013.
Giacomuzzi, G., Chiarabba, C., and De Gori, P.: Linking the Alps and Apennines subduction systems: New constraints revealed by high-resolution teleseismic tomography, Earth Planet. Sc. Lett., 301, 531–543, 2011.
Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., and Bernoulli, D.: Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps, Earth-Sci. Rev., 102, 121–158, https://doi.org/10.1016/j.earscirev.2010.06.002, 2010.
Handy, M. R., Ustaszewski, K., and Kissling, E.: Reconstructing the Alps–Carpathians–Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion, Int. J. Earth Sci., 104, 1–26, 2015.
Hetényi G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I., Crawford, W. C., Dessa, J. X., Doubre, C., Friederich, W., Fuchs, F., Giardini, D., Gráczer, Z., Handy, M. R., Herak, M., Jia, Y., Kissling, E., Kopp, H., Korn, M., Margheriti, L., Meier, T., Mucciarelli, M., Paul, A., Pesaresi, D., Piromallo, C., Plenefisch, T., Plomerová, J., Ritter, J., Rümpker, G., Šipka, V., Spallarossa, D., Thomas, C., Tilmann, F., Wassermann, J., Weber, M., Wéber, Z., Wesztergom, V., Živčić, M., AlpArray Seismic Network Team, and AlpArray OBS Cruise Crew and AlpArray Working Group: The AlpArray Seismic Network: a large-scale European experiment to image the Alpine orogeny, Surv. Geophys., 39, 1009–1033, https://doi.org/10.1007/s10712-018-9472-4, 2018.
Kissling, E., Schmid, S. M., Lippitsch, R., Ansorge, J., and Fügenschuh, B.: Lithosphere structure and tectonic evolution of the Alpine arc: New evidence from high-resolution teleseismic tomography, Geological Society, London, Memoirs, 32, 129–145, 2006.
Kong, F., Gao, S. S., and Liu, K. H.: Applicability of the multiple-event stacking technique for shear-wave splitting analysis, Bull. Seismol. Soc. Am., 105, 3156–3166, 2015.
Le Breton, E., Handy, M. R., Molli, G., and Ustaszewski, K.: Post-20 Ma motion of the Adriatic plate: New constraints from surrounding Orogens and implications for crust-mantle decoupling, Tectonics, 36, 3135–3154, https://doi.org/10.1002/2016TC004443, 2017.
Link, F. and Rümpker, G.: Shear‐Wave Splitting Reveals Layered‐Anisotropy Beneath the European Alps in Response to Mediterranean Subduction, J. Geophys. Res.-Solid, 128, e2023JB027192, https://doi.org/10.1029/2023JB027192, 2023.
Lippitsch, R., Kissling, E., and Ansorge, J.: Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography, J. Geophys. Res.-Solid, 108, 2376, https://doi.org/10.1029/2002JB002016, 2003.
Long, M.: Constraints on subduction geodynamics from seismic anisotropy, Rev. Geophys., 51, 76–112, https://doi.org/10.1002/rog.20008, 2013.
Long, M. D. and Silver, P. G.: Shear Wave Splitting and Mantle Anisotropy: Measurements, Interpretations, and New Directions, Surv. Geophys., 30, 407–461, https://doi.org/10.1007/s10712-009-9075-1, 2009.
Lucente, F. P., Margheriti, L., Piromallo, C., and Barruol, G.: Seismic anisotropy reveals the long route of the slab through the western-central Mediterranean mantle, Earth Plan. Sc. Lett., 241, 517–529, https://doi.org/10.1016/j.epsl.2005.10.041, 2006.
Malusà, M. G., Faccenna, C., Baldwin, S. L., Fitzgerald, P. G., Rossetti, F., Balestrieri, M. L., Danišík, M., Ellero, A., Ottria, G., and Piromallo, C.: Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica), Geochem. Geophy. Geosy., 16, 1786–1824, https://doi.org/10.1002/2015GC005767, 2015.
Malusà, M. G., Guillot, S., Zhao, L., Paul, A., Solarino, S., Dumont, T., Schwartz, S., Aubert, C., Baccheschi, P., Eva, E., Lu, Y., Lyu, C., Pondrelli, S., Salimbeni, S., Sun, W., and Yuan, H.: The deep structure of the Alps based on the CIFALPS seismic experiment: A synthesis, Geochem. Geophy. Geosy., 22, e2020GC009466, https://doi.org/10.1029/2020GC009466, 2021.
Monteiller, V. and Chevrot, S.: How to make robust splitting measurements for single-station analysis and three-dimensional imaging of seismic anisotropy, Geophys. J. Int., 182, 311–328, 2010.
Okaya, D., Vel, S. S., Song, W. J., and Johnson, S. E.: Modification of crustal seismic anisotropy by geological structures (“structural geometric anisotropy”), Geosphere, 15, 146–170, https://doi.org/10.1130/GES01655.1, 2018.
Paffrath, M., Friederich, W., Schmid, S. M., Handy, M. R., and the AlpArray and AlpArray-Swath D Working Group: Imaging structure and geometry of slabs in the greater Alpine area – a P-wave travel-time tomography using AlpArray Seismic Network data, Solid Earth, 12, 2671–2702, https://doi.org/10.5194/se-12-2671-2021, 2021.
Paul, A., Malusà, M. G., Solarino, S., Salimbeni, S., Eva, E., Nouibat, A., Pondrelli, S., Aubert, C., Dumont, T., Guillot, S., Schwartz, S., and Zhao, L.: Along-strike variations in the fossil subduction zone of the Western Alps revealed by the CIFALPS seismic experiments and their implications for exhumation of (ultra-) high-pressure rocks, Earth Planet. Sc. Lett., 598, 117843, https://doi.org/10.1016/j.epsl.2022.117843, 2022.
Petrescu, L., Pondrelli, S., Salimbeni, S., Faccenda, M., and the AlpArray Working Group: Mantle flow below the central and greater Alpine region: insights from SKS anisotropy analysis at AlpArray and permanent stations, Solid Earth, 11, 1275–1290, https://doi.org/10.5194/se-11-1275-2020, 2020.
Piromallo, C. and Morelli, A.: P wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res.-Solid, 108, 2065, https://doi.org/10.1029/2002JB001757, 2003.
Pondrelli, S., Salimbeni, S., Baccheschi, P., Confal, J. M., and Margheriti, L.: Peeking inside the mantle structure beneath the Italian region through SKS shear wave splitting anisotropy: a review, Ann. Geophys., 66, 2, https://doi.org/10.4401/ag-8872, 2023.
Rappisi, F., VanderBeek, B. P., Faccenda, M., Morelli, A., and Molinari, I.: Slab geometry and upper mantle flow patterns in the Central Mediterranean from 3D anisotropic P-wave tomography, J. Geophys. Res.-Solid, 127, e2021JB023488, https://doi.org/10.1029/2021JB023488, 2022.
Reiss, M. C. and Rümpker, G.: SplitRacer: MATLAB Code and GUI for Semiautomated Analysis and Interpretation of Teleseismic Shear-Wave Splitting, Seismol. Res. Lett., 88, 392–409, https://doi.org/10.1785/0220160191, 2017.
Salimbeni, S., Malusà, M. G., Zhao, L., Guillot, S., Pondrelli, S., Margheriti, L., Paul, A., Solarino, S., Aubert, C., Dumont, T., Schwartz, S., Wang, Q., Xu, X., Zheng, T., and Zhu, R.: Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography, Tectonophysics, 731–732, 35–47, https://doi.org/10.1016/j.tecto.2018.03.002, 2018.
Savage, M. K.: Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?, Rev. Geophys., 37, 1, 65–106, https://doi.org/10.1029/98RG02075, 1999.
Serpelloni, E., Vannucci, G., Anderlini, L., and Bennett, R. A.: Kinematics, seismotectonics and seismic potential of the eastern sector of the European Alps from GPS and seismic deformation data, Tectonophysics, 688, 157–181, https://doi.org/10.1016/j.tecto.2016.09.026, 2016.
Silver, P. G. and Chan, W. W.: Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res.-Solid, 96, 16429–16454, 1991.
Zhao, L., Paul, A., Guillot, S., Solarino, S., Malusà, M. G., Zheng, T. Y., Aubert, C., Salimbeni, S., Dumont, T., Schwartz, S., Zhu, R. X., and Wang, Q. C.: First seismic evidence for continental subduction beneath the Western Alps, Geology, 43, 815–818, 2015.
Zhao, L., Paul, A., Malusà, M. G., Xu, X., Zheng, T., Solarino, S., Guillot, S. Schwartz, S., Dumont, T., Salimbeni, S., Aubert, C., Pondrelli, S., Wang, Q., and Zhu, R.: Continuity of the Alpine slab unraveled by high-resolution P wave tomography, J. Geophys. Res., 121, 8720–8737, 2016a.
Zhao, L., Paul, A., and Solarino, S.: RESIF: Seismic network YP: CIFALPS temporary experiment (China-Italy-France Alps seismic transect) [Data set], RESIF – Réseau Sismologique et géodésique Français [data set], https://doi.org/10.15778/RESIF.YP2012, 2016b.
Zhao, L., Paul, A., and Solarino, S. RESIF: Seismic network XT: CIFALPS-2 temporary experiment (China-Italy-France Alps seismic transect #2 [Data set], RESIF – Réseau Sismologique et Géodésique Français [data set], https://doi.org/10.15778/RESIF.XT2018, 2018.
Zhao, D., Liu, X., Wang, Z., and Gou, T.: Seismic Anisotropy Tomography and Mantle Dynamics, Surv. Geophys., 44, 947–982, https://doi.org/10.1007/s10712-022-09764-7, 2023.
Short summary
We analyse and interpret seismic anisotropy from CIFALPS2 data that fill the gaps in the Western Alps and support a new hypothesis. Instead of a continuous mantle flow parallel to the belt, here we find a N–S mantle deformation pattern that merges first with a mantle deformed by slab steepening beneath the Central Alps and then merges with an asthenospheric flow sourced beneath the Massif Central. This new sketch supports the extinction of slab retreat beneath the Western Alps.
We analyse and interpret seismic anisotropy from CIFALPS2 data that fill the gaps in the Western...