Articles | Volume 16, issue 10
https://doi.org/10.5194/se-16-1059-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-1059-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seismicity and thermal structure of the St. Paul Transform System, equatorial Atlantic: insights from focal depth analysis
Guilherme W. S. de Melo
CORRESPONDING AUTHOR
GEOMAR Helmholtz Centre of Ocean Research Kiel, Kiel, Germany
Ingo Grevemeyer
GEOMAR Helmholtz Centre of Ocean Research Kiel, Kiel, Germany
Sibiao Liu
GEOMAR Helmholtz Centre of Ocean Research Kiel, Kiel, Germany
Marcia Maia
Geo-Ocean, University of Brest, CNRS, Ifremer, UMR6538, 29280, Plouzane, France
Lars Rüpke
GEOMAR Helmholtz Centre of Ocean Research Kiel, Kiel, Germany
Related authors
No articles found.
Felix N. Wolf, Dietrich Lange, Anke Dannowski, Martin Thorwart, Wayne Crawford, Lars Wiesenberg, Ingo Grevemeyer, Heidrun Kopp, and the AlpArray Working Group
Solid Earth, 12, 2597–2613, https://doi.org/10.5194/se-12-2597-2021, https://doi.org/10.5194/se-12-2597-2021, 2021
Short summary
Short summary
The Ligurian Sea opened ~30–15 Ma during SE migration of the Calabrian subduction zone. Using ambient seismic noise from stations on land and at the ocean bottom, we calculated a 3D shear-velocity model of the Ligurian Basin. In keeping with existing 2D studies, we find a shallow crust–mantle transition at the SW basin centre that deepens towards the northeast, Corsica, and the Liguro-Provençal coast. We observe a separation of SW and NE basins. We do not observe high crustal vP/vS ratios.
Martin Thorwart, Anke Dannowski, Ingo Grevemeyer, Dietrich Lange, Heidrun Kopp, Florian Petersen, Wayne C. Crawford, Anne Paul, and the AlpArray Working Group
Solid Earth, 12, 2553–2571, https://doi.org/10.5194/se-12-2553-2021, https://doi.org/10.5194/se-12-2553-2021, 2021
Short summary
Short summary
We analyse broadband ocean bottom seismometer data of the AlpArray OBS network in the Ligurian Basin. Two earthquake clusters with thrust faulting focal mechanisms indicate compression of the rift basin. The locations of seismicity suggest reactivation of pre-existing rift structures and strengthening of crust and uppermost mantle during rifting-related extension. Slightly different striking directions of faults may mimic the anti-clockwise rotation of the Corsica–Sardinia block.
Zhikui Guo, Lars Rüpke, and Chunhui Tao
Geosci. Model Dev., 13, 6547–6565, https://doi.org/10.5194/gmd-13-6547-2020, https://doi.org/10.5194/gmd-13-6547-2020, 2020
Short summary
Short summary
We present the 3-D hydro-thermo-transport model HydrothermalFoam v1.0, which we designed to provide the marine geosciences community with an easy-to-use and state-of-the-art tool for simulating mass and energy transport in submarine hydrothermal systems. HydrothermalFoam is based on the popular open-source platform OpenFOAM, comes with a number of tutorials, and is published under the GNU General Public License v3.0.
Cited articles
Abercrombie, R. E. and Ekström, G.: Earthquake slip on oceanic transform faults, Nature, 410, 74–77, https://doi.org/10.1038/35065064, 2001.
Barão, L. M., Trzaskos, B., Angulo, R. J., and de Souza, M. C.: Deformation and structural evolution of mantle peridotites during exhumation on transform faults: A forced transition from ductile to brittle regime, J. Struct. Geol., 133, 103981, https://doi.org/10.1016/j.jsg.2020.103981, 2020.
Behn, M. D., Boettcher, M. S., and Hirth, G.: Thermal structure of oceanic transform faults, Geology, 35, 307–310, https://doi.org/10.1130/G23112A.1, 2007.
Bergman, E. A. and Solomon, S. C.: Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting, J. Geophys. Res. Solid Earth, 93, 9027–9057, https://doi.org/10.1029/JB093iB08p09027, 1988.
Bianchi, M. B., Assumpção, M., Rocha, M. P., Carvalho, J. M., Azevedo, P. A., Fontes, S. L., Dias, F. L., Ferreira, J. M., Nascimento, A. F., Ferreira, M. V., and Costa, I. S.: The Brazilian seismographic network (RSBR): Improving seismic monitoring in Brazil, Seismol. Res. Lett., 89, 452–457, https://doi.org/10.1785/0220170227, 2018.
Bickert, M., Kaczmarek, M. A., Brunelli, D., Maia, M., Campos, T. F., and Sichel, S. E.: Fluid-assisted grain size reduction leads to strain localization in oceanic transform faults, Nat. Commun., 14, 4087, https://doi.org/10.1038/s41467-023-39556-5, 2023.
Bonatti, E.: Serpentinite protrusions in the oceanic crust, Earth Planet. Sci. Lett., 32, 107–113, https://doi.org/10.1016/0012-821X(76)90048-0, 1976.
Bonatti, E.: Subcontinental mantle exposed in the Atlantic Ocean on St Peter–Paul islets, Nature, 345, 800–802, https://doi.org/10.1038/345800a0, 1990.
Bonatti, E., Seyler, M., and Sushevskaya, N.: A cold suboceanic mantle belt at the Earth's equator, Science, 261, 315–320, https://doi.org/10.1126/science.261.5119.315, 1993.
Burr, N. C. and Solomon, S. C.: The relationship of source parameters of oceanic transform earthquakes to plate velocity and transform length, J. Geophys. Res. Solid Earth, 83, 1193–1205, https://doi.org/10.1029/JB083iB03p01193, 1978.
Campos, T. F., Bezerra, F. H., Srivastava, N. K., Vieira, M. M., and Vita-Finzi, C.: Holocene tectonic uplift of the St Peter and St Paul Rocks (Equatorial Atlantic) consistent with emplacement by extrusion, Mar. Geol., 271, 177–186, https://doi.org/10.1016/j.margeo.2010.02.013, 2010.
Campos, T. F., Sichel, S. E., Maia, M., Brunelli, D., Motoki, K., Magini, C., Barão, L. M., Vargas, T., Szatmari, P., Fonseca, E., and de Melo, G. W. S.: The singular St. Peter and St. Paul Archipelago, equatorial Atlantic, Brazil, in: Meso-Cenozoic Brazilian Offshore Magmatism, edited by: Academic Press, https://doi.org/10.1016/B978-0-12-823988-9.00003-4, 121–165, 2022.
Coutant, O.: Program of numerical simulation AXITRA, Res. Rep. LGIT, Université Joseph Fourier, Grenoble, 1989 (in French).
DeMets, C., Gordon, R. G., and Argus, D. F.: Geologically current plate motions, Geophys. J. Int., 181, 1–80, https://doi.org/10.1111/j.1365-246X.2009.04491.x, 2010.
de Melo, G. W. S. and do Nascimento, A. F.: Earthquake magnitude relationships for the Saint Peter and Saint Paul archipelago, equatorial Atlantic, Pure Appl. Geophys., 175, 741–756, https://doi.org/10.1007/s00024-017-1732-6, 2018.
de Melo, G. W. S., Mitchell, N. C., Zahradnik, J., Dias, F., and do Nascimento, A. F.: Oceanic seismotectonics from regional earthquake recordings: the 4–5° N Mid-Atlantic Ridge, Tectonophysics, 819, 229063, https://doi.org/10.1016/j.tecto.2021.229063, 2021.
de Melo, G. W. S., Mitchell, N. C., and Sokolov, S. Y.: The 2020 Mw 6.6 Vernadsky transform earthquake sequence: Rupture and Coulomb stress changes surrounding an oceanic core complex, Mar. Geophys. Res., 45, 28, https://doi.org/10.1007/s11001-024-09558-z, 2024.
de Melo, G. W. S., Grevemeyer, I., Lange, D., Metz, D., and Kopp, H.: Relationship between rupture length and magnitude of oceanic transform fault earthquakes, Geophys. Res. Lett., 52, e2024GL112891, https://doi.org/10.1029/2024GL112891, 2025a.
de Melo, G. W. S., Grevemeyer, I., Liu, S., Maia, M., and Ruepke, L.: Seismicity and thermal structure of the St. Paul Transform System, equatorial Atlantic: Insights from focal depth analysis, Zenodo [data set], https://doi.org/10.5281/zenodo.15204422, 2025b.
Detrick, R. S., White, R. S., and Purdy, G. M.: Crustal structure of North Atlantic fracture zones, Rev. Geophys., 31, 439–458, https://doi.org/10.1029/93RG01952, 1993.
Dias, F., Zahradník, J., and Assumpção, M.: Path-specific, dispersion-based velocity models and moment tensors of moderate events recorded at few distant stations: Examples from Brazil and Greece, J. South Am. Earth Sci., 71, 344–358, https://doi.org/10.1016/j.jsames.2016.07.004, 2016.
Dziewonski, A. M., Chou, T. A., and Woodhouse, J. H.: Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res. Solid Earth, 86, 2825–2852, https://doi.org/10.1029/JB086iB04p02825, 1981.
Ekström, G., Nettles, M., and Dziewoński, A. M.: The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 200, 1–9, https://doi.org/10.1016/j.pepi.2012.04.002, 2012.
Engeln, J. F., Wiens, D. A., and Stein, S.: Mechanisms and depths of Atlantic transform earthquakes, J. Geophys. Res. Solid Earth, 91, 548–577, https://doi.org/10.1029/JB091iB01p00548, 1986.
Escartin, J., Hirth, G., and Evans, B.: Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges, Earth Planet. Sci. Lett., 151, 181–189, https://doi.org/10.1016/S0012-821X(97)81847-X, 1997.
Escartin, J., Hirth, G., and Evans, B.: Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere, Geology, 29, 1023–1026, https://doi.org/10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2, 2001.
Fang, H. and Abercrombie, R. E.: SMatStack to enhance noisy teleseismic seismic phases: Validation and application to resolving depths of oceanic transform earthquakes, Geochem. Geophys. Geosyst., 24, e2023GC011109, https://doi.org/10.1029/2023GC011109, 2023.
Feng, M., Assumpção, M., and Van der Lee, S.: Group-velocity tomography and lithospheric S-velocity structure of the South American continent, Phys. Earth Planet. Inter., 147, 315–331, https://doi.org/10.1016/j.pepi.2004.07.008, 2004.
Francis, T. J. G., Porter, I. T., and Lilwall, R. C.: Microearthquakes near the eastern end of St Paul's Fracture Zone, Geophys. J. Int., 53, 201–217, https://doi.org/10.1111/j.1365-246X.1978.tb03738.x, 1978.
Hekinian, R., Juteau, T., Gracia, E., Sichler, B., Sichel, S., Udintsev, G., Apprioual, R., and Ligi, M.: Submersible observations of equatorial Atlantic mantle: The St. Paul Fracture Zone region, Mar. Geophys. Res., 21, 529–560, https://doi.org/10.1023/A:1004819701870, 2000.
Institut de physique du globe de Paris (IPGP) and École et Observatoire des Sciences de la Terre de Strasbourg (EOST): GEOSCOPE, French global network of broad band seismic stations, Institut de physique du globe de Paris (IPGP), Université Paris Cité, https://doi.org/10.18715/GEOSCOPE.G, 1982.
Kim, W. Y., de Melo, G. W. S., and Assumpcão, M.: A Pn magnitude scale mb (Pn) for earthquakes along the equatorial Mid-Atlantic Ridge, Geophys. J. Int., 238, 1696–1707, https://doi.org/10.1093/gji/ggae242, 2024.
Laske, G., Masters, G., Ma, Z., and Pasyanos, M.: Update on CRUST1.0—A 1-degree global model of Earth's crust, Geophys. Res. Abstr., 15, 2658, 2013.
Le Voyer, M., Cottrell, E., Kelley, K. A., Brounce, M., and Hauri, E. H.: The effect of primary versus secondary processes on the volatile content of MORB glasses: An example from the equatorial Mid-Atlantic Ridge (5° N–3° S), J. Geophys. Res. Solid Earth, 120, 125–144, https://doi.org/10.1002/2014JB011160, 2015.
Leptokaropoulos, K., Rychert, C. A., Harmon, N., Schlaphorst, D., Grevemeyer, I., Kendall, J. M., and Singh, S. C.: Broad fault zones enable deep fluid transport and limit earthquake magnitudes, Nat. Commun., 14, 5748, https://doi.org/10.1038/s41467-023-41403-6, 2023.
Liu, S., Guo, Z., Rüpke, L. H., Morgan, J. P., Grevemeyer, I., Ren, Y., and Li, C.: Sensitivity of gravity anomalies to mantle rheology at mid-ocean ridge–transform fault systems, Earth Planet. Sci. Lett., 622, 118420, https://doi.org/10.1016/j.epsl.2023.118420, 2023.
Maia, M., Sichel, S., Briais, A., Brunelli, D., Ligi, M., Ferreira, N., Campos, T., Mougel, B., Brehme, I., Hémond, C., Motoki, A., Moura, D., Scalabrin, C., Pessanha, I., Alves, E., Ayres, A., and Oliveira, P.: Extreme mantle uplift and exhumation along a transpressive transform fault, Nat. Geosci., 9, 619–623, https://doi.org/10.1038/ngeo2759, 2016.
Melson, W. G., Jarosewich, E., Bowen, V. T., and Thompson, G.: St. Peter and St. Paul Rocks: A high-temperature, mantle-derived intrusion, Science, 155, 1532–1535, https://doi.org/10.1126/science.155.3769.1532, 1967.
Morgan, J. P. and Forsyth, D. W.: Three-dimensional flow and temperature perturbations due to a transform offset: Effects on oceanic crustal and upper mantle structure, J. Geophys. Res. Solid Earth, 93, 2955–2966, https://doi.org/10.1029/JB093iB04p02955, 1988.
Pan, J. and Dziewonski, A. M.: Comparison of mid-oceanic earthquake epicentral differences of travel time, centroid locations, and those determined by autonomous underwater hydrophone arrays, J. Geophys. Res. Solid Earth, 110, B07302, https://doi.org/10.1029/2003JB002785, 2005.
Pan, J., Antolik, M., and Dziewonski, A. M.: Locations of mid-oceanic earthquakes constrained by seafloor bathymetry, J. Geophys. Res. Solid Earth, 107, EPM-8, https://doi.org/10.1029/2001JB001588, 2002.
Parnell-Turner, R., Smith, D. K., and Dziak, R. P.: Hydroacoustic monitoring of seafloor spreading and transform faulting in the equatorial Atlantic Ocean, J. Geophys. Res. Solid Earth, 127, B024008, https://doi.org/10.1029/2022JB024008, 2022.
Prigent, C., Warren, J. M., Kohli, A. H., and Teyssier, C.: Fracture-mediated deep seawater flow and mantle hydration on oceanic transform faults, Earth Planet. Sci. Lett., 532, 115988, https://doi.org/10.1016/j.epsl.2019.115988, 2020.
Ren, Y., Geersen, J., and Grevemeyer, I.: Impact of spreading rate and age‐offset on oceanic transform fault morphology, Geophys. Res. Lett., 49, e2021GL096170, https://doi.org/10.1029/2021GL096170, 2022.
Ren, Y., Lange, D., and Grevemeyer, I.: Seismotectonics of the Blanco transform fault system, northeast Pacific: Evidence for an immature plate boundary, J. Geophys. Res. Solid Earth, 128, e2022JB026045, https://doi.org/10.1029/2022JB026045, 2023.
Roland, E., Behn, M. D., and Hirth, G.: Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity, Geochem. Geophys. Geosyst., 11, Q07001, https://doi.org/10.1029/2010GC003034, 2010.
Romanowicz, B., Cara, M., Fel, J. F., and Rouland, D.: GEOSCOPE: A French initiative in long-period three-component global seismic networks, Eos Trans. AGU, 65, 753, https://doi.org/10.1029/EO065i042p00753-01, 1984.
Ryan, W. B., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R.: Global multi-resolution topography synthesis, Geochem. Geophys. Geosyst., 10, Q03014, https://doi.org/10.1029/2008GC002332, 2009.
Sautter, B., Escartin, J., Petersen, S., Gaina, C., Granot, R., and Pubellier, M.: MAPRIDGES: Global database of Mid-Oceanic ridges segments and transform faults, SEANOE, https://doi.org/10.17882/99981, 2024.
Schilling, J. G., Ruppel, C., Davis, A. N., McCully, B., Tighe, S. A., Kingsley, R. H., and Lin, J.: Thermal structure of the mantle beneath the equatorial Mid-Atlantic Ridge: Inferences from the spatial variation of dredged basalt glass compositions, J. Geophys. Res. Solid Earth, 100, 10057–10076, https://doi.org/10.1029/95JB00668, 1995.
Schlaphorst, D., Rychert, C. A., Harmon, N., Hicks, S. P., Bogiatzis, P., Kendall, J. M., and Abercrombie, R. E.: Local seismicity around the Chain Transform Fault at the Mid-Atlantic Ridge from OBS observations, Geophys. J. Int., 234, 1111–1124, https://doi.org/10.1093/gji/ggad124, 2023.
Scripps Institution of Oceanography: IRIS/IDA seismic networkm International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/II, 1986.
Shi, P., Wei, M., and Pockalny, R. A.: The ubiquitous creeping segments on oceanic transform faults, Geology, 50, 199–204, https://doi.org/10.1130/G49562.1, 2022.
Sokos, E. N. and Zahradnik, J.: ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data, Comput. Geosci., 34, 967–977, https://doi.org/10.1016/j.cageo.2007.07.005, 2008.
The MathWorks Inc.: MATLAB version: 9.6 (R2019a) [software], The MathWorks Inc., https://www.mathworks.com (last access: February 2025), 2019.
Turcotte, D. and Schubert, G.: Geodynamics, 3rd edn., Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511843877, 2014.
Vincent, C., Maia, M., Briais, A., Brunelli, D., Ligi, M., and Sichel, S.: Evolution of a cold intra-transform ridge segment through oceanic core complex splitting and mantle exhumation, St. Paul Transform System, equatorial Atlantic, Geochem. Geophys. Geosyst., 24, e2023GC010870, https://doi.org/10.1029/2023GC010870, 2023.
Wessel, P., Luis, J. F., Uieda, L. A., Scharroo, R., Wobbe, F., Smith, W. H., and Tian, D.: The Generic Mapping Tools version 6, Geochem. Geophys. Geosyst., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019.
Weston, J., Engdahl, E. R., Harris, J., Di Giacomo, D., and Storchak, D. A.: ISC-EHB: reconstruction of a robust earthquake data set, Geophys. J. Int., 214, 474–484, https://doi.org/10.1093/gji/ggy155, 2018.
Wolfe, C. J., Bergman, E. A., and Solomon, S. C.: Oceanic transform earthquakes with unusual mechanisms or locations: Relation to fault geometry and state of stress in the adjacent lithosphere, J. Geophys. Res. Solid Earth, 98, 16187–16211, https://doi.org/10.1029/93JB00887, 1993.
Zahradník, J. and Sokos, E.: ISOLA code for multiple-point source modeling, in: Moment tensor solutions: A useful tool for seismotectonics, Springer, https://doi.org/10.1007/978-3-319-77359-9_1, 1–28, 2018.
Short summary
The St. Paul Transform System on the equatorial Atlantic is a seismically oceanic transform fault system. This study re-examines the focal depths of 35 earthquakes (MW 5.3–6.9) from Transforms A, B, and C. The data suggest that the seismogenic zone ranges from 5 to 18 km deep, with the deepest occurring in cooler lithosphere around the center of the transform segments. This challenges earlier hypotheses and indicates a global pattern of cooler mantle in center of oceanic transform faults.
The St. Paul Transform System on the equatorial Atlantic is a seismically oceanic transform...