Articles | Volume 16, issue 10
https://doi.org/10.5194/se-16-1097-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-16-1097-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Crustal-scale structures and tectonic domains of the Kheis Tectonic Province in South Africa from multimethod seismic analysis
Michael Westgate
CORRESPONDING AUTHOR
Department of Earth Sciences, Uppsala University, Uppsala, 75236, Sweden
School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa, 2017, South Africa
Musa S. D. Manzi
School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa, 2017, South Africa
Alireza Malehmir
Department of Earth Sciences, Uppsala University, Uppsala, 75236, Sweden
Ian James
School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa, 2017, South Africa
BHP Billiton Limited, Melbourne, 3000, Australia
Christian Schiffer
Department of Earth Sciences, Uppsala University, Uppsala, 75236, Sweden
Related authors
No articles found.
Mpofana Sihoyiya, Musa Siphiwe Doctor Manzi, Ian James, and Michael Westgate
EGUsphere, https://doi.org/10.5194/egusphere-2025-3117, https://doi.org/10.5194/egusphere-2025-3117, 2025
Short summary
Short summary
We used sound waves to look beneath the surface in the Northern Cape of South Africa to search for hidden layers of rock that may contain valuable manganese deposits. Our study revealed nine distinct underground layers, including one likely to host manganese. This method helps locate buried resources without drilling, showing how advanced imaging can support mineral exploration in areas covered by thick sand.
Sikelela Gomo, Farbod Khosro Anjom, Chiara Colombero, Mohammadkarim Karimpour, Bibi Ayesha Jogee, Musa Siphiwe Doctor Manzi, and Laura Valentina Socco
EGUsphere, https://doi.org/10.5194/egusphere-2025-2401, https://doi.org/10.5194/egusphere-2025-2401, 2025
Short summary
Short summary
Near-surface imaging plays a crucial role in mine development, safety, efficiency, and environmental risk mitigation. Challenges in deep mining often stem from complex geological conditions and anthropogenic factors, such as undocumented historical mining activities. This study presents an integrated geophysical approach that combines multiple geophysical techniques to characterize the near-surface environment and delineate potential water conduits in a deep mining context.
Samuel Zappalá, Alireza Malehmir, Haralambos Kranis, George Apostolopoulos, and Myrto Papadopoulou
Solid Earth, 16, 409–423, https://doi.org/10.5194/se-16-409-2025, https://doi.org/10.5194/se-16-409-2025, 2025
Short summary
Short summary
Three 2D seismic profiles were acquired in the Thinia valley, an isthmus connecting the main part of the island to the Paliki peninsula, to improve the subsurface knowledge of the tectonically peculiar Kefalonia island. Here the presence of a possible channel has been largely disputed in ongoing investigations for the possible location of Homer’s Ithaca. Results from different analyses further constrain the recent tectonic history of the area and thus the long-debated presence of a historic water channel in the valley.
Nombuso G. Maduna, Musa S. D. Manzi, Zubair Jinnah, and Julie E. Bourdeau
Solid Earth, 13, 1755–1780, https://doi.org/10.5194/se-13-1755-2022, https://doi.org/10.5194/se-13-1755-2022, 2022
Short summary
Short summary
High-resolution 3D reflection seismic data from the Orange Basin, South Africa, are used to provide an in-depth examination of features within the Late Cretaceous to Cenozoic sedimentary successions. The study provides insight into the structural styles between the translational and compressional domains of a Late Cretaceous deep-water fold-and-thrust belt (DWFTB) system, together with the tectonic and oceanographic processes responsible for mass-scale erosion in the Cenozoic.
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022, https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Short summary
Fast depletion of shallower deposits is pushing the mining industry to look for cutting-edge technologies for deep mineral targeting. We demonstrated a joint workflow including two state-of-the-art technologies: full-waveform inversion and reverse time migration. We produced Earth images with significant details which can help with better estimation of areas with high mineralisation, better mine planning and safety measures.
Felix Hloušek, Michal Malinowski, Lena Bräunig, Stefan Buske, Alireza Malehmir, Magdalena Markovic, Lukasz Sito, Paul Marsden, and Emma Bäckström
Solid Earth, 13, 917–934, https://doi.org/10.5194/se-13-917-2022, https://doi.org/10.5194/se-13-917-2022, 2022
Short summary
Short summary
Methods for mineral exploration play an important role within the EU. Exploration must be environmentally friendly, cost effective, and feasible in populated areas. Seismic methods have the potential to deliver detailed images of mineral deposits but suffer from these demands. We show the results for a sparse 3D seismic dataset acquired in Sweden. The 3D depth image allows us to track the known mineralizations beyond the known extent and gives new insights into the geometry of the deposit.
Yinshuai Ding and Alireza Malehmir
Solid Earth, 12, 1707–1718, https://doi.org/10.5194/se-12-1707-2021, https://doi.org/10.5194/se-12-1707-2021, 2021
Short summary
Short summary
In this article, we investigate the potential of reverse time migration (RTM) for deep targeting iron oxide deposits and the possible AVO effect that is potentially seen in the common image gathers from this migration algorithm. The results are promising and help to delineate the deposits and host rock structures using a 2D dataset from the Ludvika mines of central Sweden.
Saeid Cheraghi, Alireza Malehmir, Mostafa Naghizadeh, David Snyder, Lucie Mathieu, and Pierre Bedeaux
Solid Earth, 12, 1143–1164, https://doi.org/10.5194/se-12-1143-2021, https://doi.org/10.5194/se-12-1143-2021, 2021
Short summary
Short summary
High-resolution seismic profiles in 2D are acquired in the north and south of the Chibougamau area, Quebec, Canada located in the northeast of the Abitibi Greenstone belt. The area mostly includes volcanic rocks, and both profiles cross over several fault zones. The seismic method is acquired to image the subsurface down to depth of 12 km. The main aim of this study is to image major fault zones and the geological formations connected to those faults to investigate metal endowment in the area.
Alireza Malehmir, Magdalena Markovic, Paul Marsden, Alba Gil, Stefan Buske, Lukasz Sito, Emma Bäckström, Martiya Sadeghi, and Stefan Luth
Solid Earth, 12, 483–502, https://doi.org/10.5194/se-12-483-2021, https://doi.org/10.5194/se-12-483-2021, 2021
Short summary
Short summary
A smooth transition toward decarbonization demands access to more minerals of critical importance. Europe has a good geology for many of these mineral deposits, but at a depth requiring sensitive, environmentally friendly, and cost-effective methods for their exploration. In this context, we present a sparse 3D seismic dataset that allowed identification of potential iron oxide resources at depth and helped to characterise key geological structures and a historical tailing in central Sweden.
Cited articles
Baranov, A. A. and Bobrov, A. M.: Crustal structure and properties of Archean cratons of Gondwanaland: similarity and difference, Russ. Geol. Geophys., 59, 512–524, https://doi.org/10.1016/j.rgg.2018.04.005, 2018.
Baranov, A., Tenzer, R., and Ghomsi, F. E. K.: A new Moho map of the African continent from seismic, topographic, and tectonic data, Gondwana Res., 124, 218–245, https://doi.org/10.1016/j.gr.2023.06.019, 2023.
Benz, H. M., Chouet, B. A., Dawson, P. B., Lahr, J. C., Page, R. A., and Hole, J. A.: Three-dimensional P and Swave velocity structure of Redoubt Volcano, Alaska, J. Geophys. Res., 101, 8111–8128, 1996.
Buntin, S., Artemieva, I. M., Malehmir, A., Thybo, H., Malinowski, M., Högdahl, K., Janik, T., and Buske, S.: Long-lived Paleoproterozoic eclogitic lower crust, Nat. Commun. 12, 6553, https://doi.org/10.1038/s41467-021-26878-5, 2021.
Buske, S., Bellefleur, G., and Malehmir, A.: Introduction to special issue on “hard rock seismic imaging”, Geophys. Prospect., 63, 751–753, https://doi.org/10.1111/1365-2478.12257, 2015.
Büttner, S. H.: Comment on “Evidence for Mesoproterozoic collision, deep burial and rapid exhumation of garbenschiefer in the Namaqua Front, South Africa” by Valby Van Schijndel, David H. Cornell, Robert Anczkiewicz, Anders Scherstén, Geoscience Frontiers, Volume 11, Issue 2, Pages 511-531, Geosci. Front., 11, 1889–1894, https://doi.org/10.1016/j.gsf.2020.04.007, 2020.
Carlson, R. W., Grove, T. L., De Wit, M. J., and Gurney, J. J.: Program to study crust and mantle of the Archaean craton in southern Africa, Eos. Trans. AGU, 77, 273–277, https://doi.org/10.1029/96EO00194, 1996.
Christensen, N. I.: Poisson's ratio and crustal seismology, J. Geophys. Res.-Sol. Ea., 101, 3139–3156, https://doi.org/10.1029/95JB03446, 1996.
Christensen, N. I. and Mooney, W. D.: Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res.-Sol. Ea., 100, 9761–9788, https://doi.org/10.1029/95JB00259, 1995.
Clowes, R. M., White, D. J.. and Hajnal, Z.: Mantle heterogeneities and their significance: results from Lithoprobe seismic reflection and refraction–wide-angle reflection studies, Can. J. Earth Sci., 47, 409–443, https://doi.org/10.1139/E10-009, 2010.
Cornell, D. H., Thomas, R. J., Moen, H. F. G., Reid, D. L., Moore, J. M., and Gibson, R. L.: The Namaqua-Natal Province, in: The Geology of South Africa, edited by: Johnson, M. R., Anhauesser, C. R., and Thomas, R. J., Geological Society of South Africa, Johannesburg, South Africa, 325–379, ISBN 9781919908779, 2006.
Corner, B. and Durrheim, R.: An Integrated Geophysical and Geological Interpretation of the Southern African Lithosphere, in: Geology of Southwest Gondwana, edited by: Siegesmund, S., Basei, M. A. S., Oyhantçabal, P., and Oriolo, S., Springer, Cham, Germany, 19–61, https://doi.org/10.1007/978-3-319-68920-3_2, 2018.
Daly, M. C., Andrade, V., Barousse, C. A., Costa, R., McDowell, K., Piggott, N., and Poole, A. J.: Brasiliano crustal structure and the tectonic setting of the Parnaíba basin of NE Brazil: results of a deep seismic reflection profile, Tectonics, 33, 2102–2120, https://doi.org/10.1002/2014TC003632, 2014.
Dentith, M., Yuan, H., Murdie, R. E., Pina-Varas, P., Johnson, S. P., Gessner, K., and Korhonen, F.J.: Improved interpretation of deep seismic reflection data in areas of complex geology through integration with passive seismic data sets, J. Geophys. Res-Sol. Ea., 123, 10810, https://doi.org/10.1029/2018JB015795, 2018.
Ding, Y. and Malehmir, A.: Reverse time migration (RTM) imaging of iron oxide deposits in the Ludvika mining area, Sweden, Solid Earth, 12, 1707–1718, https://doi.org/10.5194/se-12-1707-2021, 2021.
Gomo, S., Mutshafa, N., Dildar, J., Manzi, M. S. D., Bourdeau, J. E., Brodic, B., James, I., Cooper, G. R. J., and Durrheim, R. J.: Integration of ground geophysical methods to characterize near-surface aquifer zones within an active mine, Near. Surf. Geophys., 22, 521–538, https://doi.org/10.1002/nsg.12314, 2024.
Haddon, I.: The sub-Kalahari Geology and Tectonic Evolution of the Kalahari basin, Southern Africa, PhD thesis, University of the Witwatersrand, 343 pp., http://hdl.handle.net/10539/193, 2004.
Haddon, I. and McCarthy, T. S.: The Mesozoic – Cenozoic interior sag basins of Central Africa: the Late-cretaceous – Cenozoic Kalahari and Okavango basins, J. Afr. Earth Sci., 43, 316–333, https://doi.org/10.1016/j.jafrearsci.2005.07.008, 2005.
Jacobsen, B. H. and Svenningsen, L.: Enhanced uniqueness and linearity of receiver function inversion, Bull. Seismol. Soc. Am., 98, 1756–1767, doi10.1785/0120070180, 2008.
Juhlin, C., Hedin, P., Gee, D. G., Lorenz, H., Kalscheuer, T., and Yan, P.: Seismic imaging in the eastern Scandinavian Caledonides: siting the 2.5 km deep COSC-2 borehole, central Sweden, Solid Earth, 7, 769–787, https://doi.org/10.5194/se-7-769-2016, 2016.
Juhlin, C., Lescoutre, R., and Almqvist, B.: A new look at reflection seismic data from the Central Caledonian Transect across the Scandinavian Peninsula, Solid Earth, 16, 775–784, https://doi.org/10.5194/se-16-775-2025, 2025.
Kgaswane, E. M., Nyblade, A. A., Julià, J., Dirks, P. H. G. M., Durrheim, R. J., and Pasyanos, M. E.: Shear wave velocity structure of the lower crust in southern Africa: Evidence for compositional heterogeneity within Archaean and Proterozoic terrains, J. Geophys. Res., 114, B12304, https://10.1029/2008JB006217, 2009.
Kucinskaite, K., Papadopoulou, M., Westgate, M., and Malehmir, A.: Near-Surface Characterization of the Havnsø Geological Carbon Storage Site (Denmark) Using Combined Seismic Reflection Imaging and Traveltime Tomography, Geoenergy, 3, https://doi.org/10.1144/geoenergy2024-038, 2025.
Langston, C. A.: Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves, Bulletin of the Seismological Society of America, 67, 713–724, https://doi.org/10.1785/BSSA0670030713, 1977.
Malehmir, A., Donoso, G., Markovic, M., Maries, G., Dynesius, L., Brodic, B., and Pecheo, N.: Smart exploration: from legacy data to stateof-the-art data acquisition and imaging, First Break, 37, 71–74, https://doi.org/10.3997/1365-2397.n0049, 2019.
Manzi, M., Malehmir, A., and Durrheim, R.: Giving the legacy seismic data the attention they deserve, First Break, 37, 89–96, https://doi.org/10.3997/1365-2397.n0050, 2019.
Matmon, A., Hidya, A. J., Vainer, S., Crouvi, O., Fink, D., and Erel, Y.: New chronology for the southern Kalahari Group sediments with implications for sediment-cycle dynamics and early hominin occupation, Quat. Res., 84, 118–132, https://doi.org/10.1016/j.yqres.2015.04.009, 2015.
Meissner, R.: Rupture, creep, lamellae and crocodiles: happenings in the continental crust, Terra nova, 1, 17–28, https://doi.org/10.1111/j.1365-3121.1989.tb00321.x, 1989.
Meissner, R., Wever, T., and Sadowiak, P.: Continental collisions and seismic signature, Geophys. J. Int., 105, 15–23, https://doi.org/10.1111/j.1365-246X.1991.tb03440.x, 1991.
Moen, H. F. G.: The Kheis Tectonic Subprovince, southern Africa: A lithostratigraphic perspective, S. Afr. J. Geol., 102, 27–42, https://hdl.handle.net/10520/EJC-94ca69611, 1999.
Moen, H. F. G.: The Olifantshoek Supergroup, in: The Geology of South Africa, edited by: Johnson, M. R., Anhaeusser, C. R., and Thomas, R. J., Geological Society of South Africa, Johannesburg, South Africa, 319–324, ISBN 1919908773, 2006.
Moen, H. F. G. and Armstrong, R. A.: New age constraints on the tectogenesis of the Kheis Subprovince and the evolution of the eastern Namaqua Province, S. Afr. J. Geol., 111, 79–88, https://doi.org/10.2113/gssajg.111.1.79, 2008.
Nair, S. K., Gai, S. S., Liu, K. H., and Silver, P. G.: Southern African crustal evolution and composition: Constraints from receiver function studies, J. Geophys. Res.-Solid Earth, 111, 1–17, https://doi.org/10.1029/2005JB003802, 2006.
Nguuri, T. K., Gore, J., James, D. E., Webb, S. J., Wright, C., Zengeni, T. G., Gwavava, O., Snoke, J. A., and Kaapvaal Seismic Group: Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons, Geophys. Res. Lett., 28, 2501–2504, https://doi.org/10.1029/2000GL012587, 2001.
Penn State University: AfricaArray, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/AF, 2004.
Pettersson, Å., Cornell, D. H., Moen, H. F. G., Reddy, S., and Evans, D.: Ion-probe dating of 1.2 Ga collision and crustal architecture in the Namaqua-Natal province of southern Africa, Precambrian Res., 158, 79–92, https://doi.org/10.1016/j.precamres.2007.04.006, 2007.
Rodríguez-Tablante, J. I., Juhlin, C., and Bergyman, B.: First Arrival Seismic Tomography (FAST) vs. PStomoeq applied to crooked line seismic data from Siljan ring area, Comput. Geosci., 32, 497–511, https://doi.org/10.1016/j.cageo.2005.08.005, 2006.
Schiffer, C., de Lima, M. V., Soares, J. E., Stephenson, R., de Araújo, V. C., Lima, F. T., Rocha, F. A., Trindade, C. R., and Fuck, R. A.: ratios in the Parnaíba Basin from joint active-passive seismic analysis–Implications for continental amalgamation and basin formation, Tectonophysics, 801, 228715, https://doi.org/10.1016/j.tecto.2020.228715, 2021.
Schiffer, C., Rondenay, S., Ottemöller, L., and Drottning, A.: The Moho Architecture and Its Role for Isostasy – Insights from the Lofoten-Vesterålen Rifted Margin, Norway, J. Geophys. Res-Sol. Ea., 128, e2022JB025983, https://doi.org/10.1029/2022JB025983, 2023.
Schiffer, C., Rondenay, S., and Shomali, Z. H.: Seismic probing of buried ancient terrane boundaries – insight into Fennoscandia's Palaeoproterozoic continental formation, Precambrian Res., 405, 107376, https://doi.org/10.1016/j.precamres.2024.107376, 2024.
Sihoyiya, M., Manzi, M. S. D., James, I., Rapetsoa, M. K., Westgate, M., Nwaila, G., Linzer, L., Durrheim, R. J., and Staley, P.: Seismic delineation of the gold-bearing structures in the South Rand goldfield (South Africa): A comparison of pre-stack time and depth migration approaches on legacy seismic data, Near Surf. Geophys., 20, 697–709, https://doi.org/10.1002/nsg.12209, 2022.
Silver, P.: Anatomy of an Archean Craton, South Africa, A Multidisciplinary Experiment across the Kaapvaal Craton, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/XA_1997, 1997.
Soares, J. E., Stephenson, R., Fuck, R. A., De Lima, M. V., De Araújo, V. C., Lima, F. T., Rocha, F. A., and Da Trindade, C. R.: Structure of the crust and upper mantle beneath the Parnaíba Basin, Brazil, from wide-angle reflection–refraction data, Geo. Soc. SP, https://doi.org/10.1144/SP472.9, 2018.
Stettler, E. H., Prinsloo, J., and Hauger, M. E.: A geophysical transect between Avondale on the Kheis tectonic province and Keimoes on the Namaqua metamorphic province, South Africa, S. Afr. Geophys. Rev., 2, 83–93, 1998.
Stettler, E. H., Prinsloo, J., Hauger, M. E., and Du Toit, M. C.: A crustal geophysical model for the Kheis Tectonic Province, South Africa based on magnetotelluric, reflection seismic, gravity and magnetic data, S. Afr. Geophys. Rev., 3, 54–68, 1999.
Svenningsen, L. and Jacobsen, B. H.: Absolute S-velocity estimation from receiver functions, Geophys. J. Int., 170, 1089–1094, https://doi.org/10.1111/j.1365-246X.2006.03505.x, 2007.
Tarantola, A. and Valette, B.: Generalized nonlinear inverse problems solved using the least squares criterion, Rev. Geophys., 20, 219–232, https://doi.org/10.1029/RG020i002p00219, 1982.
Thomas, R. J., Agenbacht, A. L. D., Cornell, D. H., and Moore, J. M.: The Kibaran of southern Africa: Tectonic evolution and metallogeny, Ore Geology Reviews, 9, 131–160, https://doi.org/10.1016/0169-1368(94)90025-6, 1994.
Tinker, J., De Wit, M. J., and Grotzinger, J.: Seismic stratigraphic constraints on Neoarchean-Palaeoproterozoic evolution of the western margin of the Kaapvaal Craton, S. Afr. J. Geol., 105, 107–134, https://doi.org/10.2113/105.2.107, 2002.
Tryggvason, A., Rögnvaldsson, S. T., and Flóvenz, Ó. G.: Three-dimensional imaging of the P- and S-wave velocity structure and earthquake locations beneath Southwest Iceland, J. Geophys. Res., 151, 848–866, https://doi.org/10.1046/j.1365-246X.2002.01812.x, 2002.
Van Niekerk, H. and Beukes, N. J.: Revised definition/outline of the Kheis Terrane along the western margin of the Kaapvaal Craton and lithostratigraphy of the newly proposed Keis Supergroup, S. Afr. J. Geo., 122, 187–220, https://doi.org/10.25131/sajg.122.0014, 2019.
Vinnik, L. P.: Detection of waves converted from P to SV in the mantle, Physics of the Earth and Planetary Interiors, 15, 39–45, https://doi.org/10.1016/0031-9201(77)90008-5, 1977.
Westgate, M., Manzi, M. S. D., James, I., and Harrison, W.: New insights from legacy seismic data: reprocessing of legacy 2D seismic data for imaging of iron-oxide mineralization near Sishen Mine, South Africa, Geophys. Prosp., 68, 2119–2140, https://doi.org/10.1111/1365-2478.12996, 2020.
Westgate, M., Manzi, M. S. D., Malehmir, A., Gibson, R. L., Andreoli, M. A. G., and Bumby, A.: A reappraisal of legacy reflection seismic data from the western margin of the Kaapvaal craton, South Africa, with implications for Mesozoic-Cenozoic regional tectonics, Tectonophysics, 813, https://doi.org/10.1016/j.tecto.2021.228934, 2021.
Westgate, M., Manzi, M. S. D., James, I., Andreoli, M. A. G., and Durrheim, R. J.: Seismic Constraints on the Trompsburg Layered Igneous Intrusion Complex in South Africa Using Two Deep Reflection Seismic Profiles, Front. Earth Sci., 10, https://doi.org/10.3389/feart.2022.839995, 2022.
Yang, Y., Li, A., and Ritzwoller, M. H.: Crustal and uppermost mantle structure in southern Africa revealed from ambient noise and teleseismic tomography, Geophys. J. Int., 174, 235–248, https://doi.org/10.1111/j.1365-246X.2008.03779.x, 2008.
Yordkayhun, S., Juhlin, C., Giese, R., and Cosma, C.: Shallow velocity-depth model using first arrival traveltime inversion at the CO2SINK site, Ketzin, Germany, J. Appl. Geophys, 63, 68–79, https://doi.org/10.1016/j.jappgeo.2007.05.001, 2007.
Youssof, M., Thybo, H., Artemieva, I. M., and Lavender, A.: Moho depth and crustal composition in Southern Africa, Tectonophysics, 609, 267–287, https://doi.org/10.1016/j.tecto.2013.09.001, 2013.
Zelt, C. A., Sain, K., Naumenko, J. V., and Sawyer, D. S.: Assessment of crustal velocity models using seismic refraction and reflection tomography, Geophys. J. Int., 153, 609–626, https://doi.org/10.1046/j.1365-246X.2003.01919.x, 2003.
Short summary
This study makes use of advanced seismic exploration techniques to look at the subsurface of South Africa's Kheis region. The results reveal hidden faults and folded rocks that help explain how ancient continents collided. The findings challenge older ideas about major geological boundaries and suggest a new model for how the crust formed and evolved. This work shows how old data, when re-analyzed with new methods and integrated with supporting data, can disclose important geological qualities.
This study makes use of advanced seismic exploration techniques to look at the subsurface of...
Special issue