Costa, A., Caricchi, L., and Bagdassarov, N.: A model for the rheology of particle-bearing suspensions and partially molten rocks, Geochemistry Geophysics Geosystems, 10,
https://doi.org/10.1029/2008GC002138, 2009.
a,
b,
c
Drouin, V., Sigmundsson, F., Verhagen, S., Ófeigsson, B. G., Spaans, K., and Hreinsdóttir, S.: Deformation at Krafla and Bjarnarflag geothermal areas, northern volcanic zone of Iceland, 1993–2015, Journal of Volcanology and Geothermal Research, 344, 92–105, 2017. a
Eichelberger, J., Carrigan, C., Ingolfsson, H. P., Lavallée, Y., Ludden, J., Markusson, S., Mortensen, A., Papale, P., Sigmundsson, F., Saubin, E., Tester, J. W., and the KMT Consortium: Magma-sourced geothermal energy and plans for Krafla Magma Testbed, Iceland, in: Proceedings World Geotherm Congress, vol. 1, p. 2021, 2020. a
Einarsson, P.: S-wave shadows in the Krafla caldera in NE-Iceland, evidence for a magma chamber in the crust, Bulletin Volcanologique, 41, 187–195, 1978. a
Gerbault, M. and Melnik, O.: Solver and run files for the paper “Numerical simulation of magma-rock interaction at Krafla volcano using OpenFOAM software and a simplified thermal model”, in Solid Earth, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.17426563, 2025.
a
Giordano, D., Russell, J. K., and Dingwell, D. B.: Viscosity of magmatic liquids: a model, Earth Planet. Sc. Lett., 271, 123–134, 2008.
a,
b,
c
Grossmann, S. and Lohse, D.: Thermal convection for large Prandtl numbers, Physical Review Letters, 86, 3316,
https://doi.org/10.1103/PhysRevLett.86.3316, 2001.
a,
b,
c,
d
Gruzdeva, Y., Weis, P., and Andersen, C.: Timing of volatile degassing from hydrous upper-crustal magma reservoirs with implications for porphyry copper deposits, Journal of Geophysical Research-Solid Earth, 129, e2023JB028433,
https://doi.org/10.1029/2023JB028433, 2024.
a
Gualda, G. A., Ghiorso, M. S., Lemons, R. V., and Carley, T. L.: Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems, Journal of Petrology, 53, 875–890, 2012. a
Hampton, R., Bindeman, I., Stern, R., Coble, M., and Rooyakkers, S.: A microanalytical oxygen isotopic and U-Th geochronologic investigation and modeling of rhyolite petrogenesis at the Krafla Central Volcano, Iceland, Journal of Volcanology and Geothermal Research, 414, 107229, 2021. a
Hollingsworth, J., Leprince, S., Ayoub, F., and Avouac, J.-P.: Deformation during the 1975–1984 Krafla rifting crisis, NE Iceland, measured from historical optical imagery, Journal of Geophysical Research-Solid Earth, 117,
https://doi.org/10.1029/2012JB009140, 2012.
a
Huppert, H. E. and Sparks, R. S. J.: Melting the roof of a chamber containing a hot, turbulently convecting fluid, Journal of Fluid Mechanics, 188, 107–131,
https://doi.org/10.1017/S0022112088000655, 1988.
a,
b,
c
Kim, D., Brown, L. D., Árnason, K., Gudmundsson, Ó., Ágústsson, K., and Flóvenz, Ó. G.: Magma “bright spots” mapped beneath Krafla, Iceland, using RVSP imaging of reflected waves from microearthquakes, Journal of Volcanology and Geothermal Research, 391, 106365,
https://doi.org/10.1016/j.jvolgeores.2018.04.022, 2020.
a
Liu, Y., Zhang, Y., and Behrens, H.: Solubility of
H2O in rhyolitic melts at low pressures and a new empirical model for mixed
H2O–
CO2 solubility in rhyolitic melts, Journal of Volcanology and Geothermal Research, 143, 219–235, 2005. a
Louis-Napoleon, A., Gerbault, M., Bonometti, T., Thieulot, C., Martin, R., and Vanderhaeghe, O.: 3-D numerical modelling of crustal polydiapirs with Volume-Of-Fluid methods, Geophys. J. Int., 222, 474–506, 2020. a
Louis-Napoleon, A., Bonometti, T., Gerbault, M., Martin, R., and Vanderhaeghe, O.: Models of convection and segregation in heterogeneous partially molten crustal roots with a VOF method – part I: flow regimes, Geophys. J. Int., 229, 2047–2080, 2022.
a,
b
Louis-Napoléon, A., Gerbault, M., Bonometti, T., Vanderhaeghe, O., Roland, M., and Maury, N.: Convection and segregation in heterogeneous orogenic crust with a VOF method – Part II: how to form migmatite domes, Geophys. J. Int., ggad388,
https://doi.org/10.1093/gji/ggad388, 2024.
a
Marsh, B.: On the crystallinity, probability of occurrence, and rheology of lava and magma, Contributions to Mineralogy and Petrology, 78, 85–98, 1981.
a,
b
Masotta, M., Mollo, S., Nazzari, M., Tecchiato, V., Scarlato, P., Papale, P., and Bachmann, O.: Crystallization and partial melting of rhyolite and felsite rocks at Krafla volcano: A comparative approach based on mineral and glass chemistry of natural and experimental products, Chemical Geology, 483, 603–618, 2018.
a,
b,
c
Mbia, P. K., Mortensen, A., Oskarsson, N., and Hardarson, B.: Sub surface geology, petrology and hydrothermal alteration of Menengai geothermal field, Kenya, United Nations University, 2014. a
Melnik, O. and Gerbault, M.: Numerical simulation of magma-rock interaction at Krafla volcano using OpenFOAM software and a simplified thermal model, TIB Portal [video],
https://doi.org/10.5446/71779, 2025a.
a
Melnik, O. and Gerbault, M.: Numerical simulation of magma-rock interaction at Krafla volcano using OpenFOAM software and a simplified thermal model, TIB Portal [video],
https://doi.org/10.5446/71778, 2025b.
a
Mortensen, A., Grönvold, K., Gudmundsson, Á., Steingrímsson, B., and Egilson, T.: Quenched silicic glass from well KJ-39 in Krafla, North-Eastern Iceland, in: World Geothermal Congress, pp. 1–6, 2010. a
Mortensen, A., Egilson, T., Gautason, B., Árnadóttir, S., and Gudhmundsson, Á.: Stratigraphy, alteration mineralogy, permeability and temperature conditions of well IDDP-1, Krafla, NE-Iceland, Geothermics, 49, 31–41, 2014. a
Rooyakkers, S. M., Stix, J., Berlo, K., Petrelli, M., Hampton, R. L., Barker, S. J., and Morgavi, D.: The origin of rhyolitic magmas at Krafla Central Volcano (Iceland), J. Petrology, 62, egab064,
https://doi.org/10.1093/petrology/egab064, 2021.
a,
b
Rooyakkers, S. M., Carroll, K. J., Gutai, A. F., Winpenny, B., Bali, E., Guðfinnsson, G. H., Maclennan, J., Sigmundsson, F., Jónasson, K., Mutch, E. J. F., Neave, D. A., Gunnarsson Robin, J., Grönvold, K., and Halldórsson, S. A.: Hydraulically linked reservoirs simultaneously fed the 1975–1984 Krafla Fires eruptions: Insights from petrochemistry, Earth and Planetary Science Letters, 646, 118960,
https://doi.org/10.1016/j.epsl.2024.118960, 2024.
a
Schuler, J., Greenfield, T., White, R. S., Roecker, S. W., Brandsdóttir, B., Stock, J. M., Tarasewicz, J., Martens, H. R., and Pugh, D.: Seismic imaging of the shallow crust beneath the Krafla central volcano, NE Iceland, Journal of Geophysical Research-Solid Earth, 120, 7156–7173, 2015. a
Silano, G., Sreenivasan, K., and Verzicco, R.: Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between 10
−1 and 10
4 and Rayleigh numbers between 10
5 and 10
9, Journal of Fluid Mechanics, 662,
https://doi.org/10.1017/S0022112010003290, 2010.
a,
b
Simakin, A. and Bindeman, I.: Convective Melting and Water Behavior around Magmatic Hydrothermal Transition: Numerical Modeling with Application to Krafla Volcano, Iceland, J. Petrology, 63, egac074,
https://doi.org/10.1093/petrology/egac074, 2022.
a,
b,
c
Stevens, R. J., van der Poel, E. P., Grossmann, S., and Lohse, D.: The unifying theory of scaling in thermal convection: the updated prefactors, Journal of Fluid Mechanics, 730, 295–308, 2013. a
Teplow, W., Marsh, B., Hulen, J., Spielman, P., Kaleikini, M., Fitch, D., and Rickard, W.: Dacite melt at the Puna geothermal venture wellfield, Big Island of Hawaii, in: AGU Fall Meeting Abstracts, vol. 2008, pp. V23A–2129, 2008. a
Tryggvason, E.: Widening of the Krafla fissure swarm during the 1975–1981 volcano-tectonic episode, Bulletin Volcanologique, 47, 47–69, 1984. a
Wadsworth, F. B., Vasseur, J., Lavallée, Y., Hess, K.-U., Kendrick, J. E., Castro, J. M., Weidendorfer, D., Rooyakkers, S. M., Foster, A., Jackson, L. E., Kennedy, B. M., Nichols, A. R. L., Schipper, C. I., Scheu, B., Dingwell, D. B., Watson, T., Rule, G., Witcher, T., and Tuffen, H.: The rheology of rhyolite magma from the IDDP-1 borehole and Hrafntinnuhryggur (Krafla, Iceland) with implications for geothermal drilling, Journal of Volcanology and Geothermal Research, 455, 108159,
https://doi.org/10.1016/j.jvolgeores.2024.108159, 2024.
a
Witcher, T., Burchardt, S., Mattsson, T., Heap, M. J., Pluymakers, A., Li, K., and Lazor, P.: Development of permeable networks by viscous-brittle deformation in a shallow rhyolite intrusion, Part 2,
https://doi.org/10.1016/j.jvolgeores.2025.108278, 2025.
a
Wong, Y.-Q. and Keller, T.: A unified numerical model for two-phase porous, mush and suspension flow dynamics in magmatic systems, Geophysical Journal International, 233, 769–795, 2023. a
Zierenberg, R. A., Schiffman, P., Barfod, G. H., Lesher, C. E., Marks, N. E., Lowenstern, J. B., Mortensen, A. K., Pope, E. C., Bird, D. K., Reed, M. H., Friðleifsson, G. Ó., and Elders, W. A.: Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland, Contributions to Mineralogy and Petrology, 165, 327–347,
https://doi.org/10.1007/s00410-012-0811-z, 2013.
a