Articles | Volume 16, issue 11
https://doi.org/10.5194/se-16-1351-2025
https://doi.org/10.5194/se-16-1351-2025
Research article
 | 
12 Nov 2025
Research article |  | 12 Nov 2025

An integrated workflow for parametrization of fracture network geometry in digital outcrop models

Stefano Casiraghi, Gabriele Benedetti, Daniela Bertacchi, Silvia Mittempergher, Federico Agliardi, Bruno Monopoli, Fabio La Valle, Mattia Martinelli, Francesco Bigoni, Cristian Albertini, and Andrea Bistacchi

Related authors

Unbiased statistical length analysis of linear features: adapting survival analysis to geological applications
Gabriele Benedetti, Stefano Casiraghi, Daniela Bertacchi, and Andrea Bistacchi
Solid Earth, 16, 367–390, https://doi.org/10.5194/se-16-367-2025,https://doi.org/10.5194/se-16-367-2025, 2025
Short summary

Cited articles

Ackermann, R. V. and Schlische, R. W.: Anticlustering of small normal faults around larger faults, Geology, 25, 1127–1130, https://doi.org/10.1130/0091-7613(1997)025<1127:AOSNFA>2.3.CO;2, 1997. 
Agliardi, F., Zanchetta, S., and Crosta, G. B.: Fabric controls on the brittle failure of folded gneiss and schist, Tectonophysics, 637, 150–162, https://doi.org/10.1016/j.tecto.2014.10.006, 2014. 
Agliardi, F., Dobbs, M. R., Zanchetta, S., and Vinciguerra, S.: Folded fabric tunes rock deformation and failure mode in the upper crust, Sci. Rep., 7, 15290, https://doi.org/10.1038/s41598-017-15523-1, 2017. 
Akaike, H.: A new look at the statistical model identification, IEEE Trans. Autom. Control, 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. 
Andrews, B. J., Roberts, J. J., Shipton, Z. K., Bigi, S., Tartarello, M. C., and Johnson, G.: How do we see fractures? Quantifying subjective bias in fracture data collection, Solid Earth, 10, 487–516, https://doi.org/10.5194/se-10-487-2019, 2019. 
Short summary
Traditional methods for investigating the subsurface cannot properly investigate fractures between 1m and 100–200m. Digital outcrop models (DOMs) provide a framework for the collection of extensive datasets in outcrop analogues. Here we present a workflow, with a solid statistical foundation, to collect a suite of statistical parameters to be used as input in current stochastic 3D Discrete Fracture Network models, including best practices for an optimal outcrop selection and data acquisition.
Share